Функция f(x) называется непрерывной в точке х = а если:
1) она определена в этой точке;
2) существует предел функции в этой точке
3) значение предела равно значению функции в точке х = а, т.е.
Если одно из условий нарушается то функция называется разрывной в точке х = а, а сама точка х = а называется точкой разрыва. Все элементарные функции являются непрерывными на интервалах определенности.
Классификация точек разрыва
Точка х0 называется точкой разрыва первого рода функции у = f(x) если существуют конечные односторонние пределы справа
и слева
.
Если, кроме этого, выполняется хотя бы одно из условий
то функция в точке х = а имеет неустранимый разрыв первого рода.
Если пределы равны, однако функция не существует
то имеем устранимый разрыв первого рода.
Точка х0 называется точкой разрыва второго рода функции у= f(x) если граница справа или слева не существует или бесконечна.
Скачком функции в точке разрыва х = х0 называется разность ее односторонних границ
если они разные и не равны бесконечности.
При нахождении точек разрыва функции можно руководствоваться следующими правилами:
1) элементарная функция может иметь разрыв только в отдельных точках, но не может быть разрывной на определенном интервале.
2) элементарная функция может иметь разрыв в точке где она не определена при условии, что она будет определена хотя бы с одной стороны от этой точки.
3) Неэлементарные функция может иметь разрывы как в точках где она определена, так и в тех где она определена.
Например, если функция задана несколькими различными аналитическими выражениями (формулами) для различных интервалов, то на границе стыка может быть разрывной.
Рассмотрим несколько задач по данной теме.
Задача 1.
Найти точки разрыва функции
а)
Решение:
Функция определена во всех точках кроме тех где знаменатель обращается в нуль x = 1, x = 1. Область определения функции следующая
Найдем односторонние пределы в точках разрыва
При нахождении односторонних границ подобного вида достаточно убедиться в знаке функции и в том, что знаменатель стремится к нулю. В результате получим границу равную бесконечности или минус бесконечности.
Поскольку в точках x = 1, x = -1 функция имеет бесконечные односторонние пределы, то аргументы являются точками разрыва второго рода. График функции приведен на рисунке ниже
——————————————————-
б)
Решение:
Задача достаточно простая. В первую очередь находим нули знаменателя
Таким образом функция определена на всей действительной оси за исключением точек , которые являются точками разрыва. Вычислим односторонние пределы справа и слева
Пределы бесконечны поэтому, по определению, имеем точки разрыва второго рода.
Из графиков приведенных функций видим что для ряда из них отыскания точек разрыва сводится до нахождения вертикальных асимптот. Но бывают функции которые и без вертикальных асимптот имеют разрывы первого или второго рода.
——————————————————-
в)
Решение:
Заданная функция непрерывна на всей числовой оси кроме точки x = -3. Вычислим односторонние границы в этой точке
Они различаются по значениям, однако есть конечными. Итак точка x = -3 является неустранимой точкой разрыва І рода.
——————————————————-
Задача 2.
Найти точки разрыва функции если они существуют. Вычислить скачок функции в точке разрыва. Построить график функции.
а)
Решение:
Для заданной функции точка x = 2 является точкой разрыва. Найдем предел функции , чтобы определить характер разрыва
По определению, точка x = 2 является неустранимой точкой разрыва первого рода. Вычислим скачок функции при x=2
График функции на интервале который нас интересует приведен далее
——————————————————-
б)
Решение:
Неэлементарная функция y (x) определена для всех положительных значений аргумента. Точки которые разбивают функцию на интервалы могут быть разрывами. Для проверки найдем соответствующие пределы
Поскольку предел функции в точке x = 2 равен значению функции в этой точке то функция – непрерывная.
Отсюда также следует, что для непрерывной функции скачок равен 6-6 = 0.
Исследуем на непрерывность вторую точку
По определению функция в точке x = 2 имеет неустранимый разрыв І рода.
Прыжок функции равен 29 – (- 3) = 31.
По условию задания построим график функции.
