Как дела найти объем


Загрузить PDF


Загрузить PDF

Объем фигуры представляет собой занимаемое этой фигурой трехмерное пространство.[1]
Представьте себе объем как количество жидкости (или воздуха, или песка), которым можно заполнить данную фигуру. Объем измеряется в кубических единицах (мм3, см3, м3).[2]
Эта статья расскажет вам, как вычислять объем шести трехмерных фигур. Вы можете заметить, что многие формулы для вычисления объема схожи, что упрощает их запоминание.

  1. Изображение с названием Calculate Volume Step 1

    1

    Куб – это трехмерная фигура, которая имеет шесть одинаковых квадратных граней, то есть все ее стороны (ребра) равны.[3]

    • Например, игральная кость – это куб.
  2. Изображение с названием Calculate Volume Step 2

    2

    Формула нахождения объема куба: V = s3, где V – объем, а s – длина ребра.

    • Возведение в куб аналогично следующему умножению: s3 = s * s * s
  3. Изображение с названием Calculate Volume Step 3

    3

    Найдите длину стороны (ребра) куба. Она будет дана в задаче или вам нужно измерить ее (линейкой или рулеткой). Так как ребра куба равны, измеряйте любое ребро.

    • Если вы не уверены, что ваша фигура является кубом, измерьте каждую сторону, чтобы убедиться, что они равны. Если они не равны, перейдите к следующему разделу.
  4. Изображение с названием Calculate Volume Step 4

    4

    Подставьте длину ребра куба в формулу V = s3. Например, если ребро куба равно 5 см, напишите формулу следующим образом: V = 53 = 5 * 5 * 5 = 125 см3 – это объем куба.

  5. Изображение с названием Calculate Volume Step 5

    5

    К ответу обязательно припишите соответствующие единицы измерения. В приведенном примере ребро куба измерялась в сантиметрах, поэтому объем будет измеряться в кубических сантиметрах. Если, например, сторона куба равна 3 см, то V = 33 = 27см3.

    Реклама

  1. Изображение с названием Calculate Volume Step 6

    1

    Прямоугольный параллелепипед или прямоугольная призма – это трехмерная фигура с шестью гранями, каждая из которых является прямоугольником (вспомните коробку из под обуви). [4]

    • Куб – это частный случай прямоугольного параллелепипеда, у которого все ребра равны.
  2. Изображение с названием Calculate Volume Step 7

    2

    Формула нахождения объема прямоугольного параллелепипеда или прямоугольной призмы: V = l*w*h, где V = объем, l = длина, w = ширина, h = высота.[5]

  3. Изображение с названием Calculate Volume Step 8

    3

    Длина прямоугольного параллелепипеда – это самое длинное ребро верхней или нижней грани, то есть грани, на которой стоит параллелепипед (нижняя грань) или параллельной ей грани (верхняя грань). Длина будет дана в задаче или вам нужно измерить ее (линейкой или рулеткой).

    • Пример: длина прямоугольного параллелепипеда равна 4 см, то есть l = 4 см.
    • Не беспокойтесь о том, какие ребра выбрать в качестве длины, ширины и высоты. В любом случае в итоге вы получите правильный ответ (только измерьте три ребра, перпендикулярные друг другу).
  4. Изображение с названием Calculate Volume Step 9

    4

    Ширина прямоугольного параллелепипеда – это самое короткое ребро верхней или нижней грани, то есть грани, на которой стоит параллелепипед (нижняя грань) или параллельной ей грани (верхняя грань). Ширина будет дана в задаче или вам нужно измерить ее (линейкой или рулеткой).

    • Пример: ширина прямоугольного параллелепипеда равна 3 см, то есть w = 3 см.
    • Если вы измеряете ребра параллелепипеда линейкой или рулеткой, не забудьте измерить их в одинаковых единицах измерения. Не измеряйте одно ребро в миллиметрах, а другое в сантиметрах.
  5. Изображение с названием Calculate Volume Step 10

    5

    Высота прямоугольного параллелепипеда – это расстояние между его нижней и верхней гранями. Высота будет дана в задаче или вам нужно измерить ее (линейкой или рулеткой).

    • Пример: высота прямоугольного параллелепипеда равна 6 см, то есть h = 6 см.
  6. Изображение с названием Calculate Volume Step 11

    6

    Подставьте найденные значения в формулу V = l*w*h.

    • В нашем примере l = 4, w = 3 и h = 6. Поэтому V = 4*3*6 = 72.
  7. Изображение с названием Calculate Volume Step 12

    7

    К ответу обязательно припишите соответствующие единицы измерения. В приведенном примере ребра измерялись в сантиметрах, поэтому объем будет измеряться в кубических сантиметрах: 72 см3.

    • Если в прямоугольной призме l = 2 см, w = 4 см, h = 8 см, то V = 2*4*8 = 64 см3

    Реклама

  1. Изображение с названием Calculate Volume Step 13

    1

    Цилиндр – это трехмерная фигура, ограниченная цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее.[6]

    • Например, банка или батарейка АА имеют форму цилиндра.
  2. Изображение с названием Calculate Volume Step 14

    2

    Формула нахождения объема цилиндра: V = πr2h, где V – объем, h – высота, r – радиус основания и πr2 – площадь основания цилиндра.

    • В некоторых задачах ответ требуется представить с пи, а в некоторых вместо пи подставить 3,14.
    • Формула для нахождения объема цилиндра на самом деле очень похожа на формулу вычисления объема прямоугольной призмы, то есть вы перемножаете высоту и площадь основания. В прямоугольной призме площадь основания равна l*w, а в цилиндре она равна πr2.
  3. Изображение с названием Calculate Volume Step 15

    3

    Найдите радиус основания. Он, скорее всего, дан в задаче. Если дан диаметр, разделите его на 2, чтобы найти радиус (d = 2r).

  4. Изображение с названием Calculate Volume Step 16

    4

    Если радиус не дан, измерьте его. Для этого измерьте основание цилиндра при помощи линейки или рулетки. Измеряйте основание в его самой широкой части (то есть измерьте диаметр основания), а затем разделите полученное значение на 2, чтобы найти радиус.

    • Другой вариант – измерьте длину окружности цилиндра (то есть измерьте обхват цилиндра) при помощи рулетки, а затем найдите радиус по формуле r = с/2π, где с – обхват (длина окружности) цилиндра (2π = 6,28).
    • Например, если обхват цилиндра равен 8 см, то радиус будет равен 1,27 см.
    • Если вам нужно точное измерение, вы можете использовать оба метода, чтобы убедиться, что значения радиуса совпадают (нахождение радиуса через длину окружности является более точным методом).
  5. Изображение с названием Calculate Volume Step 17

    5

    Вычислите площадь круглого основания. Для этого подставьте радиус в формулу πr2.

    • Если радиус основания равен 4 см, то площадь основания равна π42.
    • 42 = 4 * 4 = 16. 16*π = 16*3,14 = 50,24 см2
    • Если дан диаметр основания, то помните, что d = 2r. Вам нужно разделить диаметр пополам, чтобы найти радиус.
  6. Изображение с названием Calculate Volume Step 18

    6

    Найдите высоту цилиндра. Это расстояние между двумя круглыми основаниями. Высота будет дана в задаче или вам нужно измерить ее (линейкой или рулеткой).

