Углеводы — это природные органические соединения, содержащиеся во всех клетках живых организмов и выполняющие важные функции.
Состав и классификация углеводов
Молекулы углеводов состоят из атомов трёх элементов — углерода, водорода и кислорода. Состав большинства углеводов можно выразить формулой:
Cn(H2O)m
. В состав производных углеводов могут входить и другие элементы. Так, в хитине содержатся ещё и атомы азота.
Углеводы делят на три класса.
Рис. (1). Классификация углеводов
Самое простое строение имеют моносахариды. Наиболее распространённый моносахарид — это глюкоза.
Рис. (2). Модель молекулы глюкозы
Глюкоза является главным источником энергии в клетках всех живых организмов.
Фруктоза содержится в мёде, ягодах и фруктах.
Рибоза входит в состав важных химических соединений — РНК, АТФ, некоторых ферментов.
Дезоксирибоза — компонент молекул ДНК.
Все моносахариды — это сладкие на вкус кристаллические вещества, хорошо растворимые в воде.
Олигосахариды
Олигосахариды содержат в молекулах от двух до десяти остатков моносахаридов. Молекулы дисахаридов образуются в результате соединения двух молекул моносахаридов. По свойствам они похожи на моносахариды: хорошо растворяются в воде, сладкие на вкус.
Сахароза состоит из остатков глюкозы и фруктозы. В растениях это вещество является растворимым запасным углеводом, а также продуктом фотосинтеза, который транспортируется от листьев к другим органам. Знакома всем как сахар (свекловичный или тростниковый).
Лактоза (молочный сахар) образована молекулами глюкозы и галактозы. Содержится в молоке.
Мальтоза (солодовый сахар) состоит из глюкозы. Образуется из крахмала при прорастании семян, является источником энергии для процесса прорастания.
Полисахариды
Молекулы полисахаридов состоят из большого числа остатков моносахаридов. Эти вещества не имеют вкуса и не растворяются в воде.
Крахмал — запасной углевод растений. Его молекулы образованы остатками глюкозы, соединёнными в линейные или разветвлённые цепи.
Целлюлоза входит в состав клеточных стенок грибов и растений и придаёт им прочность. Молекулы целлюлозы тоже образованы остатками глюкозы, но они намного длиннее молекул крахмала. Целлюлоза не растворяется в воде и других растворителях.
Гликоген похож по строению на крахмал. Это запасной углевод у животных.
Хитин похож по строению на целлюлозу, но отличается наличием в его молекулах атомов азота.
1. Энергетическая функция углеводов заключается в том, что под влиянием ферментов происходит их расщепление и окисление с выделением энергии. Важно, что углеводы могут расщепляться как в присутствии кислорода, так и без него. Продуктами полного окисления этих веществ являются углекислый газ и вода.
2. Запасающая функция проявляется в накоплении излишков углеводов в клетках: у растений — крахмала, у животных и грибов — гликогена. При необходимости запасные углеводы расщепляются до глюкозы и используются клеткой для получения энергии.
3. Строительная функция заключается в том, что углеводы служат строительным материалом: целлюлоза входит в состав клеточных стенок растений, а хитин образует клеточные стенки грибов и кутикулу членистоногих. Эти же углеводы выполняют защитную функцию.
4. Сигнальная (рецепторная) функция состоит в том, что гликопротеины (комплексные соединения углеводов и белков), расположенные на поверхности клетки, воспринимают и передают в клетку сигналы из внешней среды.
Источники:
Рис. 1. Классификация углеводов. © ЯКласс.
Рис. 2. Модель молекулы глюкозы. https://image.shutterstock.com/image-illustration/molecule-glucose-isolated-on-white-600w-570551413
План лекции (2
часа):
-
Углеводы
-
Белки
-
Липиды
-
Ферменты
Углеводы
Углеводы
— важный класс природных органических
соединений. Особенно высоким содержанием
углеводов отличаются растительные
организмы (до 85-90% от массы растения).
Углеводы в большом количестве накапливаются
в запасающих органах (семена, клубни,
корни), оболочки растительных клеток
целиком состоят из углеводов. Ученые
подсчитали, что в природе углеводов
больше, чем всех других органических
соединений, вместе взятых.