Из приведенного материала Вы должны научиться находить разрывы первого и второго рода, а также различать их. Для этого подобрано немного примеров, которые в полной мере раскрывают все важные вопросы темы. Все остальное сводится к нахождению простых односторонних пределов и не должно быть для Вас сложным.
Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.
Непрерывность функции в точке
Функция f(x) является непрерывной в точке x0, если предел слева равен пределу справа и совпадает со значением функции в точке x0, т.е.: limx→x0-0f(x)=limx→x0+0f(x)=f(x0)
Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.
Дана функция f(x)=16(x-8)2-8. Необходимо доказать ее непрерывность в точке х0= 2.
Решение
В первую очередь, определим существование предела слева. Чтобы это сделать, используем последовательность аргументов хn, сводящуюся к х0 =2·(хn<2). Например, такой последовательностью может быть:
-2, 0, 1, 112, 134, 178, 11516,…, 110231024,…→2
Соответствующая последовательность значений функций выглядит так:
f(-2); f(0); f(1); f112; f134; f178; f11516;…; f110231024;…==8.667; 2.667; 0.167; -0.958; -1.489; -1.747; -1.874;…;-1.998;…→-2
на чертеже они обозначены зеленым цветом.
Достаточно очевидно, что такая последовательность сводится к -2, значит limx→2-016(x-8)2-8=-2.
Определим существование предела справа: используем последовательность аргументов хn, сводящуюся к х0= 2 (хn>2). Например, такой последовательностью может быть:
6, 4, 3, 212, 214, 218, 2116,…, 211024,…→2
Соответствующая последовательность функций:
f(6); f(4); f(3); f212; f214; f218; f2116;…; f211024;…==-7.333; -5.333; -3.833; -2.958; -2.489; -2.247; -2.247; -2.124;…; -2.001;…→-2
на рисунке обозначена синим цветом.
И эта последовательность сводится к -2, тогда limx→2+016(x-8)2-8=-2.
Действиями выше было показано, что пределы справа и слева являются равными, а значит существует предел функции f(x)=16x-82-8 в точке х0= 2, при этом limx→216(x-8)2-8=-2.
После вычисления значения функции в заданной точке очевидно выполнение равенства:
limx→2-0f(x)=limx→2+0f(x)=f(2)=16(2-8)2-8=-2 что свидетельствует о непрерывности заданной функции в заданной точке.
Покажем графически:
Ответ: Непрерывность функции f(x)=16(x-8)2-8 в заданной части доказано.
Устранимый разрыв первого рода
Функция имеет устранимый разрыв первого рода в точке х0, когда пределы справа и слева равны, но не равны значению функции в точке, т.е.:
limx→x0-0f(x)=limx→x0+0f(x)≠f(x0)
Задана функция f(x)=x2-25x-5. Необходимо определить точки ее разрыва и определить их тип.
Решение
Сначала обозначим область определения функции: D(f(x))⇔Dx2-25x-5⇔x-5≠0⇔x∈(-∞; 5)∪(5; +∞)
В заданной функции точкой разрыва может служить только граничная точка области определения, т.е. х0= 5. Исследуем функцию на непрерывность в этой точке.
Выражение x2-25x-5 упростим: x2-25x-5=(x-5)(x+5)x-5=x+5.
Определим пределы справа и слева. Поскольку функция g(x)=x+5 является непрерывной при любом действительном x, тогда:
limx→5-0(x+5)=5+5=10limx→5+0(x+5)=5+5=10
Ответ: пределы справа и слева являются равными, а заданная функция в точке х0= 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.
Неустранимый разрыв первого рода
Неустранимый разрыв первого рода также определяется точкой скачка функции.
Функция имеет неустранимый разрыв первого рода в точке х0, когда пределы справа и слева не являются равными, т.е.: limx→x0-0f(x)≠limx→x0+0f(x). Точка х0 здесь – точка скачка функции.
Задана кусочно-непрерывная функция f(x)=x+4, x<-1,x2+2, -1≤x<12x, x≥1. Необходимо изучить заданную функцию на предмет непрерывности, обозначить вид точек разрыва, составить чертеж.