  7. Изображение с названием Calculate Volume Step 19

    7

    Умножьте площадь основания на высоту цилиндра, чтобы найти его объем. Или же просто подставьте значения соответствующих величин в формулу V = πr2h. В нашем примере, когда радиус основания равен 4 см, а высота равна 10 см:

    • V = π4210
    • π42 = 50,24
    • 50,24 * 10 = 502,4
    • V = 502,4
  8. Изображение с названием Calculate Volume Step 20

    8

    К ответу обязательно припишите соответствующие единицы измерения. В приведенном примере все величины измерялась в сантиметрах, поэтому объем будет измеряться в кубических сантиметрах: 502,4 см3.

    Реклама

  1. Изображение с названием Calculate Volume Step 21

    1

    Пирамида – это трехмерная фигура, в основании которой лежит многоугольник, а грани являются треугольниками, имеющими общую вершину. [7]
    Правильная пирамида – это трехмерная фигура, в основании которой лежит правильный многоугольник (с равными сторонами), а вершина проецируется в центр основания.[8]

    • Обычно мы представляем пирамиду, имеющую квадратное основание, но в основании пирамиды может лежать многоугольник с 5, 6 или даже со 100 сторонами!
    • Пирамида с круглым основанием называется конусом, который будет обсуждаться в следующем разделе.
  2. Изображение с названием Calculate Volume Step 22

    2

    Формула нахождения объема правильной пирамиды: V = 1/3bh, где b – площадь основания пирамиды, h – высота пирамиды (перпендикуляр, соединяющий основание и вершину пирамиды).

    • Эта формула для вычисления объема пирамиды одинаково годна как для правильных пирамид (в которых вершина проецируется в центр основания), так и для наклонных (в которых вершина не проецируется в центр основания).
  3. Изображение с названием Calculate Volume Step 23

    3

    Вычислите площадь основания. Формула будет зависеть от фигуры, лежащей в основании пирамиды. В нашем примере в основании пирамиды лежит квадрат со стороной 6 см. Площадь квадрата равна s2, где s – сторона квадрата. Таким образом, в нашем примере площадь основания пирамиды равна 62 = 36 см2

    • Площадь треугольника равна 1/2bh, где h – высота треугольника, b – сторона, к которой проведена высота.
    • Площадь любого правильного многоугольника можно вычислить по формуле: А = 1/2ра, где А – площадь, р – периметр фигуры, а – апофема (отрезок, соединяющий центр фигуры с серединой любой стороны фигуры). Для получения дополнительной информации о нахождении площади многоугольников прочитайте эту статью.[9]
  4. Изображение с названием Calculate Volume Step 24

    4

    Найдите высоту пирамиды. Высота будет дана в задаче. В нашем примере высота пирамиды равна 10 см.

  5. Изображение с названием Calculate Volume Step 25

    5

    Умножьте площадь основания пирамиды на ее высоту, а затем разделите полученный результат на 3, чтобы найти объем пирамиды. Формула для вычисления объема пирамиды: V = 1/3bh. В нашем примере площадь основания равна 36, а высота равна 10, поэтому объем: 36*10*1/3 = 120.

    • Если, например, дана пирамида с пятиугольным основанием площадью 26, а высота пирамиды равна 8, то объем пирамиды: 1/3*26*8 = 69,33.
  6. Изображение с названием Calculate Volume Step 26

    6

    К ответу обязательно припишите соответствующие единицы измерения. В приведенном примере все величины измерялась в сантиметрах, поэтому объем будет измеряться в кубических сантиметрах: 120 см3.

    Реклама

  1. Изображение с названием Calculate Volume Step 27

    1

    Конус – это трехмерная фигура, которая имеет круглое основание и одну вершину. Или конус – это особый случай пирамиды с круглым основанием.[10]

    • Если вершина конуса находится непосредственно над центром круглого основания, то конус называется прямым; в противном случае конус называется наклонным. Но формула для вычисления объема конуса одинаковая для обоих типов конуса.
  2. Изображение с названием Calculate Volume Step 28

    2

    Формула для вычисления объема конуса: V = 1/3πr2h, где r – радиус круглого основания, h – высота конуса.

    • b = πr2 – это площадь круглого основания конуса. Таким образом, формулу для вычисления объема конуса можно записать так: V = 1/3bh, что совпадает с формулой нахождения объема пирамиды!
  3. Изображение с названием Calculate Volume Step 29

    3

    Вычислите площадь круглого основания. Радиус должен быть дан в задаче. Если дан диаметр основания, то помните, что d = 2r. Вам нужно разделить диаметр пополам, чтобы найти радиус. Для вычисления площади круглого основания подставьте радиус в формулу πr2.

    • Например, радиус круглого основания конуса равен 3 см. Тогда площадь этого основания равна π32.
    • π32 = π(3*3) = 9π.
    • = 28,27 см2
  4. Изображение с названием Calculate Volume Step 30

    4

    Найдите высоту конуса. Это перпендикуляр, опущенный из вершины к основанию пирамиды. В нашем примере высота конуса равна 5 см.

  5. Изображение с названием Calculate Volume Step 31

    5

    Перемножьте высоту конуса и площадь основания. В нашем примере площадь основания равна 28,27 см2, а высота равна 5 см, поэтому bh = 28,27 * 5 = 141,35.

  6. Изображение с названием Calculate Volume Step 32

    6

    Теперь умножьте полученный результат на 1/3 (или просто разделите его на 3), чтобы найти объем конуса. В описанном выше шаге вы нашли объем цилиндра, а объем конуса всегда в 3 раза меньше объема цилиндра.

    • В нашем примере: 141,35 * 1/3 = 47,12 – это объем конуса.
    • Или: 1/3π325 = 47,12
  7. Изображение с названием Calculate Volume Step 33

    7

    К ответу обязательно припишите соответствующие единицы измерения. В приведенном примере все величины измерялась в сантиметрах, поэтому объем будет измеряться в кубических сантиметрах: 47,12 см3.

    Реклама

  1. Изображение с названием Calculate Volume Step 34

    1

    Шар – это идеально круглая трехмерная фигура, каждая точка поверхности которой равноудалена от одной точки (центра шара). [11]

  2. Изображение с названием Calculate Volume Step 35

    2

    Формула для вычисления объема шара: V = 4/3πr3, где r – радиус шара.[12]

  3. Изображение с названием Calculate Volume Step 36

    3

    Найдите радиус шара. Радиус должен быть дан в задаче. Если дан диаметр шара, то помните, что d = 2r. Вам нужно разделить диаметр пополам, чтобы найти радиус. Например, радиус шара равен 3 см.

  4. Изображение с названием Calculate Volume Step 37

    4

    Если радиус не дан, вычислите его. Для этого измерьте длину окружности шара (например, теннисного мяча) в его самой широкой части при помощи веревки, нити или другого подобного предмета. Затем измерьте длину веревки, чтобы найти длину окружности. Разделите полученное значение на 2π (или на 6,28), чтобы вычислить радиус шара.

