Как найти число между двумя другими

Калькулятор создан по запросу пользователя проценты математические для обозначения изменения в сметах.
Задача была сформулирована следующим образом
«Соотношения между двумя числами А и В:

  1. Сколько процентов составляет А от В и наоборот;
  2. Сколько процентов составляет разница между А и В относительно А и относительно В;
  3. Еще какие-то соотношения между А и В»

Собственно, придумалось несколько соотношений, которые и считает этот простой калькулятор. Там, где значения в долях единицы (как результат деления чего-то на чего-то), умножаем на 100 и получаем проценты.

PLANETCALC, Cоотношения между двумя числами

Cоотношения между двумя числами

Точность вычисления

Знаков после запятой: 2

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

Онлайн калькулятор для вычисления процентного соотношения чисел.
Процентное соотношение (или отношение) двух чисел — это отношение одного числа к другому умноженное на 100%.
Находится по формуле: R%= N1/N2×100%

Пример вычисления процентного соотношение между двумя числами:
Число 540 составляет 49.09% от числа 1100

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Соотношение 1: упростить

:

Соотношение 2: сравнить

:

Результат упрощения

Результат сравнения

Вы можете использовать этот инструмент для получения наиболее упрощенного соотношения или для сравнения двух одинаковых соотношений.

Соотношение

Соотношение в математике — это термин, который используется для сравнения двух или более чисел. Он используется, чтобы указать, насколько велика или мала величина по сравнению с другой. В отношении две величины сравниваются с помощью деления. Здесь делимое называется «антецедентом», а делитель — «консеквентом». Например, в группе из 30 человек 17 из них предпочитают ходить по утрам, а 13 — ездить на велосипеде. Чтобы представить эту информацию в виде соотношения, запишем его как 17:13. Здесь символ ‘:’ читается как «есть к». Таким образом, отношение людей, предпочитающих ходить пешком, к людям, предпочитающим езду на велосипеде, читается как «17 к 13».

Что такое соотношение?

Соотношение определяется как сравнение двух величин в одних и тех же единицах измерения, которое показывает, сколько одного количества присутствует в другом количестве. Коэффициенты можно разделить на два типа. Одно из них — соотношение части к части, а другое — соотношение части к целому. Соотношение частей к частям показывает, как связаны две различные сущности или группы. Например, соотношение мальчиков и девочек в классе составляет 12: 15, тогда как соотношение частей к целому обозначает соотношение между определенной группой и целым. Например, из каждых 10 человек 5 любят читать книги. Таким образом, соотношение части к целому составляет 5: 10, что означает, что каждые 5 человек из 10 любят читать книги.

Формула соотношения

Мы используем формулу соотношения при сравнении соотношения между двумя числами или величинами. Общая форма представления соотношения между двумя величинами, скажем, «a» и «b», — это a: b, которое читается как «a равно b».

Vyrozhashhij sootnoshenie

Форма дроби, представляющая это соотношение, — a/b. Чтобы еще больше упростить соотношение, мы следуем той же процедуре, которую используем для упрощения дроби. a:b = a/b. Давайте разберемся в этом на примере.

Пример. В классе из 50 учеников 23 девочки, а остальные мальчики. Найдите соотношение количества мальчиков к количеству девочек.

Общее количество студентов = 50; Количество девушек = 23.

Общее количество мальчиков = Общее количество учеников — Общее количество девочек
= 50 — 23
= 27

Таким образом, желаемое соотношение (Количество мальчиков: Количество девочек) равно 27:23.

Расчет коэффициентов

Для того чтобы рассчитать соотношение двух величин, мы можем использовать следующие шаги. Давайте разберемся в этом на примере. Например, если для приготовления пышных блинов необходимо 15 стаканов муки и 20 стаканов сахара, давайте рассчитаем соотношение муки и сахара, используемых в рецепте.

  • Шаг 1: Найдите величины обоих сценариев, для которых мы определяем соотношение. В данном случае это 15 и 20.
  • Шаг 2: Запишите его в форме дроби a /b. Итак, мы записываем это как 15/20.
  • Шаг 3: По возможности еще больше упростите дробь. Упрощенная дробь даст окончательное соотношение. Здесь 15/20 может быть упрощено до 3/4.
  • Шаг 4: Поэтому соотношение муки к сахару можно выразить как 3:4.