Решение
Разрывы данной функции могут быть лишь в точке х0=-1 или в точке х0=1.
Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:
- слева от точки х0=-1 заданная функция есть f(x)=x+4, тогда в силу непрерывности линейной функции: limx→-1-0f(x)=limx→-1-0(x+4)=-1+4=3;
- непосредственно в точке х0=-1 функция принимает вид: f(x)=x2+2, тогда: f(-1)=(-1)2+2=3;
- на промежутке (-1; 1) заданная функция есть: f(x)=x2+2. Опираясь на свойство непрерывности квадратичной функции, имеем: limx→-1+0f(x)=limx→-1+0(x2+2)=(-1)2+2=3limx→1-0f(x)=limx→1-0(x2+2)=(1)2+2=3
- в точке х0=-1 функция имеет вид: f(x)=2x и f(1)=2·1=2.
- справа от точки х0 заданная функция есть f(x)=2x. В силу непрерывности линейной функции: limx→1+0f(x)=limx→1+0(2x)=2·1=2
Ответ: в конечном счете мы получили:
- limx→-1-0f(x)=limx→-1+0f(x)=f(-1)=3 – это означает, что в точке х0=-1 заданная кусочная функция непрерывна;
- limx→-1-0f(x)=3, limx→1+0f(x)=2 – таким образом, в точке х0=1 определён неустранимый разрыв первого рода (скачок).
Нам остается только подготовить чертеж данного задания.
Разрыв второго рода (бесконечный разрыв)
Функция имеет разрыв второго рода в точке х0, когда какой-либо из пределов слева limx→x0-0f(x) или справа limx→x0+0f(x) не существует или бесконечен.
Задана функция f(x)=1x. Необходимо исследовать заданную функцию на непрерывность, определить вид точек разрыва, подготовить чертеж.
Решение
Запишем область определения функции: x∈(-∞; 0)∪(0; +∞).
Найдем пределы справа и слева от точки х0= 0.
Зададим произвольную последовательность значений аргумента, сходящуюся к х0 слева. К примеру:
-8; -4; -2; -1; -12; -14;…; -11024;…
Ей соответствует последовательность значений функции:
f(-8); f(-4); f(-2); f(-1); f-12; f-14;…; f-11024;…==-18;-14; -12; -1; -2; -4;…; -1024;…
Очевидно, что эта последовательность является бесконечно большой отрицательной, тогда limx→0-0f(x)=limx→0-01x=-∞.
Тепереь зададим произвольную последовательность значений аргумента, сходящуюся к х0 справа. К примеру: 8; 4; 2; 1; 12; 14;…; 11024;…, и ей соответствует последовательность значений функции:
f(8); f(4); f(2); f(1); f12; f14;…; f11024;…==18; 14; 12; 1; 2; 4;…; 1024;…
Эта последовательность – бесконечно большая положительная, а значит limx→0+0f(x)=limx→0+01x=+∞.
Ответ: точка х0= 0 – точка разрыва функции второго рода.
Проиллюстрируем:
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Непрерывность и точки разрыва функции
Краткая теория
Функция
называется
непрерывной в точке
, если она определена в некоторой
окрестности этой точки и
или
Если для функции
существует
предел
а функция
непрерывна
в точке
, то существует
(то есть знак предела и
знак непрерывной функции можно менять местами).
Если функция
непрерывна
в каждой точке некоторого множества, то она называется непрерывной на этом множестве (в граничных точках множества имеется
в виду непрерывность слева или справа).
Сумма и произведение
конечного числа непрерывных функций есть непрерывная функция.
Частное от деления двух
непрерывных функций есть функция, непрерывная во всех точках, в которых
знаменатель не равен нулю.
Всякая элементарная
функция непрерывна на своем множестве задания.
Пусть функция
определена в
некоторой окрестности точки
, кроме, может быть, самой точки
. Точку
называют точкой разрыва функции
в следующих
случаях:
Точки разрыва
подразделяются на точки разрыва первого и второго рода.
Если в точке разрыва
существуют
оба односторонних предела
и
, то
называется
точкой разрыва первого рода функции
, а разность
–
скачком функции
в
точке
.