Функции углеводов в растении важны и разнообразны:
-
Энергетическая.
Углеводы — главные продукты
фотосинтеза, в химических связях которых
запасается солнечная энергия. Эта
энергия извлекается растениями при
дыхании и используется в процессах их
жизнедеятельности. -
Пластическая.
В процессе дыхания из универсального
химического соединения — глюкозы
образуются разнообразные метаболиты
(углеродные скелеты), необходимые
для синтеза разнообразных органических
соединений живой клетки. -
Опорная
(структурная).
Клеточные оболочки состоят из углеводов.
Они служат опорой, как отдельным
клеткам, так и растению в целом. -
Запасная.
Углеводы (крахмал, сахара, инулин,
гемицеллюлозы) — важнейшие запасные
вещества растений. Они накапливаются
в семенах, плодах, корнях, клубнях,
корневищах и используются при
прорастании семян, распускании листьев
и т. д.
-
Осмотическая.
Сахара, растворенные в клеточном
соке, участвуют в создании его
концентрации, а, значит, и осмотических
свойств растительной клетки. -
Регуляторная.
Например, связывание с сахарами снижает
активность фитогормонов, регулирующих
процессы жизнедеятельности растений. -
Сигнальная.
Полагают, например, что некоторые
белки гликопротеины (лектины), в
составмолекул которых входят моно – и
олигосахара, выполняют функцию
узнавания патогена, проникающего в
клетку. -
Защитная
функция
углеводов, например, проявляется при
стрессе. Растворимые сахарасвязывают
воду, удерживая ее в клетке, связываются
с белками и нуклеиновыми кислотами,стабилизируя
их молекулы в неблагоприятных условиях.
Все
углеводы делят на 2 группы: моносахариды
и полисахариды.
Последние, в свою очередь, также делят
на две группы: олигосахариды
и высшие полисахариды.
Иногда в биохимии растений олигосахариды
называют полисахаридами 1-го порядка,
а высшие полисахариды — 2-го порядка.
Моносахариды
— это простые сахара, молекулы которых
нельзя гидролизовать до еще более
простых сахаров. Моносахариды (монозы),
соединяясь друг с другом, образуют более
сложные углеводы — полисахариды
(полиозы). Олигосахариды содержат в
молекуле от двух до десяти остатков
моносахаридов, высшие полисахариды —
десятки, сотни и тысячи остатков.
Моносахариды и
олигосахариды обычно растворимы в
воде и имеют более или менее сладкий
вкус. Их объединяют в одну группу —
сахара.
К
моносахаридам относятся глюкоза,
фруктоза, ксилоза, рибоза
и др., к олигосахаридам — сахароза,
мальтоза, лактоза
и др.
Высшие
полисахариды — высокомолекулярные
соединения. Обычно они нерастворимы в
воде или образуют коллоидные растворы.
Это крахмал,
инулин, целлюлоза
и др.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Углеводы — полигидроксильные соединения, содержащие альдегидные или кетогруппы, или образующие такие группы при гидролизе. Это самые распространенные в природе органические вещества.
Возникновение названия “углеводы” объясняется тем, что их состав отвечает формуле гидрата углерода. Иначе говоря, в названии отражается тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Так, формулу глюкозы С6Н12О6 можно изобразить как С6(Н2О)6. Общая формула углеводов – Сх(Н2О)y , где х и y могут иметь разные значения.
Углеводы. Значение для растений
Значение углеводов для растений исключительно велико (ЛРС, содержащее полисахариды). Они составляют до 85-90% веществ, слагающих растительный организм. Углеводы относятся к первичным продуктам синтеза, образуются в процессе фотосинтеза и служат основным питательным и главным опорным материалом для растительных клеток и тканей.
Углеводы. Классификация
Углеводы на основании их химического строения принято разделять на 3 группы:
- Моносахариды;
- Полисахариды первого порядка (олигосахариды);
- Полисахариды второго порядка, которые, в свою очередь подразделяются на гомогликаны (гомополисахариды) и гетерогликаны (гетерополисахариды).