Используйте бесплатный онлайн-калькулятор коэффициентов, чтобы проверить свои ответы при расчете коэффициентов.

Как упростить соотношения?

Соотношение выражает, сколько требуется одного количества по сравнению с другим количеством. Два термина в соотношении могут быть упрощены и выражены в их низшей форме. Соотношения, выраженные в их наименьших выражениях, легко понять и могут быть упрощены так же, как мы упрощаем дроби. Чтобы упростить соотношение, мы используем следующие шаги. Давайте разберемся в этом на примере. Например, давайте упростим соотношение 18:10.

  • Шаг 1: Запишите заданное соотношение a:b в виде дроби a/b. Записав соотношение в виде дроби, мы получим 18/10.
  • Шаг 2: Найдите наибольший общий коэффициент ‘a’ и ‘b’. В этом случае GCF из 10 и 18 равен 2.
  • Шаг 3: Разделите числитель и знаменатель дроби на GCF, чтобы получить упрощенную дробь. Здесь, разделив числитель и знаменатель на 2, мы получаем, (18÷2)/(10÷2) = 9/5.
  • Шаг 4: Представьте эту дробь в форме соотношения, чтобы получить результат. Таким образом, упрощенное соотношение составляет 9:5.

Используйте бесплатный онлайн-калькулятор коэффициентов упрощения, чтобы проверить свои ответы.

Советы и рекомендации по соотношению:

  • В случае, если оба числа «a» и «b» равны в соотношении a: b, то a: b = 1.
  • Если a > b в соотношении a : b, то a : b > 1.
  • Если a < b в соотношении a : b, то a : b < 1.
  • Перед их сравнением необходимо убедиться в том, что единицы измерения двух величин одинаковы.

Эквивалентные Соотношения

Эквивалентные соотношения аналогичны эквивалентным дробям. Если предшествующий (первый член) и последующий (второй член) данного соотношения умножаются или делятся на одно и то же число, отличное от нуля, это дает эквивалентное соотношение. Например, когда антецедент и следствие соотношения 1:3 умножаются на 3, мы получаем, (1 × 3) : (3 × 3) или 3: 9. Здесь 1:3 и 3:9 являются эквивалентными соотношениями. Аналогично, когда оба члена соотношения 20:10 делятся на 10, это дает 2:1. Здесь 20:10 и 2:1 являются эквивалентными соотношениями. Бесконечное число эквивалентных соотношений любого заданного соотношения может быть найдено путем умножения предшествующего и последующего на положительное целое число.

Таблица коэффициентов

Таблица коэффициентов — это список, содержащий эквивалентные коэффициенты любого заданного соотношения в структурированном виде. В следующей таблице соотношений приведено соотношение между соотношением 1:4 и четырьмя его эквивалентными соотношениями. Эквивалентные соотношения связаны друг с другом умножением числа. Эквивалентные соотношения получаются путем умножения или деления двух членов соотношения на одно и то же число. В примере, показанном на рисунке, давайте возьмем соотношение 1:4 и найдем четыре эквивалентных соотношения, умножив оба члена соотношения на 2, 3, 6 и 9. В результате мы получаем 2:8, 3:12, 6:24, и 9:36.

Tablicy kojefficientov

Используйте бесплатный онлайн-калькулятор эквивалентных коэффициентов, чтобы проверить свои ответы.

Примеры соотношения

  1. Пример 1. В школьном зале 49 мальчиков и 28 девочек. Выразите соотношение числа мальчиков к числу девочек.

    Решение:

    Учитывая, что количество мальчиков = 49, а количество девочек = 28. GCF 49 и 28 равен 7. Теперь, для упрощения, разделите два термина на их GCF, который равен 7. Это означает, (49 ÷ 7)/(28 ÷ 7) = 7/4. Следовательно, соотношение числа мальчиков к числу девочек = 7:4.

  2. Пример 2: В музыкальном классе 30 учеников. 10 из них были взрослыми, а остальные — детьми. Каково соотношение числа детей к общему числу учащихся в музыкальном классе?

    Решение:

    Учитывая, что общее количество учащихся в музыкальном классе = 30, а общее количество взрослых = 10. Следовательно, количество детей, посещавших музыкальный класс = 30 -10, что равно 20. Отношение общего числа детей к общему числу учащихся в музыкальном классе = 20: 30, что в упрощенном виде дает 2:3.

