Техническая механика как найти эпюру

Примеры построения эпюр для решения задач сопротивления материалов, строительной и технической механики со всеми расчетами, подробными пояснениями и видеоуроками.

Примечание: студентам строительных специальностей эпюры изгибающих моментов надо строить на растянутых слоях балки, поэтому положительные значения Mx необходимо откладывать вниз, а отрицательные — вверх от базовой линии.

Сохранить или поделиться с друзьями

Рассмотрим пару упрощенных и несколько максимально подробных примеров построения эпюр внутренних силовых факторов, напряжений и перемещений для всех способов закрепления и нагружения балок, стержней и валов.

Построение эпюр Qy и Mx для консольной балки

Для заданной консольной балки требуется построить эпюры внутренних силовых факторов Qy и Mx.

Решение

Вычерчиваем расчетную схему нагружения балки в масштабе, с указанием числовых значений приложенных нагрузок.

Показываем оси системы координат y-z и обозначаем характерные сечения балки.

Для построения эпюр внутренних силовых факторов консольных балок, опорные реакции можно не определять.

Тогда для расчета значений Qy и Mx необходимо рассматривать противоположную от заделки часть балки, где все внешние усилия известны.

Балка имеет 2 силовых участка.

Рассчитаем, с учетом правил знаков при изгибе, значения внутренних поперечных сил и изгибающих моментов в сечениях балки на каждом силовом участке методом сечений.

На первом участке оба силовых фактора рассчитаны.

Переходим ко второму

Так как эпюра Qy на втором силовом участке не пересекает базовую линию, экстремума на эпюре Mx не будет.

По полученным данным строим эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.

При ручном оформлении решения, эпюры заштриховываются тонкими линиями перпендикулярно базовой (нулевой) линии.

Оформление в электронном виде допускает сплошную однородную заливку площади эпюры.

Проверка построенных эпюр:

  1. по дифференциальным зависимостям
  2. в сечениях балки, где приложены сосредоточенные силы, на эпюре Qy имеются скачки значений на величину соответствующей силы;
  3. в сечениях балки, где приложены изгибающие моменты, на эпюре Mx скачки значений на величину соответствующего момента.

Все условия выполнены, следовательно, эпюры построены верно.

Как строить эпюры для балки на двух опорах

Для заданной расчетной схемы балки на двух шарнирных опорах требуется определить значения и построить эпюры внутренних поперечных сил и изгибающих моментов.

Решение

При построении эпюр для участков балки расположенных между опорами необходимо знать величину хотя бы одной из реакций.

Определение реакций в шарнирных опорах балки

Направим реакции опор, например, вверх

и запишем, с учетом правила знаков, суммы моментов нагрузок приложенных к балке относительно точек на опорах

Из составленных уравнений выражаем и находим реакции

Положительные значения указывают на то, что произвольно заданное направление реакций оказалось верным.

Расчет и построение эпюр

Используя метод сечений и соответствующие правила знаков, рассчитаем по каждому участку значения для построения эпюр.

Балка имеет 2 силовых участка.

На первом участке расчет произведем, рассматривая левую отсеченную часть балки

На втором — правую

Значения поперечной силы Qy на границах участка имеют разные знаки, следовательно, на этом участке, на эпюре Mx будет экстремум.

Определим его:

По полученным данным строим эпюры внутренних поперечных сил и изгибающих моментов.

Алгоритм проверки эпюр показан в решении предыдущей задачи.

Более подробно ход расчетов и построения эпюр для балки с тремя силовыми участками рассмотрен в следующих задачах.

Подробные примеры построения эпюр

При растяжении-сжатии

Примеры построения эпюр внутренних продольных сил, нормальных напряжений и линейных перемещений для стержней при их растяжении и сжатии.

  • эпюра внутренних продольных сил
  • эпюра нормальных напряжений в стержне
  • построение эпюр внутренних сил, напряжений и перемещений для стального бруса
  • построение эпюры внутренних продольных сил для стержня с продольно распределенной нагрузкой
  • расчет напряжений с построением эпюры в стержне заданной формы
  • построение эпюры перемещений сечений стержня

При кручении

Примеры построения эпюр внутренних крутящих моментов и угловых перемещений сечений вала при кручении.

  • Построение эпюры крутящих моментов для вала
  • Построение эпюр крутящих моментов и углов закручивания сечений вала

Построение эпюр при изгибе

Примеры построения эпюр внутренних поперечных сил и изгибающих моментов, нормальных и касательных напряжений для балок и рам при изгибе.

Эпюры внутренних силовых факторов

  • Построение эпюр поперечных сил Qy и изгибающих моментов Mx для балки (3 участка)
  • Эпюра внутренних поперечных сил
  • Эпюра внутренних изгибающих моментов балки
  • Построение эпюр для рамы
  • Проверка эпюр внутренних силовых факторов в рамах

Эпюры напряжений

  • эпюра нормальных напряжений двутавра
  • эпюра касательных напряжений для двутавра
  • эпюра нормальных напряжений прямоугольного сечения

Видеоурок расчетов для построения эпюр внутренних силовых факторов для балки:

Другие видео

Другие примеры решения задач >

Порядок построения эпюр

В рассмотренных выше примерах для построения эпюр выполняется следующая последовательность действий:

  1. Вычерчивается (в масштабе) расчетная схема элемента с указанием всех размеров и приложенных внешних нагрузок;Расчетная схема балки
    Расчетная схема балки
  2. Обозначаются характерные сечения бруса;
  3. Определяются опорные реакции;Опорные реакции балки
    Опорные реакции балки
  4. Рассматриваемый элемент разбивается на силовые участки;Обозначение силовых участков
    Обозначение силовых участков
  5. Для каждого силового участка выбирается рассматриваемая часть бруса (балки) Выбранная часть балки
    Выбранная часть балки
    и записываются выражения для рассчитываемых внутренних силовых факторов, напряжений или перемещений;Выражения для расчета поперечной силы в сечении балки
    Выражения для расчета поперечной силы в сечении балки
  6. Рассчитываются значения на границах участков. В случаях, когда переменная в выражении имеет вторую или более степень можно дополнительно определить значение в середине участка;
  7. В некоторых случаях необходимо определять экстремумы эпюр;
  8. После расчета всех значений выполняется построение эпюр.Эпюры поперечных сил и изгибающих моментов для балки
    Эпюры поперечных сил и изгибающих моментов для балки

После построения эпюр желательно выполнять их проверку.

В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.

В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.

Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.

Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.

Поперечные силы и изгибающие моменты

При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).

Схема нагружения балки
Поперечные силы и изгибающие моменты в произвольном сечении балки

Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.

Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.

Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!

Обозначения поперечных сил и изгибающих моментов

Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.

Например, если выбрать следующие обозначения для координатных осей:

Обозначения поперечных сил и изгибающих моментов с привязкой к координатным осям

То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.

Расчётная схема балки

Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:

Простая схема балки, свободная от нагрузок

А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.

К примеру, балка может иметь прямоугольное поперечное сечение:

Балки имеющая прямоугольную форму поперечного сечения

Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.

Правила знаков для поперечных сил и изгибающих моментов

В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).

Расчётная схема

Расчётная схема консольной балки загруженная сосредоточенным усилием

Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).

Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.

Правило знаков для поперечных сил

Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
ПО часовой стрелке, то её нужно учесть с «плюсом»;

Правило – положительное значение поперечной силы

ПРОТИВ часовой стрелки — учитываем её с «минусом».

Правило – отрицательное значение поперечной силы

Таким образом, для нашего случая, поперечная сила в сечении A будет равна:

Правило знаков для изгибающих моментов

Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.

Схема показывающая верхние и нижние волокна консольной балки

Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.

Схема деформированной балки с указанием растянутых и сжатых волокон

В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.

На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
верхние волокна, то учитываем его с «минусом»

Правило – отрицательное значение изгибающего момента

нижние волокна, то нужно учесть его с «плюсом».

Правило – положительное значение изгибающего момента

Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.

Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:

Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:

Отрицательное значение изгибающего момента – правило
Положительное значение изгибающего момента – правило

Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:

Как построить эпюры поперечных сил и изгибающих моментов ?

В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.

Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉

Построение эпюр для консольной балки

В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:

Расчётная схема — консольной балки, загруженной силами и моментом

Будем рассчитывать балку справа налево.

Рассмотрим первый участок

Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.

Указание расчётного сечения на первом участке

Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.

Поперечные силы на первом участке

Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:

Как видишь, поперечная сила будет постоянна на первом участке:

Уже можем отразить это на эпюре поперечных сил:

Построение эпюры поперечных сил на первом участке

Изгибающие моменты на первом участке

Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:

Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:

Откладываем полученные значения:

Построение эпюры изгибающих моментов на первом участке

Расчёт второго участка

Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.

Указание второго расчётного сечения

Поперечные силы на втором участке

Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:

Теперь можем показать окончательную эпюру поперечных сил:

Построение окончательной эпюры поперечных сил

Изгибающие моменты на втором участке

Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:

Вычисляем значения на границах второго участка:

Показываем окончательную эпюру изгибащих моментов:

Построение окончательной эпюры изгибающих моментов

Проверка построенных эпюр

Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.

Определение реакций в жёсткой заделке

Первым делом, нам потребуется определить реакции в заделке:

Обозначение реакций в жёсткой заделке на расчётной схеме

Расчёт эпюр поперечных сил и изгибающих моментов

Рассчитываем все участки теперь слева направо:

Обозначение расчётных сечений для участков балки

Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:

Построение эпюр изгибающих моментов для расчёта балки слева направо

Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:

Схема демонстрирующая, что расчёт балки можно выполнять с двух сторон

Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.

Эпюра моментов со стороны растянутых или сжатых волокон

По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.

Причем сама эпюра была построенна со стороны растянутых волокон:

Эпюра изгибающих моментов построенная со стороны растянутых волокон

Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:

Эпюра изгибающих моментов построенная со стороны сжатых волокон

Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.

Учёт распределённой нагрузки

Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.

Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:

Расчётная схема консольной балки, загруженной распределённой нагрузкой

Определение поперечной силы и изгибающего момента в сечении A

Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.

После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:

Сворачивание распределённой нагрузки до сосредоточенной силы

Тогда поперечная сила QA будет равна:

Изгибающий момент Mизг, A будет равен:

Расчёт эпюр поперечных сил и изгибающих моментов

Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:

Обозначение расчётного сечения для написания уравнений

Уравнение для поперечных сил будет следующее:

Рассчитаем значения на эпюре поперечных сил:

Построение эпюры поперечных сил для консольной балки от распределённой нагрузки

Уравнение для изгибающих моментов будет следующее:

Тогда значения на эпюре будут такими:

Откладывание ординат для построения эпюры изгибающих моментов

На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.

Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:

Построение эпюры изгибающих моментов со стороны растянутых волокон для консольной балки от распределённой нагрузки

Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:

Построение эпюры изгибающих моментов со стороны сжатых волокон для консольной балки от распределённой нагрузки

Построение эпюр для двухопорной балки

А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:

Расчётная схема двухопорной балки

Определим реакции опор:

Расчётная схема двухопорной балки с обозначением реакций в опорах

Рассчитываем первый участок:

Строим эпюры на первом участке:

Построение эпюр сил и моментов на первом участке

Определение экстремума на эпюре моментов

Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.

Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:

Отсюда найти значение координаты:

Затем подставить это значение в уравнение для изгибающих моментов:

Теперь можем указать экстремум на эпюре:

Указание экстремума на эпюре изгибающих моментов

Расчет эпюр на остальных участках

Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:

Определение экстремума:

Построение эпюр поперечных сил и изгибающих моментов для двухопорной балки

Оценка правильности построенных эпюр поперечных сил и изгибающих моментов

И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.

Вот несколько признаков, правильно построенных эпюр:

  • На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
  • На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
  • Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
  • Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.

Сопротивление материалов

Построение эпюр в сопромате



Прикладное значение науки сопротивление материалов заключается в возможности определения основных критериев работоспособности деталей машин и различных конструкций – прочности, деформации и устойчивости.
как правильно строить эпюры
Применяя метод сечений в сочетании с приемами статики и других разделов прикладной механики, можно определить напряжения, возникающие в том или ином сечении бруса (детали, элемента конструкции), и, исходя из анализа полученного результата, сделать выводы о работоспособности этого бруса при приложении к нему расчетных нагрузок.
Именно напряжение является основным фактором, влияющим на прочностные характеристики элемента конструкции, а также его способность противостоять деформации. По этой причине в сопромате главной задачей, чаще всего, является определение напряжений, возникающих в том или ином сечении детали или элемента конструкции.

Для удобства анализа напряженности отдельных участков и сечений конструкции (бруса) используют графическое изображение нагрузок и напряжений в каждом сечении. Это позволяет визуально анализировать распределение нагрузок и напряжений по всей длине бруса, определять при этом наиболее нагруженные (критические) участки и сечения. Такие графические изображения нагрузок, напряжений, а также деформаций элементов конструкций называют эпюрами.

При анализе степени напряженности и деформирования элемента конструкции (детали, бруса) наиболее часто производят построение следующих типов эпюр:

  • эпюры внутренних сил (продольных или поперечных), действующих в сечениях бруса;
  • эпюры вращающих (крутящих) моментов;
  • эпюры изгибающих моментов;
  • эпюры напряжений (нормальных или касательных);
  • эпюры перемещений (удлинений, укорочений, прогибов и т. п.).

Иногда на одной эпюре показываются несколько внутренних силовых факторов (эпюра продольных и поперечных сил, эпюра изгибающего и вращающего моментов), но такие эпюры при сложных нагрузках и переменных сечениях бруса сложны для чтения.

Как упоминалось выше, наиболее важную информацию о прочностных характеристиках элемента конструкции (бруса), т. е. способности противостоять разрушению, можно получить, используя эпюры напряжений, а информацию о степени деформации под действием расчетной нагрузки – по эпюрам перемещений.
Эпюры внутренних усилий и моментов в большинстве случаев не дают полной информации о степени напряженности и деформирования отдельных сечений и участков бруса, а являются промежуточным звеном при построении эпюр напряжений и перемещений, особенно если брус имеет ступенчатую форму или переменное поперечное сечение по длине.

эпюра напряжений

***

Правила построения эпюр

При построении эпюр придерживаются определенных стандартных правил, позволяющих одинаково читать, истолковывать и анализировать эпюру всем участникам процесса конструирования изделия.

Построение эпюры начинают с изображения нулевой линии, которая символизирует линию бруса в ненапряженном состоянии. При этом, если брус имеет сложную пространственную форму, нулевая линия эпюры повторяет контуры центральной (осевой) линии бруса, и имеет такую же пространственную форму.

Нулевую линию эпюры обозначают названием и нулевым символом. Слева от нулевой линии указывается название эпюры (эпюра сил, моментов, напряжений и т. п.), справа от нулевой линии ставится цифра «0». При указании называния эпюры обычно используют символ изображаемой нагрузки, например, внутренние продольные силы чаще всего обозначаются буквой «N», поперечные – буквой «Q», эпюры изгибающих моментов – буквами «Mиз», эпюры вращающих моментов – буквами «Т» или «Mкр», эпюры напряжений – буквами «σ» или «τ» и т. п. Рядом с буквенным названием эпюры (или под ним) указывается единица измерения (ньютон, мегапаскаль, мм и т. п.).

Следующий этап построения эпюры – определение границ силовых участков бруса, т. е. таких участков, где внутренний силовой фактор в сечениях или деформация бруса изменяются по одной закономерности (или остаются постоянными). Как правило, границами силовых участков являются сечения, где приложена внешняя нагрузка или (и) площадь поперечного сечения бруса изменяется. В некоторых случаях, при построении эпюр брусьев сложной объемной формы, границы участков определяют аналитически. Границы силовых участков обозначаются тонкими вертикальными линиями, проведенными от изображения бруса через все эпюры.

Для оптимальной наглядности графика эпюры важно правильно выбрать масштаб изображаемого силового фактора, напряжения или деформации. Если масштаб окажется слишком мелким – эпюра будет трудна для чтения и анализа, если слишком крупным – она займет много места на чертеже.
Если учесть, что для одного бруса выполняют, как правило, несколько эпюр, расположенных одна под другой, то крупный масштаб не позволит выполнить построение эпюр на одном листе.
Для правильного выбора масштаба эпюры предварительно следует просчитать значение отображаемого фактора по всем контрольным сечениям бруса, и после этого определиться с масштабом.
Если, например, в результате расчетов окажется, что вся эпюра займет положительную область (над нулевой линией), то при построении графика эпюры это следует учесть.