По физиологической роли в растениях углеводы также разделяют на три группы:
- Метаболиты (моносахара и олигосахариды);
- Запасные питательные вещества (олигосахариды и, реже, полисахариды второго порядка);
- Структурные или скелетные вещества (полисахариды второго порядка).
В медицине наибольшее значение имеют полисахариды второго порядка.
Полисахариды второго порядка — это высокомолекулярные соединения, содержащие более 10 моносахаридных остатков, соединенных О-гликозидными связями и образующих линейные или разветвленные цепи. Гомополисахариды состоят из моносахаридных единиц (мономеров) одного типа, гетерополисахариды — из остатков различных сахаров и их производных.
Углеводы. Биогенез в растениях
Биогенез углеводов в растениях протекает по определенной схеме, характерной для всего класса этих важных органических соединений. Биогенез всех углеводов начинается с процеса фотосинтеза и тесно связан с такими последовательностями реакций, как «цикл трикарбоновых кислот», «гликолитический цикл» и другие, т.е. с внутриклеточными превращениями сахаров и других субстратов в анаэробных и аэробных условиях.
Рассматривая процессы биогенеза различных углеводов, легко обнаружить одну общую черту. Во всех случаях образование индивидуальных мономерных сахаров предшествует появлению гликозидных связей. Сначала синтезируются мономерные сахара, а затем они используются в форме макроэргических производных. При этом глюкозо-6-фосфат занимает ключевое положение в биосинтезе макроэргических предшественников углеводов (см. схему).
Общая схема биосинтеза углеводов
Физико-химические свойства полисахаридов второго порядка.
Полисахариды второго порядка — это аморфные, реже кристаллические вещества, нерастворимые в спирте и неполярных органических растворителях.
Растворимость в воде у разных представителей существенно различается: некоторые линейные гомополисахариды в воде не растворяются из-за прочных межмолекулярных связей, а сложные или разветвленные полисахариды либо растворяются в воде, либо образуют гели.
Полисахариды подвергаются кислотному или ферментативному гидролизу с образованием моно- или олигосахаридов. Молекулярный вес полисахаридов колеблется от нескольких тысяч до нескольких миллионов Дальтон.
Одним из важнейших представителей гомополисахаридов является крахмал. В растениях крахмал является главным энергетическим запасным материалом. Крахмал запасается в клетках в виде крахмальных зерен. Их можно видеть в первую очередь в хлоропластах листьев, а также в органах, где запасаются питательные вещества, например, в клубнях картофеля, семенах злаковых и бобовых. Размер крахмальных зерен колеблется в пределах от 0,002 до 0,15 мм (наиболее крупные крахмальные зерна у картофеля, а наиболее мелкие – у риса и гречихи). Они имеют слоистую структуру и у разных видов растений различаются по форме – овальной, сферической или неправильной. В медицинской практике крахмал в основном используется в качестве наполнителя.
Крахмал относится к группе гомогликанов, т.е. соединений, мономерной единицей которых является только глюкоза. Он не является химически индивидуальным веществом и на 96-98% состоит из полисахаридов, образующих при кислотном гидролизе глюкозу; на 0,2-0,7% — из минеральных веществ, которые представлены, в основном, остатками фосфорной кислоты, на 0,6% — высокомолекулярными жирными кислотами, такими как пальмитиновая и стеариновая. Жирные кислоты не связаны ковалентно с полисахаридной частью. Они просто адсорбированы на ней и легко могут быть удалены экстракцией органическими растворителями.
Остатки фосфорной кислоты в одних видах крахмала (кукурузном, пшеничном и рисовом) представляют собой постоянно присутствующую примесь, а в других, например, в картофельном, они связаны сложноэфирной связью с углеводной частью и при гидролизе обнаруживаются в составе глюкозо-1-фосфата.
Углеводная часть крахмала также неоднородна и состоит из двух полисахаридов, различающихся по физическим и химическим свойствам — амилозы и амилопектина. Амилопектин в крахмале количественно преобладает над амилозой, составляя около 75%.