  3. Пример 3: Упростите заданное соотношение, 87:75.

    Решение:

    Чтобы упростить данное соотношение, мы сначала найдем GCF 87 и 75, что равно 3. Затем мы разделим каждый член на 3. Это означает, (87 ÷ 3)/(75 ÷ 3) = 29/25. Таким образом, соотношение 87:75 в простейшей форме равно 29:25.

Как ваш ребенок может овладеть математическими понятиями?
Математическое мастерство приходит с практикой и пониманием того, «Почему» стоит за «Что». Почувствуйте разницу в математике.

FAQ по соотношению

Что такое соотношение в математике?

Соотношение может быть определено как соотношение или сравнение между двумя числами одной и той же единицы измерения, чтобы проверить, насколько одно число больше другого. Например, если количество баллов, набранных в тесте, равно 7 из 10, то отношение полученных баллов к общему количеству баллов записывается как 7:10.

Каковы способы написания соотношения?

Соотношение может быть записано путем разделения двух величин с помощью двоеточия (:) или оно может быть записано в дробной форме. Например, если есть 4 яблока и 8 дынь, то соотношение яблок и дынь можно записать как 4: 8 или 4/8, что может быть дополнительно упрощено как 1: 2.

Как рассчитать Соотношение между двумя числами?

Для того чтобы рассчитать соотношение двух величин, мы можем использовать следующие шаги. Давайте разберемся в этом на примере. Например, если для приготовления крема для глазури необходимо 14 чашек сливочного масла и 28 чашек сахара, каково соотношение масла и сахара?

  • Шаг 1: Обратите внимание на количество обоих ингредиентов, для которых мы определяем соотношение. В данном случае это 14 и 28.
  • Шаг 2: Запишите его в форме дроби a /b. Итак, мы записываем это как 14/28.
  • Шаг 3: По возможности еще больше упростите дробь. Упрощенная дробь даст окончательное соотношение. Здесь 14/28 может быть упрощено до 1/2.
  • Шаг 4: Поэтому соотношение сливочного масла к сахару можно выразить как 1:2.

Как найти эквивалентные соотношения?

Два коэффициента считаются эквивалентными, если при упрощении они представляют одно и то же значение. Эта концепция аналогична эквивалентным дробям. Например, когда соотношение 1: 4 умножается на 2, это означает умножение обоих членов в соотношении на 2. Таким образом, мы получаем, (1 × 2)/ (4 × 2) = 2/8 или 2: 8. Здесь 1:4 и 2:8 являются эквивалентными соотношениями. Аналогично, соотношение 30: 10 при делении на 10 дает соотношение 3:1. Здесь 30:10 и 3:1 являются эквивалентными соотношениями. Таким образом, эквивалентные соотношения можно найти с помощью операции умножения или деления в зависимости от чисел.

Что такое Таблица коэффициентов?

Таблица коэффициентов показывает список эквивалентных коэффициентов, которые получаются либо путем умножения, либо деления обеих величин на одно и то же значение. Например, если таблица коэффициентов начинается с соотношения 1 : 3, то последующие строки будут иметь 2:6, 3:9, 4:12, и так далее. Когда эти соотношения упрощены, они представляют одно и то же значение, то есть 1:3.

Что такое Золотое сечение?

Золотое сечение — это отдельное число, значение которого приблизительно равно 1,618. Символом для этого является греческая буква «phi», представленная как ϕ. Это особый атрибут, который используется в искусстве, геометрии и архитектуре, потому что считается, что золотое сечение создает наиболее приятную и красивую форму.Это также известно как божественная пропорция, которая существует между двумя величинами, и соотношение для расчета золотого сечения представлено как ϕ = a /b = (a + b)/a = 1,61803398875… где a и b — размеры двух величин, а a — большее между ними.

Почему важны Коэффициенты?

Соотношения важны, потому что они позволяют нам выражать величины таким образом, чтобы их было легче интерпретировать. Это инструмент, который используется для сравнения размеров двух или более величин по отношению друг к другу. Например, если в классе 30 девочек и 20 мальчиков. Мы можем представить количество девочек к числу мальчиков с помощью соотношения, которое в данном случае равно 3: 2.

Какова формула соотношения?

Формула соотношения используется для сравнения соотношения между двумя числами или величинами. Общая форма представления соотношения между двумя величинами, скажем, «a» и «b», — это a: b, которое читается как «a равно b».