    • Например, если вы измерили мяч и нашли, что длина его окружности равна 18 см, разделите это число на 6,28 и получите, что радиус мяча равен 2,87 см.
    • Проделайте 3 измерения окружности шара, а затем усредните полученные значения (для этого сложите их и сумму разделите на 3), чтобы убедиться, что вы получили значение, близкое к истинному.
    • Например, в результате трех измерений длины окружности вы получили следующие результаты: 18 см, 17,75 см, 18,2 см. Сложите эти значения: 18 + 17,5 + 18,2 = 53,95, а затем разделите их на 3: 53,95/3 = 17,98. Используйте это среднее значение в расчетах объема шара.
  5. Изображение с названием Calculate Volume Step 38

    5

    Возведите радиус в куб (r3). То есть r3 = r*r*r. В нашем примере r = 3, поэтому r3 = 3 * 3 * 3 = 27.

  6. Изображение с названием Calculate Volume Step 39

    6

    Теперь умножьте полученный результат на 4/3. Вы можете использовать калькулятор или выполнить умножение вручную, а затем упростить дробь. В нашем примере: 27*4/3 = 108/3 = 36.

  7. Изображение с названием Calculate Volume Step 40

    7

    Умножьте полученный результат на π (3,14), чтобы найти объем шара.

    • В нашем примере: 36*3,14 = 113,09.
  8. Изображение с названием Calculate Volume Step 41

    8

    К ответу обязательно припишите соответствующие единицы измерения. В приведенном примере все величины измерялась в сантиметрах, поэтому объем будет измеряться в кубических сантиметрах: 113,09 см3.

    Реклама

Об этой статье

Эту страницу просматривали 74 320 раз.

Была ли эта статья полезной?

Посчитать объём коробки

  1. Главная
  2. /
  3. Логистика
  4. /
  5. Посчитать объём коробки

Чтобы посчитать объем коробки или нескольких коробок воспользуйтесь нашим онлайн калькулятором:

Онлайн калькулятор

Расчет объема коробки

Длина коробки

Ширина коробки

Высота коробки

Объем коробки:

0

Просто введите длину, ширину и высоту коробки и узнаете её объём.

Расчет объема нескольких коробок

Количество коробок

шт
Длина коробки

Ширина коробки

Высота коробки

Объем одной коробки:

0

Общий объем всех коробок:

0

Теория

Коробка это прямоугольный параллелепипед, который имеет длину A, ширину B и высоту (глубину) C. Её объём считается по следующей формуле:

Формула

V = A⋅B⋅C

Пример

К примеру, возьмём коробку, у которой ширина равна 56 см, высота – 40 см, глубина – 32 см и посчитаем её объём:

V = 56⋅40⋅32 = 71680 см³

Если нам необходимо знать объём в кубометрах, нужно полученную цифру разделить на 1 000 000:

V = 71680/1000000 = 0.07168 ≈ 0.07 м³

См. также


Download Article


Download Article

The volume of a shape is the measure of how much three-dimensional space that shape takes up.[1]
You can also think of the volume of a shape as how much water (or air, or sand, etc.) the shape could hold if it was filled completely. Common units of volume include cubic centimeters (cm3), cubic meters (m3), cubic inches (in3), and cubic feet (ft3).[2]
This article will teach you how to calculate the volume of six different three-dimensional shapes that are commonly found on math tests, including cubes, spheres, and cones. You might notice that a lot of the volume formulas share similarities that can make them easier to remember. See if you can spot them along the way!

  1. Image titled Calculate Volume Step 1

    1

    Recognize a cube. A cube is a three-dimensional shape that has six identical square faces.[3]
    In other words, it is a box shape with equal sides all around.

    • A 6-sided die is a good example of a cube you might find in your house. Sugar cubes, and children’s letter blocks are also usually cubes.
  2. Image titled Calculate Volume Step 2

    2

    Learn the formula for the volume of a cube. Since all of the side lengths of a cube are the same, the formula for the volume of a cube is really easy. It is V = s3 where V stands for volume, and s is the length of the sides of the cube.[4]

    • To find s3, simply multiply s by itself 3 times: s3 = s * s * s

    Advertisement

  3. Image titled Calculate Volume Step 3

    3

    Find the length of one side of the cube. Depending on your assignment, the cube will either be labeled with this information, or you may have to measure the side length with a ruler. Remember that since it is a cube, all of the side lengths should be equal so it doesn’t matter which one you measure.

    • If you are not 100% sure that your shape is a cube, measure each of the sides to determine if they are equal. If they are not, you will need to use the method below for Calculating the Volume of a Rectangular Solid.
  4. Image titled Calculate Volume Step 4

    4

    Plug the side length into the formula V = s3 and calculate. For example, if you find that the length of the sides of your cube is 5 inches, then you should write the formula out as follows: V = (5 in)3. 5 in * 5 in * 5 in = 125 in3, the volume of our cube!

    • Make sure all of the lengths are in the same unit before multiplying them.[5]
  5. Image titled Calculate Volume Step 5

    5

    Be sure to state your answer in cubic units.[6]
    In the above example, the side length of our cube was measured in inches, so the volume was given in cubic inches. If the side length of the cube had been 3 centimeters, for example, the volume would be V = (3 cm)3, or V = 27cm3.

  6. Advertisement

  1. Image titled Calculate Volume Step 6

    1

    Recognize a rectangular solid. A rectangular solid, also known as a rectangular prism, is a three-dimensional shape with six sides that are all rectangles.[7]
    In other words, a rectangular solid is simply a three-dimensional rectangle, or box shape.

    • A cube is really just a special rectangular solid in which the sides of all of the rectangles are equal.
  2. Image titled Calculate Volume Step 7

    2

    Learn the formula for calculating the volume of a rectangular solid. The formula for the volume of a rectangular solid is Volume = length * width * height, or V = lwh.

  3. Image titled Calculate Volume Step 8

    3

    Find the length of the rectangular solid. The length is the longest side of the rectangular solid that is parallel to the ground or surface it is resting on. The length may be given in a diagram, or you may need to measure it with a ruler or tape measure.

    • Example: The length of this rectangular solid is 4 inches, so l = 4 in.
    • Don’t worry too much about which side is the length, which is the width, etc. As long as you end up with three different measurements, the math will come out the same regardless of how your arrange the terms.
  4. Image titled Calculate Volume Step 9

    4

    Find the width of the rectangular solid. The width of the rectangular solid is the measurement of the shorter side of the solid, parallel to the ground or surface the shape is resting on. Again, look for a label on the diagram indicating the width, or measure your shape with a ruler or tape measure.

    • Example: The width of this rectangular solid is 3 inches, so w = 3 in.
    • If you are measuring the rectangular solid with a ruler or tape measure, remember to take and record all measurements in the same units. Don’t measure one side in inches another in centimeters; all measurements must use the same unit!
  5. Image titled Calculate Volume Step 10

    5

    Find the height of the rectangular solid. This height is the distance from the ground or surface the rectangular solid is resting on to the top of the rectangular solid. Locate the information in your diagram, or measure the height using a ruler or tape measure.

    • Example: The height of this rectangular solid is 6 inches, so h = 6 in.
  6. Image titled Calculate Volume Step 11

    6

    Plug the dimensions of the rectangular solid into the volume formula and calculate. Remember that V = lwh.

    • In our example, l = 4, w = 3, and h = 6. Therefore, V = 4 * 3 * 6, or 72.
  7. Image titled Calculate Volume Step 12

    7

    Be sure to express your answer in cubic units. Since our example rectangle was measured in inches, the volume should be written as 72 cubic inches, or 72 in3.

