Как найти корень уравнения 9 класс формулы

Формулы для уравнений за 9 класс

Последние две формулы также часто удобно использовать в виде:

Квадратное уравнение и формула разложения квадратного трехчлена на множители

Пусть квадратное уравнение имеет вид:

Тогда дискриминант находят по формуле:

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:

Если D 0. Ноль можно возводить только в положительную степень.

Основные свойства математических корней:

Для арифметических корней:

Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при a больше либо равном нолю. Для корня нечетной степени выполняется также следующее равенство:

Для корня четной степени имеется следующее свойство:

Формулы с логарифмами

Определение логарифма:

Определение логарифма можно записать и другим способом:

Свойства логарифмов:

Вынесение степени за знак логарифма:

Другие полезные свойства логарифмов:

Арифметическая прогрессия

Формулы n-го члена арифметической прогрессии:

Соотношение между тремя соседними членами арифметической прогрессии:

Формула суммы арифметической прогрессии:

Свойство арифметической прогрессии:

Геометрическая прогрессия

Формулы n-го члена геометрической прогрессии:

Соотношение между тремя соседними членами геометрической прогрессии:

Формула суммы геометрической прогрессии:

Формула суммы бесконечно убывающей геометрической прогрессии:

Свойство геометрической прогрессии:

Тригонометрия

Пусть имеется прямоугольный треугольник:

Тогда, определение синуса:

Основное тригонометрическое тождество:

Простейшие следствия из основного тригонометрического тождества:

Формулы двойного угла

Синус двойного угла:

Косинус двойного угла:

Тангенс двойного угла:

Котангенс двойного угла:

Тригонометрические формулы сложения

Тригонометрические формулы преобразования суммы в произведение

Тригонометрические формулы преобразования произведения в сумму

Произведение синуса и косинуса:

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для косинуса:

Формула понижения степени для тангенса:

Формула понижения степени для котангенса:

Формулы половинного угла

Формула половинного угла для тангенса:

Формула половинного угла для котангенса:

Тригонометрические формулы приведения

Формулы приведения задаются в виде таблицы:

Тригонометрическая окружность

По тригонометрической окружности легко определять табличные значения тригонометрических функций:

Тригонометрические уравнения

Формулы решений простейших тригонометрических уравнений. Для синуса существует две равнозначные формы записи решения:

Для остальных тригонометрических функций запись однозначна. Для косинуса:

Решение тригонометрических уравнений в некоторых частных случаях:

Геометрия на плоскости (планиметрия)

Пусть имеется произвольный треугольник:

Тогда, сумма углов треугольника:

Площадь треугольника через две стороны и угол между ними:

Площадь треугольника через сторону и высоту опущенную на неё:

Полупериметр треугольника находится по следующей формуле:

Формула Герона для площади треугольника:

Площадь треугольника через радиус описанной окружности:

Основное свойство высот треугольника:

Еще одно полезное свойство высот треугольника:

Теорема косинусов:

Теорема синусов:

Радиус окружности, вписанной в правильный треугольник:

Радиус окружности, описанной около правильного треугольника:

Площадь правильного треугольника:

Теорема Пифагора для прямоугольного треугольника (c – гипотенуза, a и b – катеты):

Радиус окружности, вписанной в прямоугольный треугольник:

Радиус окружности, описанной вокруг прямоугольного треугольника:

Площадь прямоугольного треугольника (h – высота опущенная на гипотенузу):

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Длина средней линии трапеции:

Площадь параллелограмма через сторону и высоту опущенную на неё:

Площадь параллелограмма через две стороны и угол между ними:

Площадь квадрата через длину его стороны:

Площадь квадрата через длину его диагонали:

Площадь ромба (первая формула – через две диагонали, вторая – через длину стороны и угол между сторонами):

Площадь прямоугольника через две смежные стороны:

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Теорема о пропорциональных отрезках хорд:

Теорема о касательной и секущей:

Теорема о двух секущих:

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство центральных углов и хорд:

Свойство центральных углов и секущих:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Сумма углов n-угольника:

Центральный угол правильного n-угольника:

Площадь правильного n-угольника:

Длина окружности:

Длина дуги окружности:

Площадь круга:

Площадь кругового сегмента:

Геометрия в пространстве (стереометрия)

Главная диагональ куба:

Объём прямоугольного параллелепипеда:

Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: “трёхмерная Теорема Пифагора”):

Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

Объём кругового цилиндра:

Площадь боковой поверхности прямого кругового цилиндра:

Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):

Объем кругового конуса:

Площадь боковой поверхности прямого кругового конуса:

Длина образующей прямого кругового конуса:

Объём шара:

Площадь поверхности шара (или, другими словами, площадь сферы):

Координаты

Длина отрезка на координатной оси:

Длина отрезка на координатной плоскости:

Длина отрезка в трёхмерной системе координат:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости – первые две формулы, для трехмерной системы координат – все три формулы):

Таблица умножения

Таблица квадратов двухзначных чисел

Расширенная PDF версия документа “Все главные формулы по школьной математике”:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

Основные формулы для подготовки к ОГЭ по математике

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 925 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 684 человека из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 309 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 576 079 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 03.11.2015
  • 1020
  • 3
  • 03.11.2015
  • 1119
  • 0
  • 03.11.2015
  • 869
  • 1
  • 03.11.2015
  • 514
  • 1
  • 03.11.2015
  • 3777
  • 21
  • 03.11.2015
  • 938
  • 1

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 03.11.2015 528172
  • DOCX 419.1 кбайт
  • 5536 скачиваний
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Буракова Юлия Дмитриевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 3 месяца
  • Подписчики: 5
  • Всего просмотров: 566225
  • Всего материалов: 19

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

ЕГЭ в 2022 году будут сдавать почти 737 тыс. человек

Время чтения: 2 минуты

Минпросвещения подключит студотряды к обновлению школьной инфраструктуры

Время чтения: 1 минута

В России действуют более 3,5 тысячи студенческих отрядов

Время чтения: 2 минуты

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Виды уравнений и способы их решения в 9-м классе

Разделы: Математика

Перед уроком были изучены темы “Уравнения с одной переменной”, “Целые рациональные уравнения и основные методы решения целых рациональных уравнений”, “Дробно-рациональные уравнения”, “Уравнения с модулем и параметрами”.

За две недели до обобщающего урока на стенде “Готовься к экзамену” было предложено:

  1. Прорешать из экзаменационного сборника задания второго раздела (№ 71–101).
  2. Вопросы по теоретическому материалу.
  3. Примерное оформление экзаменационного задания.
  4. Сроки индивидуальных и групповых консультаций.