Точку
разрыва
первого рода, в которой
, называют
точкой устранимого разрыва.
Если хотя бы один из
пределов
или
не
существует (в частности, равен
или
), то
называется
точкой разрыва второго рода.
Если
– точка
разрыва функции
, то эту функцию называют
разрывной в точке
.
Примеры решения задач
Задача 1
Заданы функция
и два значения аргумента
и
.
Требуется: 1) установить, является ли данная функция непрерывной или разрывной
для каждого из данных значений аргумента; 2) в случае разрыва функции найти ее
пределы в точке разрыва слева и справа; 3) сделать схематический чертеж.
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
При
-в этой точке функция не определена.
Вычисляем пределы:
В точке
функция терпит разрыв 2-го рода
При
Вычисляем пределы:
В точке
функция непрерывна
Задача 2
Исследовать на
непрерывность данные функции. Сделать чертеж.
Решение
Функция задана на трех промежутках различными
аналитическими выражениями. Каждое из этих выражений представляет собой
элементарную функцию, которая является непрерывной на заданном промежутке. Поэтому функция может иметь разрывы лишь в
точках, где меняется ее аналитическое выражение.
Исследуем на непрерывность в каждой из этих точек.
В точке
:
Вычисляем пределы:
В точке
правый
предел функции не равен левому. В точке
функция терпит разрыв 1-го рода.
В точке
:
Вычисляем пределы:
Односторонние пределы в точке
равны между собой и равны значению функции в
этой точке. В точке
функция непрерывна.
Сделаем чертеж.
Нахождение точек разрыва функции является одним из обязательных моментов исследования на непрерывность. Для кого-то это может прозвучать непонятно, а для остальных будет слишком банально.
Но и тем, и другим не стоит делать поспешные выводы: материал этой темы действительно предельно прост, но вместе с тем для успешного решения практических задач потребуется осмыслить и запомнить несколько технических приемов и нюансов.
Как минимум необходимо понимать, что за «зверь» кроется под понятием предела функции. И конечно же, нужно уметь их решать. Не менее полезным станет понимание геометрического смысла, дополненное графиком — большинство задач подобного характера требуют построения чертежа после решения.
Определение точки разрыва
Как уже упоминалось, их поиск напрямую связан с темой непрерывности. Если говорить простым языком, то это не что иное, как координаты графика функции, в которых точки не соединяются между собой. Образуются «рваные области», которые и называют местом разрыва. Вообще, чтобы понять смысл, достаточно всего лишь взглянуть на рисунок:
Он более чем очевидно иллюстрирует определение понятия. Если функция прерывается в X0, то непрерывность в этом месте нарушена одним из двух возможных способов:
- первый род;
- второй род.
Задачи похожего типа, где необходимо находить точки разрыва, могут выступать не только, как один из этапов полного исследования на непрерывность, но и в качестве самостоятельных заданий. Чтобы определить их вид, потребуется отыскать предел для найденных значений. Поэтому, если вы еще не умеете их решать, самое время ненадолго отвлечься, чтобы изучить базовые основы.
К счастью, на практике это не так сложно — самый трудный этап заключается в приведении примера к одному из табличных. Остальные моменты легко запомнить. Не стоит забывать и о большом количестве сервисов, которые в несколько кликов выдадут значение предела любой сложности онлайн.
Классификация точек разрыва.
Точки разрыва первого и второго рода
Если функция не определена, но односторонние пределы имеют конечное значение, то ее относят к случаю первого рода. Который, в свою очередь, может иметь характеристику устранимого или конечного:
- Точки устранимого разрыва функции. Значения вычислений обоих пределов для них равны. Но также имеется возможность «исправить ситуацию»: нахождения между двумя координатами такой, левый и правый пределы которой будут одинаковы, а сама она — соединит «порванный» участок, сделав график непрерывным.
-
Точки конечного разрыва первого рода — скачок функции. Пределы могут быть вычислены, но в то же время не равны друг другу, и поэтому доопределение уравнения невозможно. Разница первого и второго называется скачком.