    • If the measurements of our rectangular solid were: length = 2 cm, width = 4 cm, and height = 8 cm, the Volume would be 2 cm * 4 cm * 8 cm, or 64cm3.
  8. Advertisement

  1. Image titled Calculate Volume Step 13

    1

    Learn to identify a cylinder. A cylinder is a three-dimensional shape that has two identical flat ends that are circular in shape, and a single curved side that connects them.[8]

    • A can is a good example of a cylinder, so is a AA or AAA battery.
  2. Image titled Calculate Volume Step 14

    2

    Memorize the formula for the volume of a cylinder. To calculate the volume of a cylinder, you must know its height and the radius of the circular base (the distance from the center of the circle to its edge) at the top and bottom. The formula is V = πr2h, where V is the Volume, r is the radius of the circular base, h is the height, and π is the constant pi.

    • In some geometry problems the answer will be given in terms of pi, but in most cases it is sufficient to round pi to 3.14. Check with your instructor to find out what she would prefer.
    • The formula for finding the volume of a cylinder is actually very similar to that for a rectangular solid: you are simply multiplying the height of the shape by the surface area of its base. In a rectangular solid, that surface area is l * w, for the cylinder it is πr2, the area of a circle with radius r.
  3. Image titled Calculate Volume Step 15

    3

    Find the radius of the base.[9]
    If it is given in the diagram, simply use that number. If the diameter is given instead of the radius, you simply need to divide the value by 2 to get the radius (d = 2r).

  4. Image titled Calculate Volume Step 16

    4

    Measure the object if the radius is not given. Be aware that getting precise measurement of a circular solid can be a bit tricky. One option is to measure the base of the cylinder across the top with a ruler or tape measure. Do your best to measure the width of the cylinder at its widest part, and divide that measurement by 2 to find the radius.

    • Another option is to measure the circumference of the cylinder (the distance around it) using a tape measure or a length of string that you can mark and then measure with a ruler. Then plug the measurement into the formula: C (circumference) = 2πr. Divide the circumference by 2π (6.28) and that will give you the radius.
    • For example, if the circumference you measured was 8 inches, the radius would be 1.27in.
    • If you need a really precise measurement, you might use both methods to make sure that your measurements are similar. If they are not, double check them. The circumference method will usually yield more accurate results.
  5. Image titled Calculate Volume Step 17

    5

    Calculate the area of the circular base.[10]
    Plug the radius of the base into the formula πr2. Then multiply the radius by itself one time, and then multiply the product by π. For example:

    • If the radius of the circle is equal to 4 inches, the area of the base will be A = π42.
    • 42 = 4 * 4, or 16. 16 * π (3.14) = 50.24 in2
    • If the diameter of the base is given instead of the radius, remember that d = 2r. You simply need to divide the diameter in half to find the radius.
  6. Image titled Calculate Volume Step 18

    6

    Find the height of the cylinder.[11]
    This is simply the distance between the two circular bases, or the distance from the surface the cylinder is resting on to its top. Find the label in your diagram that indicates the height of the cylinder, or measure the height with a ruler or tape measure.

  7. Image titled Calculate Volume Step 19

    7

    Multiply the area of the base times the height of the cylinder to find the volume.[12]
    Or you can save a step and simply plug the values for the cylinder’s dimensions into the formula V = πr2h. For our example cylinder with radius 4 inches and height 10 inches:

    • V = π4210
    • π42 = 50.24
    • 50.24 * 10 = 502.4
    • V = 502.4
  8. Image titled Calculate Volume Step 20

    8

    Remember to state your answer in cubic units. Our example cylinder was measured in inches, so the volume must be expressed in cubic inches: V = 502.4in3. If our cylinder had been measured in centimeters, the volume would be expressed in cubic centimeters (cm3).

  9. Advertisement

  1. Image titled Calculate Volume Step 21

    1

    Understand what a regular pyramid is. A pyramid is a three-dimensional shape with a polygon for a base, and lateral faces that taper at an apex (the point of the pyramid).[13]
    A regular pyramid is a pyramid in which the base of the pyramid is a regular polygon, meaning that all of the sides of the polygon are equal in length, and all of the angles are equal in measure.[14]

    • We most commonly imagine a pyramid as having a square base, and sides that taper up to a single point, but the base of a pyramid can actually have 5, 6, or even 100 sides!
    • A pyramid with a circular base is called a cone, which will be discussed in the next method.
  2. Image titled Calculate Volume Step 22

    2

    Learn the formula for the volume of a regular pyramid. The formula for the volume of a regular pyramid is V = 1/3bh, where b is the area of the base of the pyramid (the polygon at the bottom) and h is the height of the pyramid, or the vertical distance from the base to the apex (point).

    • The volume formula is the same for right pyramids, in which the apex is directly above the center of the base, and for oblique pyramids, in which the apex is not centered.
  3. Image titled Calculate Volume Step 23

    3

    Calculate the area of the base. The formula for this will depend on the number of sides the base of the pyramid has. In the pyramid in our diagram, the base is a square with sides that are 6 inches in length. Remember that the formula for the area of a square is A = s2 where s is the length of the sides. So for this pyramid, the area of the base is (6 in) 2, or 36in2.

    • The formula for the area of a triangle is: A = 1/2bh, where b is the base of the triangle and h is the height.
    • It is possible to find the area of any regular polygon using the formula A = 1/2pa, where A is the area, p is the perimeter of the shape, and a is the apothem, or distance from the center of the shape to the midpoint of any of its sides. This is a pretty involved calculation that goes beyond the scope of this article, but check out Calculate the Area of a Polygon for some great instructions on how to use it. Or you can make your life easy and search for a Regular Polygon Calculator online.[15]
  4. Image titled Calculate Volume Step 24

    4

    Find the height of the pyramid. In most cases, this will be indicated in the diagram. In our example, the height of the pyramid is 10 inches.

  5. Image titled Calculate Volume Step 25

    5

    Multiply the area of the base of the pyramid by its height, and divide by 3 to find the volume. Remember that the formula for the volume is V = 1/3bh. In our example pyramid, that had a base with area 36 and height 10, the volume is: 36 * 10 * 1/3, or 120.

    • If we had a different pyramid, with a pentagonal base with area 26, and height of 8, the volume would be: 1/3 * 26 * 8 = 69.33.
  6. Image titled Calculate Volume Step 26

    6

    Remember to express your answer in cubic units. The measurements of our example pyramid were given in inches, so its volume must be expressed in cubic inches, 120in. If our pyramid had been measured in meters, the volume would be expressed in cubic meters (m3) instead.3

  7. Advertisement

  1. Image titled Calculate Volume Step 27

    1

    Learn the properties of a cone. A cone is a 3-dimesional solid that has a circular base and a single vertex (the point of the cone). Another way to think of this is that a cone is a special pyramid that has a circular base.[16]

    • If the vertex of the cone is directly above the center of the circular base, the cone is called a “right cone”. If it is not directly over the center, the cone is called an “oblique cone.” Fortunately, the formula for calculating the area of a cone is the same whether it is right or oblique.
  2. Image titled Calculate Volume Step 28

    2

    Know the formula for calculating the volume of a cone. The formula is V = 1/3πr2h, where r is the radius of the circular base of the cone, h is the height of the cone, and π is the constant pi, which can be rounded to 3.14.