Вопросы по теоретическому материалу

  1. Определение уравнения с одним неизменным.
  2. Корень уравнения.
  3. Что значит решить уравнение?
  4. Определение области допустимых значений.
  5. Когда два уравнения являются равносильными?
  6. Когда одно уравнение является следствием другого?
  7. Какие тождественные преобразования приводят к равносильным уравнениям?
  8. Особенность тождественного преобразования “деление на выражение, содержащее переменную”.
  9. Виды уравнений, их стандартный вид, алгоритм решения.
  10. Основные методы решения уравнений с одним неизвестным.

а) учебник А-9 под ред. Н.Я. Виленкина, глава X, с. 157–189;
б) конспекты.

№ 93(1)
№ 5.60(а)
Галицкий, с. 51

если D = 0, то x = –3 при a = –3, но x = –3 не удовлетворяет условию, так как (x – 4)(x + 3) 0;

Среди найденных значений может быть появление посторонних корней, так как уравнение x² + (3 – a)x – 3a = 0 следствие исходного уравнения.

Чтобы x2 = a являлся корнем x 2 – 4 0, a – 4 0, a 4

x 2 + 3 0, то есть a – 3 0, a –3

Ответ: при a 4, a –3 корнем уравнения является x = a.

Задания к уроку подобраны с учетом подготовленности учащихся данного класса.

  • привести в систему знаний учащихся по теме;
  • повторить теорию решения уравнений;
  • выработать умение определить вид уравнения;
  • выразить наиболее рациональный способ решения данного уравнения;
  • формировать наблюдательность учащихся.

I. Организационный момент

Сообщение темы урока и его целей.

II. Повторение теории по решению уравнений

1. Что называется уравнением?

Ответ: Любое равенство вида некоторые функции называются уравнением с одной переменной (или с одной неизвестной).

2. Что называется корнем уравнения?

Ответ: Число a называется корнем (или решением) данного уравнения с одной переменной, если при подстановке числа a вместо x в обе части уравнения, получаем верное числовое неравенство, то есть при подстановке x = a обе части уравнения определены и их значения совпадают:

3. Что значит решить уравнение?

Ответ: Решить уравнение – это значит найти все его корни или доказать что их нет.

4. Как определяется область определения допустимых значений уравнения?

Ответ: ОДЗ называется пересечение множеств областей определения функций

5. Какие уравнения называются равносильными (эквивалентными)?

Ответ: Два уравнения называются равносильными, если все корни уравнения первого являются корнями второго и наоборот, все корни второго уравнения являются корнями первого.

6. А как определить уравнение следствие?

Ответ: Если все корни одного уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого уравнения.

7. Какие тождественные преобразования приводят к равносильным уравнениям?

  • к обеим частям уравнения прибавить любую функцию, которая определена при всех значениях из ОДЗ. Следствие. Члены уравнения можно переносить из одной части уравнения в другую;
  • обе части уравнения умножить на любую функцию, определенную и отличную от нуля при всех допустимых значениях неизвестного. Также можно делить и умножать на число, отличное от нуля;
  • в обеих частях уравнения стоят функции, принимающие только неотрицательные значения, то при возведении в одну и ту же четную степень получаем уравнение, равносильное данному. Появлению “посторонних корней” приводят преобразования:
    а) приведение подобных членов – происходит расширение ОДЗ;
    б) сокращение дроби на выражение, содержащие неизвестное (тоже происходит расширение ОДЗ);
    в) умножение на выражение, содержащее неизвестное;
    г) освобождение дроби от знаменателя, содержащего неизвестное. Необходимо обязательно делить проверку или лучше перейти к смешанной системе.

8. Виды уравнений, их стандартный вид, алгоритм решения (в процессе решения).

Ответ:
а) Линейное;
б) квадратное;
в) уравнение высших порядков (биквадратным, возвратное, симметрическое);
г) уравнения содержащие модуль;
д) уравнение с параметром.]

9. Какие общие методы решения уравнений с одним неизвестным?

Ответ: Вынесение общего множителя (разложение на множители), замена переменной, использование ограниченности и монотонности функций, графически.

Понятие равносильности для нас понятие только вводится, и поэтому проведем тест, как же вы этим понятием владеете.

Тест рассчитан на 5–7 минут. Контрольные задания даются в двух вариантах. После окончания работы на доске вывешиваются контрольные ответы. За каждое правильно выполненное задание – 1 балл. После окончания работы ученик оценивает свою работу самостоятельно, затем разбираются неверные ответы (к заданиям предлагаются).

Корни всех приведенных уравнений находятся среди чисел –3, –2, 1, 2, 3. Укажите пары равносильных уравнений.

(x 2 – 6) 2 = x 2

(x – 1)(x 2 – 6) = (1 – x)x

(x – 2)(x 2 – 6) = –x(x – 2)

x 2 – 6 = x

(x 2 + x – 6)(x 2 – x – 6) = 0

x + 3 = 0

x – 2 = 0

(x – 1)(x – 2)(x + 3) = 0

Равносильные уравнения

Корни всех приведенных уравнений находятся среди чисел –2, –1, 1, 2. Укажите пары равносильных уравнений.

(x 2 – 2) 2 = x 2

(x – 1)(x 2 – 2) = x(x – 1)

(x – 2)(x 2 – 2) = x(x – 2)

x 2 – 2 = x

x + 1 = 0

(x 2 – 1)(x – 2) = 0

(x 2 – x – 2)(x 2 + x – 2) = 0

x – 2 = 0

Равносильные уравнения

VI. Решение задач

Ученик должен определить вид уравнения, алгоритм решения данного уравнения, обратить внимание на способы его решения, выбрать рациональный способ решения.

Задачи взяты из “Сборника задач по алгебре” для классов с углубленным изучением математики под редакцией М.Л. Галицкого.

1. Уравнение третьей степени, в стандартном виде. Метод решения – разложения на линейные множители (теорема Безу):

Так как это уравнение рациональное целое с целыми коэффициентами, то оно имеет целые корни, являющиеся делителями свободного члена: 21: 1; 3; 7; 21. x1 = 1 является корнем (убеждаемся подстановкой), поэтому многочлен левой части уравнения делится на двучлен х – 1.

Решим уравнение x² + 10x + 21 = 0. По теореме Виета корни: x2 = –3, x3 = –7, x1 = 1.

Как еще с помощью теоремы Безу можно было выполнить разложение на множители?

Ответ: Если множитель делится на x – 1 и на x + 3, то он делится и на их произведение.

Это уравнение четвертой степени. Метод решения – группировка. Если левая часть уравнения представлена в виде разложения на линейные множители, а в правой – число и выносящиеся: (x + a)(x + b)(x + b)(x + c) = A и a + b = c + d, в этом случае возможна группировка множителей.