Положительные значения фактора откладываются вверх от нулевой линии, отрицательные – вниз. Если на каком-либо участке силовой фактор равен нулю, эпюра совпадает с нулевой линией по всей длине этого участка. После построение внешнего контура эпюры на контрольных сечениях проставляются значения фактора (обычно на внешних углах эпюры), при этом знак фактора (плюс или минус) не указываются.
На положительной области (в самой широкой части) ставится знак «+» в кружке, а на отрицательной области – знак «» в кружке (см. примеры построения эпюр). Иногда знаки «+» и «» на эпюре указываются сверху и снизу цифры «0» (справа нулевой линии), тогда на площади графика эпюры эти знаки (в кружках) не ставятся.

По окончании построения эпюры по ее площади проводят тонкие вертикальные линии через равные промежутки. Эти линии символизируют сечения бруса. Иногда, в случае построения сложной пространственной эпюры, линии выполняют не вертикально, а в соответствии с проекционным направлением участка на графике эпюры.

построение эпюр в сопромате

***

Определение знака фактора на эпюре

При построении эпюр внутренних силовых факторов или деформаций необходимо правильно определять знак фактора на данном силовом участке бруса. Для этого следует пользоваться следующими общепринятыми правилами:

  • сжимающая продольная нагрузка считается отрицательной, растягивающая – положительной;
  • поперечная сила Q, направленная вниз считается отрицательной, вверх – положительной;
  • вращающий (крутящий) момент считается положительным, если он вращает “отсеченную” часть бруса против часовой стрелки, отрицательным – по часовой;
  • эпюра изгибающих моментов строится в соответствии с «правилом дождя». Это правило используется следующим образом: если в результате деформации от изгибающего момента исследуемое сечение прогнулось вниз, значит, эпюра имеет положительное значение (образовалась «воронка», в которой может задерживаться «дождевая вода»); если же балка прогнулась вверх, то эпюра имеет отрицательное значение («вода» будет скатываться с балки). Более подробно о знаках эпюр поперечных сил и изгибающих моментов здесь.

***

Особенности построения эпюр поперечных сил и изгибающих моментов

Для облегчения построения эпюр и контроля правильности графика следует запомнить ряд правил, вытекающих из теоремы Журавского:

На участке, где равномерно распределенная нагрузка q отсутствует, эпюра поперечных сил Q представляет собой прямую линию, параллельную нулевой линии (оси бруса), а эпюра изгибающих моментов Mиз – наклонную прямую.

В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть ступенчатый скачок на величину этой силы, а на эпюре Mиз – излом (изменение направления графика).

На участке действия равномерно распределенной нагрузки q эпюра Q представляет собой наклонную прямую, а эпюра Mиз – параболу, обращенную выпуклостью навстречу стрелкам, изображающим направление распределенной нагрузки.

Если эпюра Q на наклонном участке в каком-либо сечении пересекает нулевую линию эпюры, то в этом сечении на эпюре изгибающих моментов Mиз будет иметь экстремальное значение (минимальное или максимальное).

Если на границе действия распределенной нагрузки нет сосредоточенных сил, то наклонный участок эпюры Q соединяется с горизонтальным без “ступеньки”, а параболический участок эпюры Mиз соединяется с наклонным участком плавно, без излома.

В сечениях, где к брусу приложены сосредоченные пары сил, на эпюре Mиз будут иметь место ступенчатые скачки на величину действующих внешних моментов, а эпюра Q изменения не претерпевает (приложенные к брусу изгибающие моменты не влияют на эпюру поперечных сил).

***

Примеры построения эпюр

правила построения эпюр в сопромате

***

Материалы раздела “Сопротивление материалов”:

  • Основные понятия и определения
  • Растяжение и сжатие
  • Смятие. Контактные напряжения
  • Деформация сдвига (среза)
  • Деформация кручения
  • Деформация изгиба



Правильные ответы на вопросы Теста № 7

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

3

2

3

2

2

3

1

2

1

2

Методика построения эпюр изгибающих моментов, поперечных и продольных сил

Заказать решение           Способ оплаты

Видео: Что такое внутренние силовые факторы. Что такое эпюры внутренних силовых факторов

 

1. Виды опорных закреплений

С технической точки зрения опорные закрепления конструкций весьма разнообразны. При решении задач сопромата, все многообразие существующих опорных устройств схематизируется в виде ряда основных типов опор, из которых

наиболее часто встречаются: шарнирно-подвижнаяопора (возможные обозначения для нее представлены на рис.1,а), шарнирно-неподвижная опора (рис.1,б) и жесткое защемление, или заделка (рис.1,в).

виды опор

Рис. 1

В шарнирно-подвижной опоре возникает одна опорная реакция, перпендикулярная опорной плоскости. Такая опора лишает опорное сечение одной степени свободы, то есть препятствует смещению в направлении опорной плоскости, но допускает перемещение в перпендикулярном направлении и поворот опорного сечения.
В шарнирно-неподвижной опоре возникают вертикальная и горизонтальная реакции. Здесь невозможны перемещения по направлениям опорных стержней, но допускается поворот опорного сечения.
В жесткой заделке возникают вертикальная и горизонтальная реакции и опорный (реактивный) момент. При этом опорное сечение не может смещаться и поворачиваться.При расчете систем, содержащих жесткую заделку, возникающие опорные реакции можно не определять, выбирая при этом отсеченную часть так, чтобы заделка с неизвестными реакциями в нее не попадала. При расчете систем на шарнирных опорах реакции опор должны быть  определены обязательно. Уравнения  статики, используемые для этого, зависят от вида системы (балка, рама и др.) и будут приведены в соответствующих разделах настоящего пособия.