    • The πr2 part of the formula refers to the area of the circular base of the cone. The formula for the volume of the cone is thus 1/3bh, just like the formula for the volume of a pyramid in the method above!
  3. Image titled Calculate Volume Step 29

    3

    Calculate the area of the circular base of the cone. To do this, you need to know the radius of the base, which should be listed in your diagram. If you are instead given the diameter of the circular base, simply divide that number by 2, since the diameter is simply 2 times the radios (d = 2r). Then plug the radius into the formula A = πr2 to calculate the area.

    • In the example in the diagram, the radius of the circular base of the cone is 3 inches. When we plug that into the formula we get: A = π32.
    • 32 = 3 *3, or 0, so A = 9π.
    • A = 28.27in2
  4. Image titled Calculate Volume Step 30

    4

    Find the height of the cone. This is the vertical distance between the base of the cone, and its apex. In our example, the height of the cone is 5 inches.

  5. Image titled Calculate Volume Step 31

    5

    Multiply the height of the cone by the area of the base. In our example, the area of the base is 28.27in2 and the height is 5in, so bh = 28.27 * 5 = 141.35.

  6. Image titled Calculate Volume Step 32

    6

    Now multiply the result by 1/3 (or simply divide by 3) to find the volume of the cone. In the above step, we actually calculated the volume of the cylinder that would be formed if the walls of the cone extended straight up to another circle, instead of slanting in to a single point. Dividing by 3 gives us the volume of just the cone itself.

    • In our example, 141.35 * 1/3 = 47.12, the volume of our cone.
    • To restate it, 1/3π325 = 47.12
  7. Image titled Calculate Volume Step 33

    7

    Remember to express your answer in cubic units. Our cone was measured in inches, so its volume must be expressed in cubic inches: 47.12in3.

  8. Advertisement

  1. Image titled Calculate Volume Step 34

    1

    Spot a sphere. A sphere is a perfectly round three-dimensional object, in which every point on the surface is an equal distance from the center. In other words, a sphere is a ball-shaped object.[17]

  2. Image titled Calculate Volume Step 35

    2

    Learn the formula for the volume of a sphere. The formula for the volume of a sphere is V = 4/3πr3 (stated: “four-thirds times pi r-cubed”) where r is the radius of the sphere, and π is the constant pi (3.14).[18]

  3. Image titled Calculate Volume Step 36

    3

    Find the radius of the sphere. If the radius is given in the diagram, then finding r is simply a matter of locating it. If the diameter is given, you must divide this number by 2 to find the radius. For example, the radius of the sphere in the diagram is 3 inches.

  4. Image titled Calculate Volume Step 37

    4

    Measure the sphere if the radius is not given. If you need to measure a spherical object (like a tennis ball) to find the radius, first find a piece of string large enough to wrap around the object. Then wrap the string around the object at its widest point and mark the points where the string overlaps itself. Then measure the string with a ruler to find the circumference. Divide that value by 2π, or 6.28, and that will give you the radius of the sphere.

    • For example, if you measure a ball and find its circumference is 18 inches, divide that number by 6.28 and you will find that the radius is 2.87in.
    • Measuring a spherical object can be a little tricky, so you might want to take 3 different measurements, and then average them together (add the three measurements together, then divide by 3) to make sure you have the most accurate value possible.
    • For example, if your three circumference measurements were 18 inches, 17.75 inches, and 18.2 inches, you would add those three values together (18 + 17.5 + 18.2 = 53.95) and divide that value by 3 (53.95/3 = 17.98). Use this average value in your volume calculations.
  5. Image titled Calculate Volume Step 38

    5

    Cube the radius to find r3. Cubing a number simply means multiplying the number by itself 3 times, so r3 = r * r * r. In our example, r = 3, so r3 = 3 * 3 * 3, or 27.

  6. Image titled Calculate Volume Step 39

    6

    Now multiply your answer by 4/3. You can either use your calculator, or do the multiplication by hand and then simplify the fraction. In our example, multiplying 27 by 4/3 = 108/3, or 36.

  7. Image titled Calculate Volume Step 40

    7

    Multiply the result by π to find the volume of the sphere. The last step in calculating the volume is simply to multiply the result so far by π. Rounding π to two digits is usually sufficient for most math problems (unless your teacher specified otherwise,) so multiply by 3.14 and you have your answer.

    • In our example, 36 * 3.14 = 113.09.
  8. Image titled Calculate Volume Step 41

    8

    Express your answer in cubic units. In our example, the measurement of the radius of the sphere was in inches, so our answer is actually V = 113.09 cubic inches (113.09 in3).

  9. Advertisement

Worksheet and Practice Problems

Add New Question

  • Question

    How do you find the volume of a box?

    Grace Imson, MA

    Grace Imson, MA

    Math Instructor, City College of San Francisco

    Grace Imson is a math teacher with over 40 years of teaching experience. Grace is currently a math instructor at the City College of San Francisco and was previously in the Math Department at Saint Louis University. She has taught math at the elementary, middle, high school, and college levels. She has an MA in Education, specializing in Administration and Supervision from Saint Louis University.

    Grace Imson, MA

    Math Instructor, City College of San Francisco

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    The volume of a box is equal to the product of the three dimensions of the box. You would multiply the length, the width, and the height of the box to find its volume. Make sure the dimensions have the same unit. Some tricky questions give different units for each dimension.

  • Question

    How would you find the volume of a water tank?

    Grace Imson, MA

    Grace Imson, MA

    Math Instructor, City College of San Francisco

    Grace Imson is a math teacher with over 40 years of teaching experience. Grace is currently a math instructor at the City College of San Francisco and was previously in the Math Department at Saint Louis University. She has taught math at the elementary, middle, high school, and college levels. She has an MA in Education, specializing in Administration and Supervision from Saint Louis University.

    Grace Imson, MA

    Math Instructor, City College of San Francisco

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    Assuming the tank is a cylinder, you’ll need the radius or diameter of one of the circular bases as well as the height of the tank. Calculate the area of the circle using πr² (if you have the diameter, divide it in half to get the radius). Then, just multiply the area of the circular base by the height of the tank to find its volume.

  • Question

    How do I calculate the volume of compound shapes?

    Community Answer

    If the compound shapes are made up of basic geometric solids, then you can try dissecting them into their simpler parts. Their volumes will be additive.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Things You’ll Need

  • Writing utensil
  • Paper
  • Calculator (optional)
  • Ruler (optional)

References

  1. https://www.nist.gov/pml/owm/si-units-volume
  2. http://www.mathsisfun.com/measure/us-standard-volume.html
  3. https://www.mathsisfun.com/definitions/cube.html
  4. Grace Imson, MA. Math Instructor, City College of San Francisco. Expert Interview. 1 November 2019.
  5. Grace Imson, MA. Math Instructor, City College of San Francisco. Expert Interview. 1 November 2019.
  6. Grace Imson, MA. Math Instructor, City College of San Francisco. Expert Interview. 1 November 2019.
  7. http://www.algebralab.org/lessons/lesson.aspx?file=Geometry_3Dprisms.xml
  8. https://www.mathsisfun.com/definitions/cylinder.html
  9. Grace Imson, MA. Math Instructor, City College of San Francisco. Expert Interview. 1 November 2019.
  1. Grace Imson, MA. Math Instructor, City College of San Francisco. Expert Interview. 1 November 2019.
  2. Grace Imson, MA. Math Instructor, City College of San Francisco. Expert Interview. 1 November 2019.
  3. Grace Imson, MA. Math Instructor, City College of San Francisco. Expert Interview. 1 November 2019.
  4. http://www.mathwords.com/p/pyramid.htm
  5. http://www.mathwords.com/r/regular_pyramid.htm
  6. http://www.calculatorsoup.com/calculators/geometry-plane/polygon.php
  7. http://www.mathopenref.com/cone.html
  8. https://www.mathsisfun.com/definitions/sphere.html
  9. https://www.splashlearn.com/math-vocabulary/geometry/volume

About This Article

Article SummaryX

To calculate volume with a cube, use the formula v = s^3, where s is the length of the sides of the cube. To calculate the volume of a cylinder, use the formula v = hπr^2, where r is the radius of the base, h is the height, and π is pi. If you’re trying to find the volume of a rectangular prism, use the formula v = lwh, where l is the length, w is the width, and h is the height. If you need to learn how to calculate the volume of a sphere or pyramid, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,414,712 times.