Что такое Соотношение и Пропорция?

Соотношение — это соотношение или сравнение между двумя величинами одной и той же единицы измерения, чтобы проверить, насколько одно число больше другого. Он записывается как a/b или a: b, где b не равно нулю. Пропорция — это равенство двух соотношений. Пропорции используются для записи эквивалентных соотношений, которые помогают решить неизвестные величины. Например, пропорция выражается следующим образом: a: b = c: d

Как сравнить коэффициенты?

Существуют различные методы сравнения коэффициентов. Например, давайте сравним 1: 2 и 2: 3 с помощью метода LCM.

  • Шаг 1: Запишите соотношения в виде дроби. Здесь это означает 1/2 и 2/3.
  • Шаг 2: Уменьшите фракции по отдельности. Здесь обе фракции 1/2 и 2/3 уже находятся в их уменьшенной форме.
  • Шаг 3: Теперь сравните 1/2 и 2/3, найдя LCM (наименьшее общее кратное) знаменателей. LCM 2 и 3 равно 6.
  • Шаг 4: Сделайте знаменатели равными, умножив числитель и знаменатель первой дроби на 3, то есть, (1 × 3)/(2 × 3) = 3/6. Затем умножьте числитель и знаменатель второй дроби на 2, то есть, (2 × 2)/(3 × 2) = 4/6.
  • Шаг 5: Теперь 3/6 и 4/6 можно легко сравнить. Это показывает, что 4/6 больше, чем 3/6. Следовательно, 2:3 > 1:2.

Как преобразовать соотношения в дроби?

Соотношения могут быть записаны в виде дробей очень простым способом. Предшествующее записывается как числитель, а последующее записывается как знаменатель. Например, если мы возьмем соотношение 3: 5. Здесь 3 — это предшествующее, а 5 — последующее. Итак, мы можем записать это как 3/5.

Как преобразовать дроби в соотношения?

Дроби могут быть записаны в виде соотношений после упрощения. Это означает, что мы сначала уменьшаем данную дробь до ее наименьших членов, а затем записываем числитель в качестве предшествующего, а знаменатель — в качестве последующего. Например, доля 16/48 сначала будет уменьшена до 1/3, а затем она может быть выражена в виде соотношения 1:3.

Как перевести коэффициенты в десятичные дроби?

Соотношения можно легко преобразовать в десятичные дроби, записав соотношение в виде дроби, а затем дробь преобразуется в десятичную дробь путем деления числителя на знаменатель. Например, 3:7 может быть записано как 3/7. Теперь 3/7 = 0,428.

Как преобразовать коэффициенты в проценты?

Коэффициенты можно преобразовать в проценты, выполнив следующие действия. Например, давайте преобразуем 5: 6 в виде процента.

  • Шаг 1: Запишите соотношение в виде дроби. Здесь 5: 6 может быть записано как 5/6.
  • Шаг 2: Умножьте эту дробь на 100 и добавьте символ процента. В этом случае 5/6 × 100 = 83,33%.

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Отношение чисел

Поддержать сайтспасибо

Прежде чем обсуждать пропорции необходимо разобраться, что такое отношение двух чисел.

Если вам знакомо понятие отношение чисел, можете смело переходить к теме
пропорции.

Что называют отношением двух чисел

Запомните!
!

Отношение двух чисел — это их частное.

Отношение двух чисел показывает:

  • во сколько раз одно число больше другого;
  • какую часть одно число составляет от другого.

Покажем на примере, где используется понятие отношение двух чисел.

В городе Липецк проводятся соревнования на велосипедах. В прошлом году участников было 15.
В этом году — 75. Во сколько раз увеличилось количество участников в этом году по
сравнению с предыдущим годом
?

Прежде чем решать задачу, подчёркиваем важные данные.
Запишем отношение количества участников в этом году к количеству участников в предыдущем.

Запомните!
!

При записи отношения двух чисел в знаменатель дроби (вниз) записывается
то число, с которым сравнивают.
Обычно это число идёт после слов «по сравнению с …» или
предлога «к …».

что называется отношением чисел

Запомните!
!

Если умножить или разделить оба члена отношения на одно и то же число, неравное нулю, то получится отношение, равное данному.

При внимательном изучении правила выше, можно подметить, что правило записанное выше,
есть нечто иное как основное свойство дроби, по которому мы их легко сокращаем.