Амилоза имеет молекулярный вес в пределах 3х105-3х106 Да. Водные растворы амилозы весьма нестойки и при стоянии их них выделяются кристаллические осадки. В молекуле амилозы остатки глюкозы связаны a-гликозидными связями только между 1 и 4 углеродными атомами, образуя при этом длинную линейную цепочку:
Линейные цепи амилозы, состоящие из нескольких тысяч мономерных единиц, способны спирально свертываться и таким образом принимать более компактную форму.
С раствором йода в йодистом калии водная суспензия амилозы дает темно-синюю окраску, исчезающую при нагревании и вновь появляющуюся при охлаждении. Окрашивание сопровождается образованием комплексного химического соединения. При этом молекулы йода располагаются внутри спирально изогнутых цепочек амилозы.
Молекулярный вес амилопектина достигает сотен миллионов Да. Амилопектин содержит примерно вдвое больше глюкозных остатков, чем амилоза. Он растворяется в воде лишь при нагревании под давлением и дает очень вязкие и чрезвычайно стойкие растворы. В молекуле амилопектина гликозидные остатки соединены a-гликозидными связями не только между 1 и 4 углеродными атомами, но и между 1 и 6, образуя таким образом разветвленную структуру. Компактность амилопектина обеспечивается интенсивным ветвлением цепей:
Водная суспензия амилопектина окрашивается раствором йода в йодистом калии в красно-фиолетовый цвет (проба на крахмал). Следует подчеркнуть, в том и другом случае не происходит химической реакции полисахарида с йодом, а образуются адсорбционные соединения.
Другим представителем полисахаридов является инулин. Он относится к группе фруктозанов, т.е. полимеров, построенных из остатков фруктозы. Подобно крахмалу, представляет собой важное запасное вещество многих растений. Используется в основном для получения фруктозы. Молекулярный вес инулина составляет около 5-6 тысяч Да. Полимерная цепь инулина построена из 34-36 остатков фруктозы, соединенных b-гликозидной связью и заканчивается нередуцированным остатком a-D-глюкопиранозы:
К полисахаридам по химической структуре близка группа веществ, называемых полиуронидами — высокомолекулярных соединений, построенных по типу полисахаридов из остатков уроновых кислот. Из наиболее важных продуктов растительного происхождения с медицинской точки зрения к ним относятся пектиновые вещества, альгиновая кислота, камеди и слизи.
Пектиновые вещества — широко распространенные в растениях полигалактурониды, растворенные в растительных соках и осаждаемые спиртом или 50% ацетоном с образованием студня. Их роль – образование защитной прослойки между растительными клетками. Молекулярная масса пектиновых веществ достигает 200 000 Да. Среди пектинов выделяют растворимый и нерастворимый пектин, пектовую и пектиновую кислоты.
Пектовая кислота представляет собой линейный полимер a-D-галактуроновой кислоты, связанной С1-С4 связями. Пектиновая кислота — это полигалактуроновая кислота, у которой часть карбоксильных групп метилирована. Растворимый пектин – это пектиновая кислота с высоким содержанием метильных групп. Нерастворимый пектин представляет собой образование из длинных переплетающихся цепей пектиновой кислоты, связанных друг с другом в местах перекреста через карбоксильные группы. Гидроксильные группы пектинов могут служить точками присоединения боковых разветвленных цепей из остатков D-галактозы, L-арабинозы, D-ксилозы и L-рамнозы:
Фрагмент структуры пектиновых веществ
Камеди и слизи — это близкие к пектину вещества, выделяемые растениями во внешнюю среду в виде прозрачных скоплений. Камеди появляются, как правило, при ранении растения или иных патологических явлениях. Слизи же образуются в растениях в результате “слизистого” перерождения клеток в процессе естественного функционирования растений и их органов. Те и другие являются Ca++, Mg++ и К+ солями полиуроновых кислот в различном сочетании с пентозами, метилпентозами и гексозами.
Рассмотрим углеводы в растениях, которые, как и жиры, органические кислоты и дубильные вещества имеют важное значение, и постоянно встречаются как в вегетативных органах, так и в органах размножения.
Углеводы состоят из углерода, водорода и кислорода. Последние два элемента находятся между собой в таком же количественном сочетании, как в воде (Н2О), то есть на определенное число атомов водорода приходится в два раза меньшее число атомов кислорода.