2. Построение эпюр продольных сил Nz

Продольная сила в сечении численно равна алгебраической сумме проекций всех сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось стержня.

Правило знаков для Nz: условимся считать продольную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части стержня, вызывает растяжение и отрицательной – в противном случае.

Пример 1.Построить эпюру продольных сил для жестко защемленной балки (рис.2).

Порядок расчета:

1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.
2. Определяем продольную силу Nz  в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

эпюра продольных сил

По найденным значениям строим эпюру Nz. Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные – под осью.

эпюра продольных сил

рис. 2

3. Построение эпюр крутящих моментов Мкр.

Крутящий момент в сечении численно равен алгебраической сумме внешних моментов, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси Z.

Правило знаков для Мкр: условимся считать крутящий момент в сечении положительным, если при взгляде на сечение со стороны рассматриваемой отсеченной части внешний момент виден направленным против движения часовой стрелки и отрицательным – в противном случае.

Пример 2.Построить эпюру крутящих моментов для жестко защемленного стержня (рис.3,а).

Порядок расчета.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил.

1.Намечаем характерные сечения.
2.Определяем крутящий момент в каждом характерном сечении.

эпюра

По найденным значениям строимэпюру Мкр (рис.3,б).

рис. 3

4. Правила контроля эпюр Nz и Мкр.

Для эпюр продольных сил и крутящих моментов характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

1. Эпюры  Nz и Мкр всегда прямолинейные.

2. На участке, где нет распределенной нагрузки, эпюра Nz(Мкр) – прямая, параллельная оси, а на участке под распределенной нагрузкой – наклонная прямая.

3. Под точкой приложения сосредоточенной силы на эпюре Nz обязательно должен быть скачок на величину этой силы, аналогично под точкой приложения сосредоточенного момента на эпюре Мкр будет скачок на величину этого момента.

5. Построение эпюр поперечных сил Qy и изгибающих моментов Mx в балках

Стержень, работающий на изгиб, называется балкой. В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора – поперечная сила  Qy и изгибающий момент Mx .

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной – в противном случае.

Схематически это правило знаков можно представить в виде

эпюра изгибающих моментов

Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной – в противном случае.

Схематически это правило знаков можно представить в виде:

эпюра изгибающих моментов

Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

6. Консольные балки

При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

Пример 3.Построить эпюры Qy и Mx (рис.4).

эпюра изгибающих моментов

рис. 4

Порядок расчета.

1. Намечаем характерные сечения.

2. Определяем поперечную силу Qy в каждом характерном сечении.

поперечная сила

По вычисленным значениям строим эпюру Qy.

3. Определяем изгибающий момент Mx в каждом характерном сечении.

изгибающий момент

По вычисленным значениям строим эпюру Mx, причем, на участке под распределенной нагрузкой эпюра будет криволинейной (квадратная парабола). Выпуклость кривой на этом участке всегда обращена навстречу распределенной нагрузке.

7. Балки на двух опорах

В отличие от консольных балок, при расчете балок на двух шарнирных опорах необходимо сначала определить опорные реакции из уравнений статики, так как и в левую, и в правую отсеченные части для любого сечения, расположенного между опорами, попадает соответствующая реакция.

Для плоской системы число уравнений статики в общем случае равно трем. Если балка загружена только вертикальными нагрузками, то горизонтальная реакция шарнирно-неподвижной опоры равна нулю, и одно из уравнений равновесия обращается в тождество. Таким образом, для определения реакций в опорах шарнирной балки используются два уравнения статики:

Пример 4. Построить эпюры  Qy, Mx для балки с шарнирным опиранием (рис.5).

Порядок расчета.

1. Вычисляем реакции опор.

реакции опор

Проверка:

</p>

2. Намечаем характерные сечения.

В отличие от консольных балок здесь известны обе опорные реакции, поэтому для любого сечения можно рассматривать как левую, так и правую отсеченную часть.

3. Определяем поперечные силы в характерных сечениях.

поперечные силы

Строим эпюру Qy.

4. Определяем изгибающие моменты в характерных сечениях.

изгибающие моменты

эпюра изгибающих моментов и поперечных сил

рис. 5

Строим эпюру Mx.

8. Правила контроля эпюр Qу и Mx

Дифференциальные зависимости между q, Qy, Mx определяют ряд закономерностей, которым подчиняются эпюры Qy и Mx.

Эпюра Qy является прямолинейной на всех участках; эпюра Mx – криволинейная (квадратная парабола) на участке под равномерно распределенной нагрузкой, причем, выпуклость кривой всегда обращена навстречу нагрузке q, и прямолинейная на всех остальных участках.

Под точкой приложения сосредоточенной силы (реакции) на эпюре Qy обязательно должен быть скачок на величину этой силы (реакции). Аналогично, под точкой приложения сосредоточенного момента на эпюре Mx обязателен скачок на величину момента.

Если на участке под распределенной нагрузкой эпюра Qy пересекает ось (Qy=0), то эпюра Mx в этом сечении имеет экстремум.

На участках с поперечной силой одного знака эпюра Mx имеет одинаковую монотонность. Так, при Qy>0 эпюра Mx возрастает слева направо; при  Qy<0 – убывает.