Reader Success Stories

  • Isabella

    “Thanks. I was doing science homework, and it said to find the volume of an object. I chose one shaped like a cake…” more

Did this article help you?

Измерение объёма тела по формуле — возможные способы, единицы измерения

Содержание:

  • Понятие объема тела
  • Свойства объема тела
  • Как вычислить объем тела: все формулы
  • Примеры решения задач
  • Задания для самостоятельной работы

Понятие объема тела

Объем является количественным параметром пространства, занятого телом или веществом.

Термин объема можно рассматривать совместно с понятием вместимости. Это обозначение для объема какого-то внутреннего пространства сосуда, коробки и тому подобного. Объем тела, как и вместимость некой емкости, зависит от таких характеристик, как:

  • форма;
  • линейные размеры.

Главным свойством объема принято считать аддитивность.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Аддитивность означает равенство объема какого-либо тела сумме объемов частей этого тела, которые не пересекаются между собой.

Согласно СИ, единицей измерения объема является метр кубический (м³). В процессе решения задач можно встретить единицы измерения объемов тел в виде см³, дм³, или литров. В иностранной литературе также используются указания объемов веществ, находящихся в жидком или сыпучем состоянии, в таких единицах измерения, как, например, галлон, баррель и другие.

Величина объема используется при составлении различных уравнений и неравенств. При этом данный параметр обозначают с помощью буквы V. Это сокращение от латинского слова volume, которое в переводе означает объем или наполнение.

Свойства объема тела

В процессе решения разнообразных задач по физике, алгебре и геометрии целесообразно использовать свойства, которыми обладает объем тела. Перечислим основные из них:

  1. Объем тела не может быть отрицательной величиной.
  2. В том случае, когда некое геометрическое тело состоит из определенного количества геометрических тел, не обладающих едиными внутренними точками, объем такого тела складывается из объемов составляющих его тел.
  3. Объем фигуры в виде куба с ребром, значение которого равно единице измерения длины, равен единице.
  4. Аналогичные друг другу геометрические тела обладают одинаковыми объемами.
  5. В том случае, когда тело имеет объем V1 и расположено в другом теле с объемом V2, справедливо следующее соотношение: (V1<V2
    )
    .

Как вычислить объем тела: все формулы

Существует практический способ определения объема тела, включая тела, обладающие сложной формой и геометрией. Данная методика основана на законе Архимеда и предполагает погружение рассматриваемого тела в некую жидкость. По результатам следует измерить объем вытесненной телом жидкости. Данная величина равна объему измеряемого тела.

Формула расчета объема тела, исходя из известных величин массы и плотности:

(V={frac {m}{rho }})

Здесь m определяется, как масса, а rho является средней плотностью тела.

В том случае, когда тела обладают простыми геометрическими формами, в решении задач допустимо использовать специальные формулы. К примеру, для того чтобы найти объем куба, ребро которого равно а, следует применить такую формулу: (V=a^{3}).

Вычислить объем некого прямоугольного параллелепипеда можно путем умножения длины, ширины и высоты. Запишем другие распространенные формулы для расчета объемов геометрических фигур:

  • куб, формула объема: (V=a^{3}):

куб, формула объема

  • прямоугольный параллелепипед, формула объема: (V=abc) (произведение длин трех сторон):

прямоугольный параллелепипед, формула объема: V=abc

  • призма, формула объема: ( V=Bh) (произведение площади основания и высоты):

призма, формула объема: V=Bh

  • пирамида, формула объема: (V={frac {1}{3}}Bh:)

пирамида, формула объема:

  • параллелепипед, формула объема: (V=abc{sqrt {K}}, {begin{aligned}K=1&+2cos(alpha )cos(beta )cos(gamma )\&-cos ^{2}(alpha )-cos ^{2}(beta )-cos ^{2}(gamma )end{aligned}}:
    )
  • параллелепипед, формула объема

  • тетраэдр, формула объема: (V={{sqrt {2}} over 12}a^{3}:)

тетраэдр, формула объема

  • шар, формула объема: (V={frac {4}{3}}pi r^{3}):

шар, формула объема:

  • эллипсоид, формула объема: (V={frac {4}{3}}pi abc):

эллипсоид, формула объема

  • прямой круговой цилиндр, формула объема: (V=pi r^{2}h):

прямой круговой цилиндр, формула объема

  • конус, формула объема: (V={frac {1}{3}}pi r^{2}h):

конус, формула объема

  • тело вращения, формула объема: (V=pi cdot int _{a}^{b}f(x)^{2}mathrm {d} x):

тело вращения, формула объема

Источник: ru.wikipedia.org.

В том случае, когда необходимо определить объем, которым обладает некое тело, имеющее сложную форму, нужно разбить мысленно данное тело на отдельные части. Такие части целого должны иметь простую форму. Далее следует сложить вычисленные объемы простых тел. Результат будет являться значением объема начального тела.

Примеры решения задач

Задача 1

Задача

Имеется пара шаров. Радиус первого шара в 5 раз превышает радиус второго шара.

Требуется определить, во сколько раз площадь поверхности второго шара меньше по сравнению с площадью поверхности первого шара

Шар

Источник: shkolkovo.net

Решение

Рассчитать площадь поверхности можно по формуле:

(S=4pi R^2)

Тогда запишем отношения площадей пары шаров:

(dfrac{S_1}{S_2}=dfrac{4pi , R_1^2}{4pi , R_2^2})

Сравним радиусы геометрических фигур:

(R_1=5R_2)

В результате:

(dfrac{S_1}{S_2}=dfrac{(5R_2)^2}{R_2^2}=25)

Таким образом, первый шар имеет площадь поверхности, которая в 25 раз больше по сравнению с аналогичной характеристикой второго шара.

Ответ: 25.

Задача 2

На рисунке изображены конусы. Назовем их (K_1) и (K_2).

Полная поверхность (K_1) по площади относится к площади полной поверхности (K_2) как 4:1.

Фигура (K_1) обладает радиусом, который в 4 раза больше образующей (K_1) и в 2 раза больше радиуса (K_2).

Требуется вычислить, как относится образующая (K_2) к образующей (K_1.)

На рисунке изображены конусы

Источник: shkolkovo.net

Решение

Представим, что образующая конуса равна 1, а радиус основания обозначим, как R. Тогда можно записать следующее соотношение:

(S=pi R (R+l))

Запишем отношения площадей полной поверхности заданных конусов:

(dfrac41=dfrac{pi ,R_1cdot (R_1+l_1)}{pi , R_2cdot (R_2+l_2)})

Согласно условию задачи, имеем:

(R_1=4l_1, R_2=frac12R_1=2l_1)

В результате:

(dfrac41=dfrac{4l_1cdot (4l_1+l_1)}{2l_1cdot (2l_1+l_2)} quadRightarrowquad dfrac{l_2}{l_1}=dfrac12=0,5)

Ответ: 0,5.