Сделаем замену x² + x = t и получим уравнение

3. 5 – 12x³ + 14x² = 12x – 5, 5x² – 12x³ + 14x² – 12x + 5 = 0 возвратное уравнение членов степени. Так как x = 0 не является корнем данного уравнения, разделим почленно на x² и сгруппируем:

Сделаем замену:

4. – это дробно-рациональное уравнение, содержащее модуль.

Ответ: <0; 2; 4>

Алгоритм: а) находим нули модуля; б) дискриминант уравнения разбиваем на промежутки; в) раскрываем модуль на каждом из промежутков; г) выбираем ответ, учитывая данный промежуток; д) ответ – совокупность решений.

– это дробно-рациональное уравнение. Выделим квадрат разности:

Введем новую переменную и получим уравнение вида t² + 2t – 3 = 0. По теореме Виета корни этого уравнения t = 1 или t = –3.

6. ax² + 3ax – (a + 2) = 0 – это квадратное уравнение с параметром. При решении уравнения с параметрами необходимо выяснить, при каких значениях параметров уравнение имеет корни и сколько их в зависимости от параметров при которых это выражение действительно определяет корни уравнения, то есть найти при каком значении параметра: г) x – единственный корень.

При D > 0 уравнение имеет два различных действительных корня, то есть при

При D 4 – 133х³ + 48х² – 133х + 78 = 0.

5. Для каждого значения параметра а решить уравнение ax² – (2a + 7)x + a + 3 = 0.

6. Найдите все значения параметра b, при которых уравнение имеет ровно один корень.

7 * . Решить уравнение x 4 + 4х + 3 = 0.

2. Дается оценка работы учащихся на уроке, выставляются в журнал. Сообщается дата и время консультации перед итоговой контрольной работой по этой теме.

[spoiler title=”источники:”]

http://infourok.ru/osnovnie-formuli-dlya-podgotovki-k-oge-po-matematike-544444.html

http://urok.1sept.ru/articles/564266

[/spoiler]

В предыдущих уроках мы разбирали
«Как решать линейные уравнения», то есть
уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Важно!
Галка

Степень уравнения определяют по наибольшей степени, в которой
стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное — «2»,
значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x2 − 14x + 17 = 0
  • −x2 + x + = 0
  • x2 + 0,25x = 0
  • x2 − 8 = 0

Важно!
ГалкаОбщий вид квадратного уравнения выглядит так:

ax2 + bx + c = 0

«a», «b» и «c» — заданные числа.

  • «a» — первый или старший коэффициент;
  • «b» — второй коэффициент;
  • «c» — свободный член.

Чтобы найти «a», «b» и «c»
нужно сравнить свое уравнение с общим видом квадратного уравнения
«ax2 + bx + c = 0».

Давайте потренируемся определять
коэффициенты «a», «b»
и «c» в квадратных уравнениях.

Уравнение Коэффициенты
5x2 − 14x + 17 = 0
  • a = 5
  • b = −14
  • с = 17
−7x2 − 13x + 8 = 0
  • a = −7
  • b = −13
  • с = 8
−x2 + x +

1
3

= 0

  • a = −1
  • b = 1
  • с =
    1
    3
x2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • с = 0
x2 − 8 = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная
формула для нахождения корней.

Запомните!
!

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду «ax2 + bx + c = 0».
    То есть в правой части должен остаться только «0»;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

x2 − 3x − 4 = 0

Уравнение «
x2 − 3x − 4 = 0
» уже приведено к общему виду «ax2 + bx + c = 0» и не требует дополнительных упрощений.
Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения.

Определим коэффициенты «a», «b» и
«c» для этого уравнения.

Уравнение Коэффициенты
x2 − 3x − 4 = 0
  • a = 1
  • b = −3
  • с = −4

Подставим их в формулу и найдем корни.


x2 − 3x − 4 = 0

x1;2 =

x1;2 =

−(−3) ±
(−3)2 − 4 · 1· (−4)
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1 =

x2 =

x1 =

x2 =

x1 = 4

x2 = −1


Ответ: x1 = 4; x2 = −1

Важно!
Галка

Обязательно выучите наизусть формулу для нахождения корней.

С её помощью решается любое квадратное уравнение.

В формуле «x1;2 = » часто заменяют подкоренное выражение
«b2 − 4ac» на букву «D» и называют
дискриминантом. Более подробно понятие дискриминанта рассматривается в уроке
«Что такое дискриминант».


Рассмотрим другой пример квадратного уравнения.

x2 + 9 + x = 7x

В данном виде определить коэффициенты «a», «b» и
«c» довольно сложно.
Давайте вначале приведем уравнение к общему виду «ax2 + bx + c = 0».

Используем
правило переноса и
упростим подобные
члены.

x2 + 9 + x = 7x
x2 + 9 + x − 7x = 0
x2 + 9 − 6x = 0
x2 − 6x + 9 = 0

Теперь можно использовать формулу для корней.


x1;2 =

−(−6) ±
(−6)2 − 4 · 1 · 9
2 · 1

x1;2 =

x1;2 =

x1;2 =

x =

x = 3


Ответ: x = 3


Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем
оказывается отрицательное число.

Мы помним из определения квадратного корня о том,
что извлекать квадратный корень из отрицательного числа
нельзя.

Рассмотрим пример квадратного уравнения, у которого нет корней.


5x2 + 2x = − 3
5x2 + 2x + 3 = 0

x1;2 =

−2 ±
22 − 4 · 3 · 5
2 · 5

x1;2 =

x1;2 =

Ответ: нет действительных корней.

Итак, мы получили ситуацию, когда под корнем стоит отрицательное число.
Это означает, что в уравнении нет корней. Поэтому в ответ мы так и записали «Нет действительных корней».

Важно!
Галка

Что означают слова «нет действительных корней»? Почему нельзя просто написать «нет корней»?

На самом деле корни в таких случаях есть, но в рамках школьной программы они не проходятся, поэтому и в
ответ мы записываем, что среди действительных чисел корней нет. Другими словами «Нет действительных корней».

Неполные квадратные уравнения

Иногда встречаются квадратные уравнения, в которых отсутсвуют в явном виде коэффициенты «b» и/или
«c». Как например, в таком уравнении:

4x2 − 64 = 0

Такие уравнения называют неполными квадратными уравнениями. Как их решать рассмотрено в уроке
«Неполные квадратные уравнения».