Отношение 16 к 10:

как записывется отношение чисел


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

25 апреля 2023 в 20:44

Максим Тагиров
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Максим Тагиров
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить



Загрузить PDF


Загрузить PDF

Соотношение (в математике) — это взаимосвязь между двумя или более числами одного рода. Соотношения сравнивают абсолютные величины или части целого. Соотношения вычисляются и записываются по-разному, но основные принципы одинаковы для всех соотношений.

  1. Изображение с названием Calculate Ratios Step 1

    1

    Использование соотношений. Соотношения используются как в науке, так и в повседневной жизни для сравнения величин. Простейшие соотношения связывают только два числа, но есть соотношения, сравнивающие три или более значения. В любой ситуации, в которой присутствует более одной величины, можно записать соотношение. Связывая некоторые значения, соотношения могут, например, подсказать, как увеличить количество ингредиентов в рецепте или веществ в химической реакции.[1]

  2. Изображение с названием Calculate Ratios Step 2

    2

    Определение соотношений. Соотношение — это взаимосвязь между двумя (или более) значениями одного рода. Например, если для приготовления торта необходимы 2 стакана муки и 1 стакан сахара, то соотношение муки к сахару равно 2 к 1.

    • Соотношения могут быть использованы и в тех случаях, когда две величины не связаны друг с другом (как в примере с тортом). Например, если в классе учатся 5 девочек и 10 мальчиков, то соотношение девочек к мальчикам равно 5 к 10. Эти величины (число мальчиков и число девочек) не зависят друг от друга, то есть их значения изменятся, если кто-то уйдет из класса или в класс придет новый ученик. Соотношения просто сравнивают значения величин.
  3. Изображение с названием Calculate Ratios Step 3

    3

    Обратите внимание на разные способы представления соотношений. Соотношения могут быть представлены словами или при помощи математических символов.[2]

    • Очень часто соотношения выражены словами (как показано выше). Особенно такая форма представления соотношений применяется в повседневной жизни, далекой от науки.
    • Также соотношения можно выразить через двоеточие. При сравнении двух чисел в соотношении вы будете использовать одно двоеточие (например, 7:13); при сравнении трех и более значений ставьте двоеточие между каждой парой чисел (например, 10:2:23). В нашем примере с классом вы можете выразить соотношение девочек и мальчиков так: 5 девочек : 10 мальчиков. Или так: 5:10.
    • Реже соотношения выражаются при помощи наклонной черты. В примере с классом оно может быть записано так: 5/10. Тем не менее это не дробь и читается такое соотношение не как дробь; более того, запомните, что в соотношении цифры не представляют собой часть единого целого.

    Реклама

  1. Изображение с названием Calculate Ratios Step 4

    1

    Упростите соотношение. Соотношение можно упростить (аналогично дробям), разделив каждый член (число) соотношения на наибольший общий делитель. Однако при этом не упустите из виду исходных значений соотношения.[3]

    • В нашем примере в классе 5 девочек и 10 мальчиков; соотношение равно 5:10. Наибольший общий делитель членов соотношения равен 5 (так как и 5, и 10 делятся на 5). Разделите каждое число соотношения на 5 и получите соотношение 1 девочка к 2 мальчикам (или 1:2). Однако при упрощении соотношения помните об исходных значениях. В нашем примере в классе не 3 ученика, а 15. Упрощенное соотношение сравнивает количество мальчиков и количество девочек. То есть на каждую девочку приходится 2 мальчика, но в классе не 2 мальчика и 1 девочка.
    • Некоторые соотношения не упрощаются. Например, соотношение 3:56 не упрощается, так как у этих чисел нет общих делителей (3 — простое число, а 56 не делится на 3).
  2. Изображение с названием Calculate Ratios Step 5

    2

    Используйте умножение или деление для увеличения или уменьшения соотношения. Распространены задачи, в которых необходимо увеличить или уменьшить два значения, пропорциональных друг другу. Если вам дано соотношение и нужно найти соответствующее ему большее или меньшее соотношение, умножьте или разделите исходное соотношение на некоторое данное число.[4]