- Точки разрыва второго рода отличаются тем, что вычисляемые пределы не просто различны по значению, но результат хотя бы одного из них обязательно должен быть равен бесконечности или несуществующему числу.
Как найти точки разрыва функции
Если в условиях задачи не были даны координаты проверяемого отрезка, то процесс решения делится на несколько этапов. Для начала нужно найти область определенных значений, с которой в дальнейшем пойдет работа. После это вычисляются односторонние пределы функции. Полученные результаты необходимо будет сравнить, чтобы однозначно определить род и характеристику разрыва.
Рассмотрим более подробно каждый из этих моментов на примере нахождения нужных нам точек у конкретного примера f (y)=(y² – 25)/(y – 5):
- Областью определения называют множество значений, в котором существует функция. Здесь не нужны никакие сложные вычисления, достаточно взять лишь знаменатель. Если y=5, то он будет (5−5)=0 и, как всем известно, делить на него нельзя. Таким образом, получаем область допустимых y ∈ (-∞; 5) ∪ (5; +∞) и предполагаем, что наша y = 5 является точкой разрыва.
- Вычисление односторонних пределов. Это самая сложная для учеников часть, т. к. пределы не всегда бывают удобными для вычисления, да не все на них «собаку съели». Но в этом случае функцию можно значительно упростить еще до начала вычисления: f (y) = (y ²-25)/(y — 5) = ((y-5)(y+5)) /(y — 5) = y+5. Никогда не пренебрегайте такой возможностью, если она есть. Заметим, что новая функция непрерывна при любом численном значении, т. ч. по всем математическим правилам пределы будут равны: lim (y + 5) = 5 + 5 = 10.
- Проверяя совпадение результатов, мы выяснили, что левый и правый предел функции в точке y=5 одинаковые. Но вместе с тем функция f(y) не может быть определена в этой координате, иначе ее знаменатель обращается в ноль, что невозможно по условиям. Следовательно, она действительно является разрывом, а именно: устранимым и первого рода.
Видео
Из этого видео вы узнаете, как исследовать непрерывность функции.
Содержание:
- Определение точки разрыва
- Точка разрыва первого рода
- Точка разрыва второго рода
- Точка устранимого разрыва
- Примеры решения задач
Определение точки разрыва
Определение
Точка $a$, в которой нарушено хотя бы одно
из трех условий непрерывности функции, а именно:
- функция $f(x)$ определена в точке и ее окрестности;
- существует конечный предел функции $f(x)$
в точке $a$; - это предел равен значению функции в точке $a$,
т.е. $lim _{x rightarrow a} f(x)=f(a)$
называется точкой разрыва функции.
Пример
Функция $y=sqrt{x}$ не определена в точке
$x=-1$, а значит, эта точка является точкой
разрыва указанной функции.
Точка разрыва первого рода
Определение
Если в точке $a$ существуют конечные
пределы $f(a-0)$ и
$f(a+0)$, такие, что
$f(a-0) neq f(a+0)$, то точка
$a$ называется точкой разрыва первого рода.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Функция $f(x)=left{begin{array}{l}{0, x>1} \ {1, x leq 1}end{array}right.$ в точке
$x=1$ имеет разрыв первого рода, так как
$f(1-0)=1$, а
$f(1+0)=0$
Точка разрыва второго рода
Определение
Если хотя б один из пределов $f(a-0)$ или
$f(a+0)$ не существует или равен бесконечности, то
точка $a$ называется точкой разрыва второго рода.
Пример
Для функции $y=frac{1}{x}$ точка
$x=0$ – точка разрыва второго рода, так как
$f(0-0)=-infty$ .
Точка устранимого разрыва
Определение
Если существуют
левый и правый пределы функции в точке и они равны друг другу, но не совпадают со значением
функции $f(x)$ в точке
$a$:
$f(a) neq f(a-0)=f(a+0)$ или функция
$f(x)$ не определена в точке
$a$, то точка
$a$ называется точкой устранимого разрыва.
Пример
Рассмотрим функцию $f(x)=left{begin{array}{l}{3 x+1, x lt 0} \ {1-4 x, x>0} \ {e^{2}, x=0}end{array}right.$ .