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

8 мая 2018 в 19:54

Safie Bekirova
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Safie Bekirova
Профиль
Благодарили: 0

Сообщений: 1

0,5х(4х2-1)(5х2+2)

0
Спасибоthanks
Ответить

10 мая 2018 в 10:09
Ответ для Safie Bekirova

Ульяночка Звонкова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ульяночка Звонкова
Профиль
Благодарили: 0

Сообщений: 1


вродебы-2,5embarassed

0
Спасибоthanks
Ответить

29 ноября 2015 в 15:30

Евгения Краснова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Евгения Краснова
Профиль
Благодарили: 0

Сообщений: 1

Не можем решить уравнение: (х+1)2015 + (х+1)2014 * (х-1) + (х+1)2013 * (х-1)2 +…..+ (х-1)2015 = 0 2015,2014,2013 и 2 — это степени

0
Спасибоthanks
Ответить

12 июня 2016 в 1:55
Ответ для Евгения Краснова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


Ответ: x = 0.
y =  .
1 + y + y2 +… + y2015 =   = 0.

0
Спасибоthanks
Ответить

12 августа 2015 в 23:35

Наталья Афонина
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Наталья Афонина
Профиль
Благодарили: 0

Сообщений: 1

(x2-4)|x|+3=0

0
Спасибоthanks
Ответить

9 июня 2016 в 14:40
Ответ для Наталья Афонина

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


±1; ±(?13 ? 1)/2.

0
Спасибоthanks
Ответить

9 августа 2015 в 20:06

Andrey Porshnev
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Andrey Porshnev
Профиль
Благодарили: 0

Сообщений: 2

x2-3x-4 Как преобразовать это выражение к виду (x-4)?
Подскажите пожалуйста)

0
Спасибоthanks
Ответить

20 августа 2015 в 11:34
Ответ для Andrey Porshnev

Борис Гуров
(^-^)
Профиль
Благодарили: 1

Сообщений: 28

(^-^)
Борис Гуров
Профиль
Благодарили: 1

Сообщений: 28


Здравствуй, Андрей.

Сперва тебе необходимо найти корни своего уравнения по формуле:

x1;2

 

После этого достаточно воспользоваться формулой:
ax2 + bx + c = a (x — x1)(x — x2), где x1 и x2 — корни уравнения.

0
Спасибоthanks
Ответить


Решение квадратных уравнений

6 июля 2011

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Формула корней квадратного уравнения

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2xx2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Решение простого квадратного уравнения

Второе уравнение:
15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

[begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

[x=frac{-12+sqrt{0}}{2cdot 1}=-6]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Разложение уравнения на множители

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Тест на тему «Значащая часть числа»
  4. Метод коэффициентов, часть 1
  5. Однородные тригонометрические уравнения: общая схема решения
  6. Задача B4: строительные бригады

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5.

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x, значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

осоу рис 1

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.


Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

8 + 2

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

8 + 2 = 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

2 = 10 − 8

Мы выразили число 2 из равенства 8 + 2 = 10. Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8. Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

или

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

8 + 2 = 10

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

8 = 10 − 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

8 + 2 = 10

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

10 = 8 + 2


Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

8 = 6 + 2

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

8 − 2 = 6

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

2 = 8 − 6


Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

три равно шесть вторых

Вернем получившееся равенство три равно шесть вторых в первоначальное состояние:

3 × 2 = 6

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

2 равно шесть третьих


Пример 4. Рассмотрим равенство пятнадцать пятых равно три

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

15 = 3 × 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

пятнадцать пятых равно три

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

пять равно пятнадцать третьих


Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

рисунок 8 плюс 2 равно 10

Чтобы выразить число 2, мы поступили следующим образом:

2 = 10 − 8

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

8 + x = 10

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + = 10, а переменная x берет на себя роль так называемого неизвестного слагаемого

рисунок неизвестное слагаемое

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + = 10. Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10. Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

2 = 10 − 8

А сейчас, чтобы найти неизвестное слагаемое x, мы должны из суммы 10 вычесть известное слагаемое 8:

x = 10 − 8

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

x = 2

Мы решили уравнение. Значение переменной x равно 2. Для проверки значение переменной x отправляют в исходное уравнение 8 + = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

рисунок уравнение 8 плюс икс равно десять подставление значения

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

x + 2 = 10

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x, нужно из суммы 10 вычесть известное слагаемое 2

x = 10 − 2

x = 8

рисунок уравнение икс плюс 2 равно 10


Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

рисунок уменьшаемое вычитаемое и разность

Чтобы выразить число 8, мы поступили следующим образом:

8 = 6 + 2

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

x − 2 = 6

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

неизвестное уменьшаемое вычитаемое и разность

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6. Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x, мы должны к разности 6 прибавить вычитаемое 2

x = 6 + 2

Если вычислить правую часть, то можно узнать чему равна переменная x

x = 8


Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

8 − x = 6

В этом случае переменная x берет на себя роль неизвестного вычитаемого

рисунок уменьшаемое неизвестное вычитаемое и разность

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

x = 8 − 6

Вычисляем правую часть и находим значение x

x = 2


Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

рисунок множимое множитель произведение

Чтобы выразить число 3 мы поступили следующим образом:

три равно шесть вторых

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

x × 2 = 6

В этом случае переменная x берет на себя роль неизвестного множимого.

рисунок неивестеное множимое множитель и произведение

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6. Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x, нужно произведение 6 разделить на множитель 2.

икс равно шесть вторых

Вычисление правой части позволяет нам найти значение переменной x

x = 3

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x.

рисунок множимое неизвестный множитель и произведение

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

x равно шесть третьих

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6. Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства x равно шесть третьих позволяет узнать чему равно x

x = 2

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

x ravno 18 na 9

Отсюда x ravno 2.

Решим уравнение × 3 = 27. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

x ravno 27 na 3

Отсюда x ravno 9.


Вернемся к четвертому примеру из предыдущей темы, где в равенстве пятнадцать пятых равно три требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

рисунок делимое делитель частное

Чтобы выразить число 15 мы поступили следующим образом:

15 = 3 × 5

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве пятнадцать пятых равно три вместо числа 15 располагается переменная x

икс третьих равно 3

В этом случае переменная x берет на себя роль неизвестного делимого.

рисунок неизвестное делитель частное

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства пятнадцать пятых равно три. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x, нужно частное 3 умножить на делитель 5

x = 3 × 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.

x = 15


Теперь представим, что в равенстве пятнадцать пятых равно три вместо числа 5 располагается переменная x.

пятнадцать на x равно три

В этом случае переменная x берет на себя роль неизвестного делителя.