Порядок линии на эпюре Qy всегда на единицу меньше, чем на эпюре Mx. Например, если эпюра Mx – квадратная парабола, то эпюра Qy на этом участке – наклонная прямая; если эпюра Mx – наклонная прямая, то эпюра Qy на этом участке – прямая, параллельная оси; если Mx=const (прямая, параллельная оси), то на этом участке Qy=0.

Заказать решение           Способ оплаты

Задача. Расчет рамы.  Для рамы построить эпюры продольных сил  N, поперечных сил Q и изгибающих моментов М.

2019-02-11_21-15-52

  1. Определим опорные реакции

2019-02-11_21-15-10

2019-02-11_21-20-49

Нанесем значения опорных реакций на расчетную схему.

2019-02-11_21-13-50

2. Строим эпюру продольных сил N методом сечений. Имеем три характерных участка и три сечения на них.

2019-02-11_21-24-39

Правило знаков продольных сил – продольная сила считается положительной, если сила растягивает стержень, и отрицательной, если сила сжимает стержень. Положительные значения откладываем влево от стойки и вверх от ригеля.

2019-02-11_21-26-20

Строим эпюру продольных сил.

2019-02-11_21-27-39

3. Строим эпюру поперечных сил Q методом сечений. Правило знаков – если сила относительно сечения направлена по часовой стрелке, то поперечная сила считается положительной и наоборот. Положительные значения откладываются влево от стоек и вверх от ригеля.

2019-02-11_21-29-28

Строим эпюру поперечных сил

2019-02-11_21-30-30

4. Строим эпюру изгибающих моментов М методом характерных точек. Расставляем точки: А – опора, В,С, — узлы рамы, D – свободный конец, К – середина равномерно распределенной нагрузки (точки экстремума при построении эп.Q не обнаружено). Эпюру М строим на сжатых волокнах (для машиностроительных специальностей), знак не ставим.

2019-02-11_21-32-40

Строим эпюру моментов.

2019-02-11_21-33-26

5. Вырезаем узлы С и В и проверяем их равновесие.

2019-02-11_21-34-33

Узлы находятся в равновесии, значит эпюры построены верно.

Для балки с жесткой заделкой построить эпюры Q и М. 

2019-11-22_17-36-56

Расставляем сечения от свободного конца балки — в этом случае можно построить эпюры, не определяя опорных реакций. Рассматривать в каждом случае будем правую часть — справа от сечения. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 2 участка, 2 сечения.

2019-11-22_17-34-36

Сечение 2-2 проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z2 вправо от сечения до начала участка. Определяем поперечные силы в сечениях. Правило знаков см. — здесь.

2016-09-13-21-38-09-skrinshot-ekrana

Строим эпюру Q.

2019-11-22_17-33-52

Построим эпюру М методом характерных точек. Расставляем точки на балке — это точки начала и конца балки (D,A), сосредоточенного момента (B), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K) — это дополнительная точка для построения параболической кривой.

2019-11-22_17-32-59

Определяем изгибающие моменты в точках. Правило знаков см. — здесь.

2016-09-13-21-48-19-skrinshot-ekrana

Момент в т. В будем определять следующим образом. Сначала определим:

2016-09-13-21-49-16-skrinshot-ekrana

Теперь:

2016-09-13-21-50-11-skrinshot-ekrana

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

2016-09-13-21-51-16-skrinshot-ekrana

Строим эпюру M. Участок АВпараболическая кривая (правило «зонтика»), участок ВDпрямая наклонная линия.

2019-11-22_17-31-51

Для балки определить  опорные реакции и построить эпюры изгибающих моментов (М) и поперечных сил (Q).

2016-09-11-11-11-20-skrinshot-ekrana

  1. Обозначаем опоры буквами А и В и направляем опорные реакции RА и RВ.

2016-09-11-11-15-02-skrinshot-ekrana

Составляем уравнения равновесия.

2016-09-11-11-05-44-skrinshot-ekrana

Проверка

2016-09-11-11-16-10-skrinshot-ekrana

Записываем значения RА и RВ на расчетную схему.

2. Построение эпюры поперечных сил методом сечений. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения.

2016-09-11-11-21-02-skrinshot-ekrana

сеч. 1-1   ход слева.

Сечение проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z1 влево от сечения до начала участка. Длина участка 2 м. Правило знаков для Q — см. здесь.

2016-09-11-11-23-08-skrinshot-ekrana

Строим по найденным значением эпюру Q.

сеч. 2-2   ход справа.

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z вправо от сечения до начала участка. Длина участка 6 м.

2016-09-11-12-13-12-skrinshot-ekrana

Строим эпюру Q.

сеч. 3-3   ход справа.

2016-09-11-11-31-25-skrinshot-ekrana

сеч. 4-4   ход справа.

2016-09-11-11-32-25-skrinshot-ekrana

Строим эпюру Q.

2016-09-11-11-34-19-skrinshot-ekrana

3. Построение эпюры М методом характерных точек.

Характерная точка – точка, сколь-либо заметная на балке. Это точки А, В, С, D, а также точка К, в которой Q=0 и изгибающий момент имеет экстремум. Также в середине консоли поставим дополнительную точку Е, поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

2016-09-11-11-38-47-skrinshot-ekrana

Итак, точки расставлены, приступаем к определению в них  значений изгибающих моментов. Правило знаков — см. здесь.

Участки NA, ADпараболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных ), участки DС, СВпрямые наклонные линии.