Задача 3

Даны два прямоугольных параллелепипеда. Объем первой фигуры равен 105. Известно, что первый параллелепипед по высоте превышает второй в 7 раз. Ширина второй фигуры в 2 раза больше по сравнению с аналогичным параметром первой фигуры. Первый параллелепипед длиннее в три раза, чем второй. Необходимо вычислить объем, который имеет второй параллелепипед.

Даны два прямоугольных параллелепипеда.

Источник: shkolkovo.net

Решение

Обозначим высоту, ширину и длину геометрических фигур с помощью букв а, b, с соответственно. Вспомним формулу, по которой можно найти объем прямоугольного параллелепипеда:

V=abc

Применительно к нашей задаче, запишем:

(dfrac{105}{V_2}=dfrac{V_1}{V_2}=dfrac{a_1b_1c_1}{a_2b_2c_2})

Известно, что:

(a_1=7a_2, b_2=2b_1, c_1=3c_2)

В результате:

(dfrac{105}{V_2}=dfrac{7a_2cdot b_1cdot 3c_2}{a_2cdot 2b_1cdot c_2}= dfrac{7cdot 3}2 quadRightarrowquad V_2=dfrac{105cdot 2}{21}=10)

Ответ: 10.

Задача 4

Даны два конуса. Площадь боковой поверхности первой геометрической фигуры относится к площади боковой поверхности второй фигуры как 3:7. Первый конус обладает радиусом, который относится к радиусу второго конуса, как 15:7. Необходимо определить, как относится образующая первого конуса к образующей второго конуса.

Даны два конуса.

Источник: shkolkovo.net

Решение

Составим формулу для расчета площади боковой поверхности конуса:

(S=pi Rl)

Запишем отношения площадей боковых поверхностей для первого и второго конусов:

(dfrac 37=dfrac{S_1}{S_2}=dfrac{pi R_1,l_1}{pi R_2,l_2})

Зная, что отношение радиусов двух геометрических фигур равно 15:7, получим:

(frac{R_1}{R_2}=frac{15}7, то dfrac37=dfrac {15}7cdot dfrac{l_1}{l_2} quadRightarrowquad dfrac{l_1}{l_2}=dfrac37cdot dfrac7{15}=dfrac15=0,2)

Ответ: 0,2.

Задача 5

Имеется пара шаров. Объем первой фигуры составляет 54. Радиус второй фигуры в 3 раза меньше по сравнению с радиусом первой. Нужно определить объем второго шара.

Имеется пара шаров.

Источник: shkolkovo.net

Решение

Запишем формулу, согласно которой можно определить объем шара:

(V=dfrac43 pi R^3)

Составим отношение объемов двух фигур:

(dfrac{54}{V_2}=dfrac{V_1}{V_2}= dfrac{frac43 pi ,R_1^3}{frac43 pi ,R_2^3}=left(dfrac{R_1}{R_2}right)^3)

По условиям задачи:

(R_1=3R_2)

В результате:

(dfrac{54}{V_2}=left(dfrac{3R_2}{R_2}right)^3=27 quadRightarrowquad V_2=dfrac{54}{27}=2)

Ответ: 2.

Задача 6

Имеется некая емкость конусообразной формы. Ее заполнили до половины с помощью 75 гр жидкости. Необходимо вычислить вес жидкости, которую нужно добавить в емкость, чтобы заполнить ее до верхнего края.

Имеется некая емкость конусообразной формы

Источник: shkolkovo.net

Решение

Вспомним формулу объема из курса физики:

(V=frac{m}{rho})

Предположим, что O является центром основания большего конуса. Пусть Q — центр основания меньшего конуса, а S обозначает общую вершину данных фигур. В одной плоскости построим радиусы OA и QB:

Имеется некая емкость конусообразной формы.

Источник: shkolkovo.net

В таком случае:

(QBparallel OA)

(triangle SQBsim triangle SOA)

В результате:

(dfrac{OA}{QB}=dfrac{OS}{QS}=dfrac21)

Получим, что:

(m_{small{text{ж}}}=V_{small{text{ж}}}cdot rho= dfrac13cdot picdot QScdot QB^2 cdot rho)

Можно сделать вывод, что:

(m=Vrho=dfrac13cdot picdot OScdot OA^2cdot rho= dfrac 13cdot picdot 2QScdot (2QB)^2cdot rho= 8cdot left(dfrac13cdot picdot QScdot QB^2cdot rhoright)=8cdot 75=600 {small{text{грамм}}})

Таким образом, потребуется долить в емкость:

(600-75=525 {small{text{грамм}}})

Ответ: 525.

Задача 7

Изображена четырехугольная пирамида. Ее высота равна h. Отметим точку сбоку на ребре геометрической фигуры так, чтобы она была удалена на frac13h от плоскости основания. Данную точку пересекает плоскость, которая параллельна плоскости основания и отделяет от пирамиды аналогичную фигуру меньшего размера. Объем начальной пирамиды равен 54. Требуется вычислить объем меньшей пирамиды, которая получилась в результате.

Изображена четырехугольная пирамида

Источник: shkolkovo.net

Решение

Назовем точку, через которую проведена плоскость, A’ на ребре AS. Параллельность плоскости и основания является причиной пересечения боковых граней по прямым A’B’, B’C’, C’D’, D’A’, параллельным соответственно AB, BC, CD, DA. В этом случае SA’B’C’D’ является правильной четырехугольной пирамидой.

Исследуем плоскость ASO. Построим (A’Hparallel SO), где SO представляет собой высоту начальной фигуры. В таком случае:

(A’Hperp ABC)

В результате получилось расстояние, которое равно (frac13SO:)

(triangle AA’Hsim triangle ASO)

(dfrac{SA}{AA’}=dfrac{SO}{A’H}=3 quadRightarrowquad SA=3AA’ quadRightarrowquad SA’=dfrac23SA)

Таким образом:

(SQ=frac23SO)

(triangle ASBsim triangle A’SB’)

Получим, что:

(dfrac23=dfrac{SA’}{SA}=dfrac{A’B’}{AB} quadRightarrowquad A’B’=dfrac23AB)

Запишем отношения объемов пирамид:

(dfrac{V_{{small{text{м}}}}}{V_{small{text{б}}}}= dfrac{frac13cdot SQcdot A’B’^2}{frac13cdot SOcdot AB^2}=dfrac{SQ}{SO}cdot left(dfrac{A’B’}{AB}right)^2=dfrac23cdot left(dfrac23right)^2=dfrac8{27})

В результате объем малой фигуры составит:

(V_{{small{text{м}}}}=dfrac8{27}cdot 54=16)

Ответ: 16.

Задания для самостоятельной работы

Задание 1

Имеется пара конусов. Вторая фигура обладает радиусом, который в три раза больше по сравнению с радиусом первой фигуры. Второй конус выше первого в шесть раз. Объем второй фигуры равен 18. Требуется вычислить, чему равен объем первого конуса.