рисунок делимое неизвестный делитель частное

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства пятнадцать пятых равно три. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x, нужно делимое 15 разделить на частное 3

икс равно пятнадцать третьих

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.

x = 5

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

компоненты сложения рисунок 1


Компонентами вычитания являются уменьшаемое, вычитаемое и разность

компоненты вычитания рисунок 1


Компонентами умножения являются множимое, множитель и произведение

компоненты произведения рисунок 1


Компонентами деления являются делимое, делитель и частное

компоненты деления рисунок 1

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

x = 60 − 45

Вычислим правую часть, получим значение x равное 15

x = 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение 2x plus 4 ravno 8

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

2x + 4 = 8 решить уравнение

При этом слагаемое 2x содержит переменную x. После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

2x + 4 = 8 решить уравнение рисунок 2

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

2x plus 4 ravno 8 step 2

Вычислим правую часть получившегося уравнения:

2x plus 4 ravno 8 step 3

Мы получили новое уравнение 2x plus 4 ravno 8 step 3. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, — множитель, 4 — произведение

2 множимое x множитель 8 произведение рисунок 1

При этом переменная x является не просто множителем, а неизвестным множителем

2 множимое x неизвестный множитель 8 произведение рисунок 1

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

x равно четыре вторых

Вычислим правую часть, получим значение переменной x

2x plus 4 ravno 8 step 4

Для проверки найденный корень отправим в исходное уравнение 2x plus 4 ravno 8 и подставим вместо x

уравнение 2x + 4 = 4 проверка

Получили верное числовое равенство. Значит уравнение решено правильно.


Пример 3. Решить уравнение 3+ 9+ 16= 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

3x 9x 16x ravno 56 step 2

Имеем дело с компонентами умножения. 28 — множимое, — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

x равно 56 к 28

Отсюда x равен 2

2x plus 4 ravno 8 step 4


Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56, мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56. Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3+ 9+ 16= 56 мы нашли корень равный 2. Подставим этот корень сначала в уравнение 3+ 9+ 16= 56, а затем в уравнение 28= 56, которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

3x 9x 16x ravno 56 check 1

Согласно порядку действий, в первую очередь выполняется умножение:

3x 9x 16x ravno 56 check 2

Подставим корень 2 во второе уравнение 28= 56

28x ravno 56 check 1

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3+ 9+ 16= 56 и 28= 56 действительно являются равносильными.

Для решения уравнения 3+ 9+ 16= 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28= 56, которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.


Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

и аналогично:

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение 5x plus 10 ravno 20

Вычтем из обеих частей уравнения число 10

5x plus 10 ravno 20 step 1

Приведем подобные слагаемые в обеих частях:

5x plus 10 ravno 20 step 2

Получили уравнение 5= 10. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 10 разделить на известный сомножитель 5.

x ravno 10 na 5

Отсюда x ravno 2.

Вернемся к исходному уравнению 5x plus 10 ravno 20 и подставим вместо x найденное значение 2

5x plus 10 ravno 20 step 5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 5x plus 10 ravno 20 мы вычли из обеих частей уравнения число 10. В результате получили равносильное уравнение 5x ravno 10.png. Корень этого уравнения, как и уравнения 5x plus 10 ravno 20 так же равен 2

5x ravno 10 step 2


Пример 2. Решить уравнение 4(+ 3) = 16

Раскроем скобки в левой части равенства:

4x plus 12 ravno 16

Вычтем из обеих частей уравнения число 12

4x plus 12 ravno 16 step 3

Приведем подобные слагаемые в обеих частях уравнения:

4x plus 12 ravno 16 step 4В левой части останется 4x, а в правой части число 4

4x ravno 4

Получили уравнение 4= 4. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 4 разделить на известный сомножитель 4

x ravno 4 na 4

Отсюда x ravno 1

Вернемся к исходному уравнению 4(+ 3) = 16 и подставим вместо x найденное значение 1

4naxplus3 ravno 16 решение

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(+ 3) = 16 мы вычли из обеих частей уравнения число 12. В результате получили равносильное уравнение 4= 4. Корень этого уравнения, как и уравнения 4(+ 3) = 16 так же равен 1

4x ravno 4 проверка


Пример 3. Решить уравнение 2x minus 8 ravno 1 step 1

Раскроем скобки в левой части равенства:

2x minus 8 ravno 1 step 2

Прибавим к обеим частям уравнения число 8

2x minus 8 ravno 1 step 3

Приведем подобные слагаемые в обеих частях уравнения:

2x minus 8 ravno 1 step 4

В левой части останется 2x, а в правой части число 9

2x minus 8 ravno 1 step 5

В получившемся уравнении 2= 9 выразим неизвестное слагаемое x

x ravno 9 na 2

Отсюда 2x na 2 ravno 9 na 2 step 2

Вернемся к исходному уравнению 2x minus 8 ravno 1 step 1 и подставим вместо x найденное значение 4,5

2x minus 8 ravno 1 check 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 2x minus 8 ravno 1 step 1 мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение 2x minus 8 ravno 1 step 5. Корень этого уравнения, как и уравнения 2x minus 8 ravno 1 step 1 так же равен 4,5

2x ravno 9 check 1


Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

12 plus 3x ravno 9x

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

12 plus 3x ravno 9x step 2

Получается верное равенство. Значит число 2 действительно является корнем уравнения 12 plus 3x ravno 9x.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

equation 12+3x=9x перенос 3x вправо

Получилось уравнение 12 = 9x − 3x. Приведем подобные слагаемые в правой части данного уравнения:

12 ravno plus minus 3 na x

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

equation 12+3x=9x шаг 2

Отсюда = 2. Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

12 plus 3x ravno 9 step 1

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3= 9x и 3x − 9= −12. В этот раз в уравнении 12 + 3= 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

equation 12+3x=9x шаг 3


Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение x+8 на 8 равно 12 на 8 решить уравнение

При решении уравнений, содержащих дробные выражения, сначала  принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

x+8 на 8 равно 12 на 8 решить уравнение шаг 1

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

x+8 на 8 равно 12 на 8 решить уравнение шаг 2

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

x+8 на 8 равно 12 на 8 решить уравнение шаг 3

В результате останется простейшее уравнение

x plus 8 ravno 12

Ну и нетрудно догадаться, что корень этого уравнения равен 4

x plus 8 ravno 12 решение

Вернемся к исходному уравнению x+8 на 8 равно 12 на 8 решить уравнение  и подставим вместо x найденное значение 4

x+8 на 8 равно 12 на 8 решить уравнение шаг 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение x plus 8 ravno 12. Корень этого уравнения, как и уравнения x+8 на 8 равно 12 на 8 решить уравнение равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение x+8 на 8 равно 12 на 8 решить уравнение, мы умножили обе части на множитель 8 и получили следующую запись:

x+8 на 8 равно 12 на 8 решить уравнение шаг 1

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения x+8 на 8 равно 12 на 8 решить уравнение на множитель 8 желательно переписать следующим образом:

8 umn x plus 8 na 8 ravno 8 umn 12 na 8 решение 2


Пример 2. Решить уравнение x+25 na 15 ravno x+5 na 5 equation

Умнóжим обе части уравнения на 15

x+25 na 15 ravno x+5 na 5 equation step 2

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

x+25 na 15 ravno x+5 na 5 equation step 3

Перепишем то, что у нас осталось:

x+25 na 15 ravno x+5 na 5 equation step 4

Раскроем скобки в правой части уравнения:

x+25 na 15 ravno x+5 na 5 equation step 5

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

x+25 na 15 ravno x+5 na 5 equation step 7

Приведем подобные слагаемые в обеих частях, получим

x+25 na 15 ravno x+5 na 5 equation step 8

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

x+25 na 15 ravno x+5 na 5 equation step 9

Отсюда x ravno 5

Вернемся к исходному уравнению x+25 na 15 ravno x+5 na 5 equation  и подставим вместо найденное значение 5

x+25 na 15 ravno x+5 na 5 equation step 10

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15. Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x. Корень этого уравнения, как и уравнения x+25 na 15 ravno x+5 na 5 equation равен 5. Значит эти уравнения равносильны.


Пример 3. Решить уравнение  2 na 3x ravno 6

Умнóжим обе части уравнения на 3

3 umn 2 na 3x ravno 3 na 6

В левой части можно сократить две тройки, а правая часть будет равна 18

3 umn 2 na 3x ravno 3 na 6 step 2

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

3 umn 2 na 3x ravno 3 na 6 step 3

Отсюда x ravno 9

Вернемся к исходному уравнению  2 na 3x ravno 6  и подставим вместо найденное значение 9

2 na 3 umn 9 ravno 6 check

Получается верное числовое равенство. Значит уравнение решено правильно.


Пример 4. Решить уравнение x plus 11 minus x na 3 ravno 20 minus na 2 step 1

Умнóжим обе части уравнения на 6

x plus 11 minus x na 3 ravno 20 minus na 2 step 2

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

x plus 11 minus x na 3 ravno 20 minus na 2 step 3

Сократим в обеих частях уравнениях то, что можно сократить:

x plus 11 minus x na 3 ravno 20 minus na 2 step 4

Перепишем то, что у нас осталось:

x plus 11 minus x na 3 ravno 20 minus na 2 step 5

Раскроем скобки в обеих частях уравнения:

x plus 11 minus x na 3 ravno 20 minus na 2 step 6

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x, сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

x plus 11 minus x na 3 ravno 20 minus na 2 step 7

Приведем подобные слагаемые в обеих частях:

x plus 11 minus x na 3 ravno 20 minus na 2 step 8

Теперь найдем значение переменной x. Для этого разделим произведение 28 на известный сомножитель 7

x ravno 28 na 7

Отсюда = 4.

Вернемся к исходному уравнению x plus 11 minus x na 3 ravno 20 minus na 2 step 1 и подставим вместо x найденное значение 4

x plus 11 minus x na 3 ravno 20 minus na 2 step 10

Получилось верное числовое равенство. Значит уравнение решено правильно.


Пример 5. Решить уравнение 3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3

Раскроем скобки в обеих частях уравнения там, где это можно:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 2

Умнóжим обе части уравнения на 15

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 3

Раскроем скобки в обеих частях уравнения:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 4

Сократим в обеих частях уравнения, то что можно сократить:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 5

Перепишем то, что у нас осталось:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 6

Раскроем скобки там, где это можно:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 7

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 8

Приведем подобные слагаемые в обеих частях уравнения:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 9

Найдём значение x

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 10

В получившемся ответе можно выделить целую часть:

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 step 11

Вернемся к исходному уравнению и подставим вместо x найденное значение 7 целых 1 на 13

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 1

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A, а правую часть равенства в переменную B

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 2

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 3

Значение переменной А равно 6 plus 82 na 195. Теперь найдем значение переменной B. То есть значение правой части нашего равенства. Если и оно равно 6 plus 82 na 195, то уравнение будет решено верно

3x - 4 - 4 na 7x - 9 na 15 ravno 4 na 5 na 6 plus x - 1 na 3 check step 4

Видим, что значение переменной B, как и значение переменной A равно 6 plus 82 na 195. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30+ 14+ 14 = 70− 40+ 42. Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

30x plus 14x plus 14 ravno 70x minus 40x plus 42 решение 1

Подставим найденное значение 2 вместо x в исходное уравнение:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 проверка 1

Теперь попробуем разделить все слагаемые уравнения 30+ 14+ 14 = 70− 40+ 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2

Выполним сокращение в каждом слагаемом:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 2

Перепишем то, что у нас осталось:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 3

Решим это уравнение, пользуясь известными тождественными преобразованиями:

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 4

Получили корень 2. Значит уравнения 15+ 7+ 7 = 35x − 20+ 21 и 30+ 14+ 14 = 70− 40+ 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7= 14, нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

30x plus 14x plus 14 ravno 70x minus 40x plus 42 деление на 2 шаг 5

Этим методом мы тоже будем пользоваться часто.


Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1.

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение minus x minus 5 ravno minus 10. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

minus x minus 5 ranmo minus 10 step 1

Приведем подобные слагаемые:

minus x minus 5 ranmo minus 10 step 2

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения minus x ravno minus 5. Это есть произведение минус единицы и переменной x

minus x ravno minus 1 na x

То есть минус, стоящий перед переменной x, относится не к самой переменной x, а к единице, которую мы не видим, поскольку коэффициент принято не записывать. Это означает, что уравнение minus x ravno minus 5 на самом деле выглядит следующим образом:

minus na x ravnio minus 5

Имеем дело с компонентами умножения. Чтобы найти х, нужно произведение −5 разделить на известный сомножитель −1.

x ravno minus 5 na minus 1

или разделить обе части уравнения на −1, что еще проще

minus 1 na x na minus 1 ravno minus 5 na minus 1

Итак, корень уравнения minus x minus 5 ravno minus 10 равен 5. Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

-x-5-ranmo-minus-10-step-3

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения minus x minus 5 ravno minus 10 на минус единицу:

minus x minus 5 ravno minus 10 umnojenit na minus 1

После раскрытия скобок в левой части образуется выражение x plus 5, а правая часть будет равна 10

x plus 5 ravno 10

Корень этого уравнения, как и уравнения minus x minus 5 ravno minus 10 равен 5

x plus 5 ravno 10 check

Значит уравнения minus x minus 5 ravno minus 10 и x plus 5 ravno 10 130px равносильны.


Пример 2. Решить уравнение minus 19 ravno minus 4 minus 3 y

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение minus 19 ravno minus 4 minus 3 y. Для этого умнóжим обе части данного уравнения на −1.