Найдем односторонние пределы и значение функции в точке $x=0$:
$f(0)=e^{2}$
$f(0-0)=lim _{x rightarrow 0-} f(x)=lim _{x rightarrow 0-}(3 x+1)=1$
$f(0+0)=lim _{x rightarrow 0+} f(x)=lim _{x rightarrow 0+}(1-4 x)=1$
Так как $f(0-0)=f(0+0)$ и не равны значению функции в
точке, то точка $x=0$ – точка устранимого разрыва.
Примеры решения задач
Пример
Задание. Исследовать функцию $f(x)=left{begin{array}{l}{x^{2}, x lt 1} \ {(x-1)^{2}, 1 leq x leq 2} \ {3-x, x>2}end{array}right.$ на непрерывность.
Решение. Рассматриваемая функция определена и
непрерывна на промежутках
$(-infty ; 1)$,
$(1 ; 2)$ и
$(2 ;+infty)$, на которых она задана непрерывными
элементарными функциями $y_{1}(x)=x^{2}$,
$y_{2}(x)=(x-1)^{2}$ и
$y_{3}(x)=3-x$ соответственно. А тогда, разрыв возможен
только на концах указанных промежутков, то есть в точках
$x=1$ и
$x=2$ .
Найдем односторонние пределы и значение функции в каждой из точек.
1) Рассмотрим точку $x=1$ . Для нее
$f(1)=left.(x-1)^{2}right|_{x=1}=0$
$f(1-0)=lim _{x rightarrow 1-} f(x)=lim _{x rightarrow 1-} y_{1}(x)=lim _{x rightarrow 1-} x^{2}=1$
$f(1+0)=lim _{x rightarrow 1+} f(x)=lim _{x rightarrow 1+} y_{2}(x)=lim _{x rightarrow 1+}(x-1)^{2}=0$
Так как $f(1-0) neq f(1+0)$ , то в точке
$x=1$ функция терпит разрыв первого рода.
2) Для точки $x=2$ имеем:
$f(2)=left.(x-1)^{2}right|_{x=2}=1$
$f(2-0)=lim _{x rightarrow 2-} f(x)=lim _{x rightarrow 2-} y_{2}(x)=lim _{x rightarrow 2-}(x-1)^{2}=1$
$f(2+0)=lim _{x rightarrow 2+} f(x)=lim _{x rightarrow 2+} y_{3}(x)=lim _{x rightarrow 2+}(3-x)=1$
Так как односторонние пределы и значение функции в этой точке равны, то это означает, что в точке
$x=2$ функция непрерывна.
Ответ. В точке $x=1$ функция
терпит разрыв первого рода, а в точке $x=2$ непрерывна.
Пример
Задание. Исследовать функцию $y=e^{frac{1}{x-1}}$
на непрерывность в точках $x_{1}=1$ и
$x_{2}=0$ .
Решение. 1) Исследуем функцию на
непрерывность в точке
$x_{1}=1$:
$f(1-0)=lim _{x rightarrow 1-} e^{frac{1}{x-1}}=e^{-infty}=0$
$f(1+0)=lim _{x rightarrow 1+} e^{frac{1}{x-1}}=e^{+infty}=infty$
Так как один из односторонних пределов бесконечен, то точка $x_{1}=1$
– точка разрыва второго рода.
2) Для точки $x_{2}=0$ получаем:
$f(0-0)=lim _{x rightarrow 0-} e^{frac{1}{x-1}}=e^{-1}=frac{1}{e}$
$f(0+0)=lim _{x rightarrow 0+} e^{frac{1}{x-1}}=e^{-1}=frac{1}{e}$
и значение функции в точке
$f(0)=e^{frac{1}{x-1}}=frac{1}{e}$
Таким образом, в точке $x_{2}=0$ заданная
функция является непрерывной.
Ответ. $x_{1}=1$
– точка разрыва второго рода, а в точке $x_{2}=0$
функция непрерывна.
Читать дальше: основные теоремы о непрерывности функций.