2016-09-11-11-43-05-skrinshot-ekrana

Момент в точке D следует определять как слева, так и справа от точки D. Сам момент в эти выражения не входит. В точке D получим два значения с разницей на величину mскачок на его величину.

2016-09-11-11-44-18-skrinshot-ekrana

Теперь следует определить момент в точке К (Q=0). Однако сначала определим положение точки К, обозначив расстояние от нее до начала участка неизвестным х.

2016-09-11-11-46-32-skrinshot-ekrana

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

2016-09-11-11-47-50-skrinshot-ekrana

Но поперечная сила в т. К равна 0, а z2 равняется неизвестному х.

Получаем уравнение:

2016-09-11-11-48-52-skrinshot-ekrana

Теперь, зная х, определим  момент в точке К с правой стороны.

2016-09-11-12-07-29-skrinshot-ekrana

Строим эпюру М. Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

2016-09-11-12-09-52-skrinshot-ekrana

Для заданной схемы консольной балки   требуется построить эпюры поперечной силы  Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м2016-04-03 20-55-51 Скриншот экрана

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции.

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры RA  и опорный момент МA из уравнений равновесия.2016-11-19-19-46-34-skrinshot-ekrana

2. Строим эпюру поперечных сил.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0, в заделеке — величине реакции RA.2016-04-03 21-25-58 Скриншот экрана3. Для построения эпюры изгибающих моментов M составим выражения для их определения на участках. Эпюру моментов построим на растянутых волокнах, т.е. вниз. 2016-04-03 21-52-36 Скриншот экрана

4.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Максимальный изгибающий момент с эпюры М=14 кН·м. Определим осевой момент сопротивления сечения

2016-04-03 21-47-30 Скриншот экрана

Таким образом, подбираем сечение с диаметром 25 см.

Требуется построить эпюры Q и  и подобрать стальную балку двутаврового поперечного сечения при расчетном сопротивлении R=160 МПа.

2014-12-20 19-24-52 Скриншот экрана

1.Определение реакций:

Сумма моментов относительно опор:

Опора А2014-12-20 19-26-02 Скриншот экрана

Опора В:   

2014-12-20 19-26-58 Скриншот экрана

Сумма проекций всех сил на ось У (проверка):

2014-12-20 19-29-32 Скриншот экрана

2.Записываем уравнения Q и M для каждого из участков в общем виде, при этом учитываем знаки.

1) Первый участок:

2014-12-20 19-30-48 Скриншот экрана

2) Второй участок: 

2014-12-20 19-31-46 Скриншот экрана

3) Третий участок: 

2014-12-20 19-32-39 Скриншот экрана

3.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Подобрать стальную балку двутаврового поперечного сечения при R=160 МПа:

С эпюры берем максимальный момент:

2014-12-20 19-34-00 Скриншот экрана

По сортаменту подбираем двутавр № 20 с     2014-12-20 19-34-58 Скриншот экрана

Двутавр можно взять чуть меньше, при условии, что перенапряжение составляет меньше 5%:

2014-12-20 19-36-35 Скриншот экрана

Для заданной балки требуется построить эпюры Q и M, найти Mmax и сделать проектировочный расчет — подобрать деревянную балку круглого поперечного сечения. Расчетное сопротивление материала  Ru=10 МПа. 

2014-12-20 14-42-44 Скриншот экрана

1.Определение реакций:

Сумма проекций всех сил на ось z2014-12-20 14-43-50 Скриншот экрана

Сумма проекций всех сил на ось y2014-12-20 14-44-37 Скриншот экрана

Сумма моментов относительно точки А2014-12-20 14-45-29 Скриншот экрана

После нахождения опорных реакций следует выполнить проверку, использовав уравнение равновесия (сумма моментов относительно любой выбранной точки должна быть равна нулю).

2. Записываем уравнения Q и M для каждого из участков в общем виде, при этом учитываем знаки.

— поперечная сила, считается положительной, если стремится повернуть рассматриваемую часть балки по часовой стрелке.

M— изгибающий момент, считается положительным, если растягивает нижние волокна.

1)Первый участок: 

2014-12-20 14-53-09 Скриншот экрана

2) Второй участок:

2014-12-20 14-54-23 Скриншот экрана

3) Третий участок:

2014-12-20 14-55-25 Скриншот экрана

Следует отметить ,что на втором и третьем участке для построения плавной кривой потребуются дополнительные точки, в которых следует посчитать значение изгибающего момента.

3.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Подберем деревянную балку круглого поперечного сечения при Ru=10 МПа

С эпюры берем максимальный момент и рассчитываем требуемый осевой момент сопротивления, после чего вычисляем необходимый диаметр балки.2014-12-20 14-59-58 Скриншот экрана

Задача 1. Построить эпюры Q и M в балке с шарниром.

2014-11-01 11-14-15 Скриншот экрана

1. Определим опорные реакции. Для определения опорных реакций используем свойство шарнира момент в нем как от левых, так и от правых сил равен 0.

Если рассмотреть левую часть, то в уравнении   2014-11-01 11-15-56 Скриншот экрана    будут присутствовать две неизвестные RА и МА. Значит, следует рассмотреть правую часть (из него найдем RВ).

2014-11-01 11-18-15 Скриншот экрана

Теперь 2014-11-01 11-19-12 Скриншот экрана  из него найдем МА

2014-11-01 11-20-12 Скриншот экрана

Следующее уравнение 2014-11-01 11-21-12 Скриншот экрана из него найдем RА

2014-11-01 11-22-14 Скриншот экрана

2. Строим эпюру Q.