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения  minus 19 ravno minus 4 minus 3 y на −1 можно записать подробно следующим образом:

minus 19 ravno minus 4 minus 3 y step 1

либо можно просто поменять знаки всех компонентов:

19 ravno 4 plus 3y

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения minus 19 ravno minus 4 minus 3 y на −1, мы получили уравнение 19 ravno 4 plus 3y. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

19 ravno 4 plus 3y решение уравнения

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.


Пример 3. Решить уравнение minus 2x minus 3 ravno minus 3 x plus 1

Умнóжим обе части уравнения на −1. Тогда все компоненты поменяют свои знаки на противоположные:

minus 2x minus 3 ravno minus 3 x plus 1 step 1

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

minus 2x minus 3 ravno minus 3 x plus 1 step 2

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: minus 2x minus 3 ravno minus 3 x plus 1 step 3


Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение 2x plus 3 ravno 80 minus 4x minus x. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

2x plus 3 ravno 80 minus 4x minus x step 2

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

2x plus 3 ravno 80 minus 4x minus x step 3

Приведем подобные слагаемые в левой части:

2x plus 3 ravno 80 minus 4x minus x step 4

Прибавим к обеим частям 77, и разделим обе части на 7

9x minus 77 plus 77 ravno 0 plus 77 step 5


Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении 2x ravno 10 мы произведение 10 делили на известный сомножитель 2

x ravno 10 na 2 ravno 5

Но если в уравнении 2x ravno 10 обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет  равна 5

x ravno 10 na 2 ravno 5 alter method

Уравнения вида 2x plus 4 ravno 8 мы решали выражая неизвестное слагаемое:

2x plus 4 ravno 8 step 2

2x plus 4 ravno 8 step 3

2x plus 4 ravno 8 step 4

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении 2x plus 4 ravno 8 слагаемое 4 можно перенести в правую часть, изменив знак:

2x plus 4 ravno 8 step 2

2x plus 4 ravno 8 step 3

Далее разделить обе части на 2

2x na 2 ravno 4 na 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда x ravno 2.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

2x plus 4 ravno 8 method 3

В случае с уравнениями вида 2x ravno 10 удобнее делить произведение на известный сомножитель. Сравним оба решения:

x ravno 10 na 2 ravno 5 alter оба решения

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.


Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9.

chech equation x na x plus 9

В уравнении x(x + 9) = 0 нужно было найти такое значение при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9), которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

x = 0 или x + 9 = 0

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0. Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение + 9 = 0. Несложно догадаться, что корень этого уравнения равен −9. Проверка показывает, что корень верный:

−9 + 9 = 0


Пример 2. Решить уравнение x minus 1 na x minus 2 ravno 0

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2). А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2)).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

1 na 2 minus 1 na 2 ravno 0 step 2

Подставляем по-очереди найденные значения в исходное уравнение x minus 1 na x minus 2 ravno 0 и убеждаемся, что при этих значениях левая часть равняется нулю:

1 na 2 minus 1 na 2 ravno 0 step 3


Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение 6x minus 2 na x minus 7 ravno 14

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14. Это равенство будет получаться при любом x

6x minus 2 na x minus 7 ravno 14 решение


Пример 2. Решить уравнение 2 na 5x plus 6 ravno 10x plus 12

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x


Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение x plus 2 ravno x не имеет корней, поскольку при любом значении x, левая часть уравнения не будет равна правой части. Например, пусть 2x plus 4 ravno 8 step 4. Тогда уравнение примет следующий вид

2 plus 2 ravno 2 step 1

Пусть x ravno minus 4


Пример 2. Решить уравнение 2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0

Раскроем скобки в левой части равенства:

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 2

Приведем подобные слагаемые:

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 3

Видим, что левая часть не равна правой части. И так будет при любом значении y. Например, пусть y = 3.

2y plus 3 na y minus 2 minus 5 na y minus 3 ravno 0 step 4


Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

формула нахождения скорости

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения формула нахождения скорости определить расстояние, нужно выразить переменную s.

Умнóжим обе части уравнения формула нахождения скорости на t

выразить s из v ravno s na t step 1

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

выразить s из v ravno s na t step 2

В получившемся уравнении левую и правую часть поменяем местами:

выразить s из v ravno s na t step 3

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения формула нахождения скорости определить время. Для этого нужно выразить переменную t.

Умнóжим обе части уравнения на t

выразить t из v ravno s na t step 1

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

выразить t из v ravno s na t step 2

В получившемся уравнении v × t = s обе части разделим на v

выразить t из v ravno s na t step 3

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

выразить t из v ravno s na t step 4

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

v = 50 км/ч

А расстояние равно 100 км

s = 100 км

Тогда буквенное уравнение формула нахождения скорости примет следующий вид

50 равно 100 разделить на t

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t. Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

t равно 100 на 50

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

50 на t равно 100 на t на t

Затем разделить обе части на 50

50 на t на 50 равно 100 на 50


Пример 2. Дано буквенное уравнение a plus bx ravno c. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

a plus bx ravno c step 2

Разделим обе части уравнения на b

a plus bx ravno c step 3

Теперь, если нам попадется уравнение вида a + bx = c, то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10. Оно похоже на буквенное уравнение a + bx = c.  Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

2x plus 4x ravno 10 два решения

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0), поскольку деление на ноль на допускается.


Пример 3. Дано буквенное уравнение a x minus c ravno b x plus d. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

a x minus c ravno b x plus d step 1

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x, сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

a x minus c ravno b x plus d step 2

В левой части вынесем за скобки множитель x

a x minus c ravno b x plus d step 3

Разделим обе части на выражение a − b

a x minus c ravno b x plus d step 4

В левой части числитель и знаменатель можно сократить на a − b. Так окончательно выразится переменная x

a x minus c ravno b x plus d step 5

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d), то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(+ 4). Оно похоже на уравнение a(x − c) = b(x + d). Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(+ 4) значения параметров a, b, c, d. Это позволит нам не ошибиться при подстановке:

abcd значения параметров

4 na x minus 3 ravno 2 na x plus 4 два решения

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0). Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d). В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

2 na x minus 3 ravno 2 na x plus 4 корней нет


Пример 4. Дано буквенное уравнение x na a minus x ravno b. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

x na a minus x ravno b step 2

Умнóжим обе части на a

x na a minus x ravno b step 3

В левой части x вынесем за скобки

x na a minus x ravno b step 4

Разделим обе части на выражение (1 − a)

x na a minus x ravno b step 5


Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2(x + 3) = 16. Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2+ 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2= 16 − 6. Вычислим правую часть, получим 2= 10. Чтобы найти x, разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2(x + 3) = 16 является линейным. Оно свелось к уравнению 2= 10для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2= 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x. Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0, то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax b примет вид 0= 0. При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0, то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0= 5. Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0, и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

x ravno b na a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3, и b равно какому-нибудь числу, скажем числу 6, то уравнение x ravno b na a str примет вид x ravno 6 na 3.
Отсюда x ravno 2.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0. Это то же самое уравнение, что и ax = b, но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7− 77 = 0. Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Задания для самостоятельного решения