Имеется пара конусов

Источник: shkolkovo.net

Решение

Формула определения объема конуса:

(V=frac13pi R^2h)

Запишем отношения объемов двух фигур:

(dfrac{V_1}{18}=dfrac{V_1}{V_2}= dfrac{frac13pi ,R_1^2,h_1}{frac13 pi ,R_2^2,h_2}=left(dfrac{R_1}{R_2}right)^2cdot dfrac{h_1}{h_2})

Исходя из условий задачи:

(R_2=3R_1)

(h_1=6h_2)

В результате:

(dfrac{V_1}{18}=left(dfrac{R_1}{3R_1}right)^2cdot dfrac{6h_2}{h_2}= dfrac19cdot 6=dfrac23 quadRightarrowquad V_1=dfrac23cdot 18=12)

Ответ: 12
 

Задание 2

Дано два шара. Объем первого шара в 343 раза больше по сравнению с объемом второго шара. Нужно вычислить, во сколько раз радиус первой фигуры больше, чем радиус второй фигуры.

Дано два шара

Источник: shkolkovo.net

Решение

Запишем формулу для нахождения объема шара:

(V=dfrac43 pi R^3)

Составим отношения объемов данных шаров:

(dfrac{343}1=dfrac{V_1}{V_2}=dfrac{frac43 pi , R_1^3}{frac43 pi , R_2^3}= left(dfrac{R_1}{R_2}right)^3 quadRightarrowquad dfrac{R_1}{R_2}=sqrt[3]{343}=7)

Сделаем вывод, что радиус первого шара в 7 раз больше по сравнению с радиусом второго шара.

Ответ: 7.

Задание 3

На рисунке изображены два цилиндра. Первый из них обладает площадью боковой поверхности, равной 16. Радиус второй фигуры больше в 4 раза по сравнению с радиусом первой фигуры. Второй цилиндр ниже, чем первый цилиндр, в 5 раз. Требуется вычислить площадь боковой поверхности второго цилиндра.

На рисунке изображены два цилиндра

Источник: shkolkovo.net

Решение

Запишем формулу для вычисления площади боковой поверхности цилиндра, которую уже проходили ранее:

(S=2pi RH)

Составим отношение площадей боковых поверхностей двух фигур:

(dfrac{16}{S_2}=dfrac{S_1}{S_2}=dfrac{2pi ,R_1,H_1}{2pi ,R_2,H_2}= dfrac{R_1}{R_2}cdot dfrac{H_1}{H_2})

В результате:

(R_2=4R_1, H_1=5H_2)

Таким образом:

(dfrac{16}{S_2}=dfrac{R_1}{4R_1}cdot dfrac{5H_2}{H_2}= dfrac14cdot 5=dfrac54)

Получим, что:

(S_2=dfrac{16cdot 4}5=12,8)

Ответ: 12,8.

Задание 4

Имеется некая емкость конусообразной формы. Объем этой емкости составляет 2700 мл. Требуется рассчитать количество жидкости, налитой в емкость, если ее уровень в 3 раза меньше по сравнению с высотой емкости.

Имеется некая емкость конусообразной формы.

Источник: shkolkovo.net

Решение

Введем обозначения, как на рисунке:

Введем обозначения, как на рисунке:

Источник: shkolkovo.net

В таком случае:

(QBparallel OA и triangle SQBsim triangle SOA)

Таким образом:

(dfrac{QB}{OA}=dfrac{QS}{OS}=dfrac13)

Соотношение объемов жидкости до определенной линии и емкости:

(dfrac{V_{small{text{ж}}}}{2700}=dfrac{V_{small{text{ж}}}}{V}= dfrac{frac13cdot picdot QB^2cdot QS}{frac13cdot pi cdot OA^2cdot OS}= left(dfrac{QB}{OA}right)^2cdot dfrac{QS}{OS}=dfrac19cdot dfrac13=dfrac1{27})

В результате:

(V_{small{text{ж}}}=dfrac1{27}V=100)

Ответ: 100.

Задача 5

На рисунке изображены фигуры в виде шаров. Первый шар имеет радиус 6. Второй шар имеет радиус 2. Нужно вычислить, во сколько раз объем первой фигуры превышает объем второй фигуры.

На рисунке изображены фигуры в виде шаров

Источник: shkolkovo.net

Решение

Запишем формулу для расчета объема шара, который не может изменяться:

(V=dfrac43 pi R^3)

Составим отношение объемов двух шаров:

(dfrac{V_1}{V_2}=dfrac{frac43 pi cdot 6^3}{frac43 pi cdot 2^3}= left(dfrac62right)^3=27)

В результате объем первого шара в 27 раз больше по сравнению с объемом второго шара.

Ответ: 27.

Рисунок куба, ребро

a – сторона куба

Формула объема куба, (V):

Формула объема куба

Изображение параллелепипеда

abc – стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V):

Формула объема прямоугольного параллелепипеда

Рисунок шара, сферы

Rрадиус шара

π ≈ 3.14

По формуле, если дан радиус, можно найти объема шара, (V):

Формула для расчета объема шара, сферы

Цилиндр радиус высота

h – высота цилиндра

r – радиус основания

π ≈ 3.14

По формуле найти объема цилиндра, есди известны – его радиус основания и высота, (V):

формула объема цилиндра

конус радиус основания высота

R – радиус основания

H – высота конуса

π ≈ 3.14

Формула объема конуса, если известны радиус и высота (V):

Формула объема конуса

усеченный конус, радиусы оснований и высота

r –  радиус верхнего основания

R – радиус нижнего основания

h – высота конуса

π ≈ 3.14

Формула объема усеченного конуса, если известны – радиус нижнего основания, радиус верхнего основания и высота конуса  (V ):

Формула объема усеченного конуса

тетраэдр

Правильный тетраэдр – пирамида у которой все грани, равносторонние треугольники.

а – ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V):

Формула объема тетраэдра

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

правильная четырехугольная пирамида

a – сторона основания

h – высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V):

формула объема правильной четырехугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

Правильная треугольная пирамида

a – сторона основания

h – высота пирамиды

Формула объема правильной треугольной пирамиды, если даны – высота и сторона основания (V):

Формула объема правильной треугольной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

правильная пирамида

h – высота пирамиды

a – сторона основания пирамиды

n – количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):

Объем правильной пирамиды

Расчет объема пирамиды

h – высота пирамиды

S – площадь основания ABCDE

Формула для вычисления объема пирамиды, если даны – высота и площадь основания (V):

Формула объема пирамиды

Расчёт объёма усечённой пирамиды

h – высота пирамиды

Sниж – площадь нижнего основания, ABCDE

Sверх – площадь верхнего основания, abcde

Формула объема усеченной пирамиды, (V):

Формула объема усеченной пирамиды

Шаровый сегмент- это часть шара отсеченная плоскостью. В данном примере, плоскостью ABCD.

Объем шарового сегмента

R – радиус шара

h – высота сегмента

π ≈ 3.14

Формула для расчета объема шарового сегмента, (V):

Формула объема шарового сегмента

Объем шарового сектора

R – радиус шара

h – высота сегмента

π ≈ 3.14

Формула объема шарового сектора, (V):

Формула объема шарового сектора

Объем шарового слоя

h – высота шарового слоя

R – радиус нижнего основания

r – радиус верхнего основания

π ≈ 3.14

Формула объема шарового слоя, (V):

Формула объема шарового слоя

Добавить комментарий