Углеводы составляют до 85-90% веществ, входящих в растительный организм.
Углеводы являются основным питательным и опорным материалом в клетках и тканях растений.
Углеводы подразделяются на моносахариды, дисахариды и полисахариды.
Из моносахаридов в растениях распространены гексозы, имеющие состав С6Н12О6. К ним относятся глюкоза, фруктоза и др.
Глюкоза (иначе называется декстроза или виноградный сахар) содержится в ягодах винограда – около 20%, в яблоках, грушах, сливах, черешне и винных ягодах. Глюкоза обладает способностью выкристаллизовываться.
Фруктоза (иначе называется левулеза или плодовый сахар) кристаллизуется с трудом, встречается вместе с глюкозой в плодах, нектарниках, пчелином меде, луковицах и т. п. (Левулезой фруктоза называется потому, что при прохождении через нее поляризованного луча света последний отклоняется влево. В противоположность фруктозе виноградный сахар отклоняет поляризованный луч вправо. Поляризованным светом называется свет, пропущенный через призмы из исландского шпата, обладающего двойным лучепреломлением. Призмы эти являются составной частью поляризационного аппарата.)
Свойства гексоз следующие. Они обладают особо сладким вкусом и легкорастворимы в воде. Первичное образование гексоз происходит в листьях. Они легко превращаются в крахмал, который, в свою очередь, легко может переходить в сахар при участии фермента диастаза. Глюкоза и фруктоза обладают способностью легко проникать из клетки в клетку и быстро передвигаться по растению. В присутствии дрожжей гексозы легко бродят и превращаются в спирт. Характерный и чувствительный реактив на гексозы – синяя фелингова жидкость, с помощью ее можно легко открыть малейшие их количества: при нагревании выпадает кирпично-красный осадок закиси меди.
Иногда гексозы встречаются в растениях в соединении с ароматическими спиртами, с горькими или едкими веществами. Эти соединения называют тогда глюкозидами, например амигдалин, придающий горечь семенам миндаля и других косточковых растений. Амигдалин содержит ядовитое вещество – синильную кислоту. Глюкозиды не только защищают семена и плоды от поедания животными, но и предохраняют семена сочных плодов от преждевременного прорастания.
Дисахариды – углеводы, имеющие состав C12H22O11. К ним относятся сахароза, или тростниковый сахар, и мальтоза. Сахароза образуется в растениях из двух частиц гексоз (глюкозы и фруктозы) с выделением частицы воды:
C6H12О6 + C6H12О6 = C12H22O11 + Н2О.
При кипячении с серной кислотой к тростниковому сахару присоединяется частица воды, и дисахарид распадается на глюкозу и фруктозу:
C12H22О11 + Н2О = C6H12О6 + C6H12О6.
Эта же реакция происходит при действии на тростниковый сахар фермента инвертазы, поэтому превращение тростникового сахара в гексозы называется инверсией, а полученные гексозы – инвертированным, сахаром.
Тростниковый сахар – это тот сахар, который употребляется в пищу. Его издавна добывают из стеблей злака – сахарного тростника (Saccharum officinarum), растущего в тропических странах. Он встречается также в корнях многих корнеплодов, из которых больше всего его находится в корнях сахарной свеклы (от 17 до 23%). Из сахарной свеклы тростниковый сахар добывают на свеклосахарных заводах. Сахароза легко растворяется в воде и хорошо кристаллизуется (сахарный песок). Она не восстан
Углеводы в растениях разделяют на 2 группы, это простые углеводы, не способные к гидролизу. Это моносахариды, и сложные углеводы, гидролизующиеся на простые. Их называют полисахариды автор вопроса выбрал этот ответ лучшим Пашенька более года назад На долю углеводов в клетках растений приходится довольно большой процент – 80-90%, для сравнения – в животных организмах этот процент составляет до 5%. Имеются в растениях три группы или вида углеводов – моносахариды, а также дисахариды и полисахариды. Моносахариды представлены глюкозой и фруктозой. Дисахариды – это Полисахариды – это Знаете ответ? |