Задание 1. Используя метод переноса слагаемого, решите следующее уравнение:

Задание 2. Используя метод прибавления (или вычитания) числа к обеим частям, решите следующее уравнение:

Задание 3. Решите уравнение:

Задание 4. Решите уравнение:

Задание 5. Решите уравнение:

Задание 6. Решите уравнение:

Задание 7. Решите уравнение:

Задание 8. Решите уравнение:

Задание 9. Решите уравнение:

Задание 10. Решите уравнение:

Задание 11. Решите уравнение:

Задание 12. Решите уравнение:

Задание 13. Решите уравнение:

Задание 14. Решите уравнение:

Задание 15. Решите уравнение:

Задание 16. Решите уравнение:

Задание 17. Решите уравнение:

Задание 18. Решите уравнение:

Задание 19. Решите уравнение:

Задание 20. Решите уравнение:

Задание 21. Решите уравнение:

Задание 22. Решите уравнение:

Задание 23. Решите уравнение:

Задание 24. Решите уравнение:

Задание 25. Решите уравнение:

Задание 26. Решите уравнение:

Задание 27. Решите уравнение:

Задание 28. Решите уравнение:

Задание 29. Решите уравнение:

Задание 30. Решите уравнение:

Задание 31. Решите уравнение:

Задание 32. В следующем буквенном уравнении выразите переменную x:

Задание 33. В следующем буквенном уравнении выразите переменную x:

Задание 34. В следующем буквенном уравнении выразите переменную x:

Задание 35. В следующем буквенном уравнении выразите переменную x:

Задание 36. В следующем буквенном уравнении выразите переменную y:

Задание 37. В следующем буквенном уравнении выразите переменную z:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Натуральные числа и действия над ними
  5. Уравнения

Уравнение – это равенство, содержащее букву, значение которой надо найти. Например: + 5 = 10. Чтобы решить данное уравнение, требуется найти такое число, при подстановке которого в данное равенство вместо буквы (то есть найти значение переменной), числовое равенство будет верным. В нашем случае вместо необходимо подставить 5. Говорят, что число 5 – корень уравнения + 5 = 10.

Корень уравнения – это число, которое при подстановке вместо буквы обращает уравнение в верное числовое равенство.

Корень уравнения – это решение уравнения. Уравнение может иметь один и более корней или не иметь их вообще. Тогда говорят, что решить уравнение – значит найти все его корни или показать, что их нет вообще.

Для решения уравнений используют правило нахождения неизвестного:

1) слагаемого: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

Решим уравнение + 125 = 200;

= 200 – 125;

= 75.

Ответ: = 75.
2) уменьшаемого: чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Решим уравнение – 24 = 36;

= 36 + 24;

= 60.

Ответ: = 60.
3) вычитаемого: чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Решим уравнение 135 – = 115;

= 135 – 115;

= 20.

Ответ: = 20.
4) множителя: чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

Решим уравнение 6 = 42;

= 42 : 6;

= 7.

Ответ: = 7.
5) делимого: чтобы найти неизвестное делимое, надо частное умножить на делитель.

Решим уравнение : 12 = 5;

= 5 12;

= 60.

Ответ: = 60.
6) делителя: чтобы найти неизвестный делитель, надо делимое разделить на частное.

Решим уравнение 184 : = 46;

= 184 : 46;

= 4.

Ответ: = 4.

При решении уравнений проводится проверка решения, для этого найденный корень (или корни) подставляются в уравнение вместо переменной. Если числовое равенство получается верным, то решение найдено верно. При оформлении решения проверка записывается под чертой после решения, а затем пишется ответ, при этом каждое действие записывается на новой строке (т.е. одна строка один знак равенства).

Например, решим уравнение + 36 = 45 и проведем проверку:

+ 36 = 45;

  = 45 – 36;

9 + 36 = 45;

45 = 45 – верно.

Ответ: = 9.

Советуем посмотреть:

Понятие о натуральном числе

Сложение натуральных чисел

Вычитание натуральных чисел

Умножение натуральных чисел

Деление натуральных чисел

Порядок выполнения действий

Степень числа. Квадрат и куб числа

Меньше или больше

Меньше или больше на сколько? во сколько раз?

Формулы

Натуральные числа и действия над ними


Правило встречается в следующих упражнениях:

5 класс

Задание 551,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 580,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 581,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 619,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 639,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 878,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1112,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1350,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1489,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 906,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 2

6 класс

Номер 291,
Мерзляк, Полонский, Якир, Учебник

Номер 317,
Мерзляк, Полонский, Якир, Учебник

Номер 464,
Мерзляк, Полонский, Якир, Учебник

Номер 1012,
Мерзляк, Полонский, Якир, Учебник

Номер 1205,
Мерзляк, Полонский, Якир, Учебник

Задание 616,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 812,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1324,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1581,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 10,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 2

7 класс

Номер 49,
Мерзляк, Полонский, Якир, Учебник

Номер 68,
Мерзляк, Полонский, Якир, Учебник

Номер 84,
Мерзляк, Полонский, Якир, Учебник

Номер 97,
Мерзляк, Полонский, Якир, Учебник

Номер 323,
Мерзляк, Полонский, Якир, Учебник

Номер 387,
Мерзляк, Полонский, Якир, Учебник

Номер 557,
Мерзляк, Полонский, Якир, Учебник

Номер 941,
Мерзляк, Полонский, Якир, Учебник

Номер 954,
Мерзляк, Полонский, Якир, Учебник

Номер 11,
Мерзляк, Полонский, Якир, Учебник

8 класс

Номер 60,
Мерзляк, Полонский, Якир, Учебник

Номер 92,
Мерзляк, Полонский, Якир, Учебник

Номер 201,
Мерзляк, Полонский, Якир, Учебник

Номер 202,
Мерзляк, Полонский, Якир, Учебник

Номер 208,
Мерзляк, Полонский, Якир, Учебник

Номер 337,
Мерзляк, Полонский, Якир, Учебник

Номер 353,
Мерзляк, Полонский, Якир, Учебник

Номер 369,
Мерзляк, Полонский, Якир, Учебник

Номер 394,
Мерзляк, Полонский, Якир, Учебник

Номер 402,
Мерзляк, Полонский, Якир, Учебник


Добавить комментарий