    • Например, пекарю нужно утроить количество ингредиентов, данных в рецепте. Если по рецепту соотношение муки к сахару составляет 2 к 1 (2:1), то пекарь умножит каждый член соотношения на 3 и получит соотношение 6:3 (6 чашек муки к 3 чашкам сахара).
    • С другой стороны, если пекарю необходимо уполовинить количество ингредиентов, данных в рецепте, то пекарь разделит каждый член соотношения на 2 и получит соотношение 1:½ (1 чашка муки к 1/2 чашке сахара).
  3. Изображение с названием Calculate Ratios Step 6

    3

    Поиск неизвестного значения, когда даны два эквивалентных соотношения. Это задача, в которой необходимо найти неизвестную переменную в одном соотношении при помощи второго соотношения, которое эквивалентно первому. Для решения таких задач пользуйтесь умножением крест-накрест. Запишите каждое соотношение в виде обыкновенной дроби, поставьте между ними знак равенства и перемножьте их члены крест-накрест.[5]

    • Например, дана группа учеников, в которой 2 мальчика и 5 девочек. Каково будет число мальчиков, если число девочек увеличить до 20 (пропорция сохраняется)? Во-первых, запишите два соотношения — 2 мальчика:5 девочек и х мальчиков:20 девочек. Теперь запишите эти соотношения в виде дробей: 2/5 и х/20. Перемножьте члены дробей крест-накрест и получите 5x = 40; следовательно, х = 40/5 = 8.

    Реклама

  1. Изображение с названием Calculate Ratios Step 7

    1

    Избегайте сложения и вычитания в текстовых задачах на соотношение. Многие текстовые задачи выглядят примерно так: «В рецепте необходимо использовать 4 клубня картофеля и 5 корнеплодов моркови. Если вы хотите добавить 8 клубней картофеля, то сколько понадобится моркови, чтобы соотношение осталось неизменным?» При решении подобных задач ученики часто допускают ошибку, прибавляя одинаковое количество ингредиентов к исходному числу. Однако, чтобы сохранить соотношение, нужно использовать умножение. Вот примеры правильного и неправильного решения:

    • Неверно: «8 – 4 = 4 — так мы добавили 4 клубня картофеля. Значит, нужно взять 5 корнеплодов моркови и к ним добавить еще 4… Стоп! Соотношения так не вычисляют. Стоит попробовать снова».
    • Верно: «8 ÷ 4 = 2 — значит, мы умножили количество картофеля на 2. Соответственно, 5 корнеплодов моркови тоже нужно умножить на 2. 5 x 2 = 10 — в рецепт нужно добавить 10 корнеплодов моркови».
  2. Изображение с названием Calculate Ratios Step 8

    2

    Преобразуйте члены в те же единицы измерения. Некоторые текстовые задачи специально усложняют, добавляя разные единицы измерения. Преобразуйте их, прежде чем вычислять соотношение. Вот пример задачи и решения:

    • У дракона есть 500 грамм золота и 10 килограмм серебра. Каково соотношение золота к серебру в сокровищнице дракона?
    • Граммы и килограммы — разные единицы измерения, их нужно преобразовать. 1 килограмм = 1000 грамм, соответственно, 10 килограмм = 10 килограмм x 1000 грамм/1 килограмм = 10 x 1000 грамм = 10 000 грамм.
    • У дракона в сокровищнице 500 грамм золота и 10 000 грамм серебра.
    • Соотношение золота к серебру равно: 500 грамм золота/10 000 грамм серебра = 5/100 = 1/20.
  3. Изображение с названием Calculate Ratios Step 9

    3

    Записывайте единицы измерения после каждой величины. В текстовых задачах гораздо проще распознать ошибку, если записывать единицы измерения после каждого значения. Помните, что величины с одними и теми же единицами измерения в числителе и знаменателе сокращаются. Сократив выражение, вы получите верный ответ.

    • Пример: дано 6 коробок, в каждой третьей коробке находится 9 шариков. Сколько всего шариков?
    • Неверно: 6 коробок x 3 коробки/9 шариков = … Стоп, ничего нельзя сократить. Ответ будет таким: «коробки x коробки / шарики». Он не имеет смысла.
    • Верно: 6 коробок x 9 шариков/3 коробки = 6 коробок * 3 шарика/1 коробку = 6 коробок * 3 шарика/1 коробку = 6 * 3 шарика/1 = 18 шариков.

    Реклама

Источники

Об этой статье

Эту страницу просматривали 225 460 раз.

Была ли эта статья полезной?

Добавить комментарий