Участок первый — АС, смотрим левую часть

Участок второй — СВ, смотрим правую часть

2014-11-01 11-23-25 Скриншот экрана

3. Строим эпюру М

2014-11-01 11-24-28 Скриншот экрана

Определим  момент в точке, где Q=0 (момент имеет экстремум), это момент в точке К, т.е.  МК , для этого определим положение точки К.

2014-11-01 11-28-16 Скриншот экрана Это уравнение первого участка, на котором находится точка К

в точке К 2014-11-01 11-30-23 Скриншот экрана

Строим эпюры. Задача решена.

Задача 2. Построить эпюры Q и M в балке с шарниром.

2014-11-01 11-32-06 Скриншот экрана

1. Определим опорные реакции. Для определения опорных реакций используем свойство шарнира – момент в нем как от левых, так и от правых сил равен 0.

Если рассмотреть правую часть, то в уравнении     2014-11-01 11-34-26 Скриншот экрана  будут присутствовать две неизвестные  и . Значит, следует рассмотреть левую часть.

2014-11-01 11-37-14 Скриншот экрана

Знак «-» говорит о том, что реакция RВ направлена в обратную сторону.

Проверка:2014-11-01 11-39-22 Скриншот экрана

2. Построение эпюры Q.

Участок первый – ЕА, смотрим левую часть

Участок второй – АС, смотрим левую часть

Участок третий – СВ, смотрим левую часть

Участок четвертый – ВД, смотрим правую часть

2014-11-01 11-48-25 Скриншот экрана

3. Построение эпюры М

2014-11-01 11-50-42 Скриншот экрана

Т.к. точки экстремума на эп.Q не наблюдается, определяем изгибающий момент в середине участка ВД

2014-11-01 11-51-58 Скриншот экрана

Строим эпюры, задача решена.

Задача 1. Построить эпюры внутренних усилий для рамы ( рис.а).  

Дано: F=30кН, q=40 кН/м, М=50кНм, а=1,8м, h=2м.

2014-10-16 22-31-57 Скриншот экрана

Решение.

Для рассматриваемой рамы опорные реакции можно не определять, поскольку будем рассматривать участки, идя от свободных концов рамы к заделке.

Вычислим значения внутренних усилий N, Q и М в характерных сечениях рамы. Правило знаков для поперечных сил Q и изгибающих моментов М такие же,как в балках. Эпюры моментов  построим на сжатых волокнах. Для  продольной N, силы правило знаков: растягивающая сила – положительна, сжимающаяотрицательна.

Участок ВС:     2014-10-16 22-37-07 Скриншот экрана(сжаты нижние волокна).

2014-10-16 22-39-16 Скриншот экрана (сжаты нижние волокна).

Участок DC:  2014-10-16 22-40-57 Скриншот экрана(сжаты верхние волокна). 

Участок СК: 2014-10-16 22-43-50 Скриншот экрана(сжаты левые волокна)

2014-10-16 22-43-50 Скриншот экрана(сжаты левые волокна)

На рисунке  – эпюры нормальных (продольных) сил — (б), , поперечных сил — (в) и изгибающих моментов — (г). 

Проверка равновесия узла С:

2014-10-16 22-53-45 Скриншот экрана

Задача 2  Построить эпюры внутренних усилий для рамы  (рис. а).

Дано: F=30кН, q=40 кН/м, М=50кНм, а=3м, h=2м.

2014-10-16 22-55-29 Скриншот экрана

Определим опорные  реакции  рамы:

2014-10-16 22-57-05 Скриншот экрана

Из этих уравнений найдем:

2014-10-16 22-57-54 Скриншот экрана

Поскольку значения реакции RK имеет знак минус, на рис. а изменяется направление данного вектора на противоположное, при этом записывается RK=83,33кН.

Определим значения внутренних усилий N, Q и М в характерных сечениях рамы:

Участок ВС:2014-10-16 23-00-06 Скриншот экрана

(сжаты правые волокна).

Участок CD: 2014-10-16 23-04-10 Скриншот экрана

(сжаты правые волокна);

2014-10-16 23-05-33 Скриншот экрана

(сжаты правые волокна).

Участок DE: 2014-10-16 23-13-33 Скриншот экрана

(сжаты нижние волокна);

2014-10-16 23-14-38 Скриншот экрана

(сжаты нижние волокна).

Участок КС

2014-10-16 23-15-55 Скриншот экрана

(сжаты левые волокна).

Построим эпюры  нормальных (продольных) сил (б), поперечных сил (в) и изгибающих моментов (г).

Рассмотрим равновесие узлов D и Е

2014-10-16 23-18-55 Скриншот экрана

Из рассмотрения узлов Dи Е видно, что они находятся в равновесии.

Задача 3.  Для  рамы с шарниром построить эпюры внутренних усилий.

Дано: F=30кН, q=40 кН/м, М=50кНм, а=2м, h=2м. 

2016-11-22-21-33-03-skrinshot-ekrana

Решение. Определим опорные реакции. Следует отметить ,что в обеих шарнирно-неподвижных опорах по две реакции. В связи с этим следует использовать свойство шарнира С — момент в нем как от левых ,так и от правых сил равен нулю. Рассмотрим левую часть.

Уравнения равновесия для рассматриваемой рамы можно записать в виде:

2016-11-22-21-30-06-skrinshot-ekrana

Из решения данных уравнений следует:

2014-10-16 23-30-06 Скриншот экрана

На схеме рамы  направление действия силы НВ изменяется на противоположное (НB=15кН).

Определим усилия в характерных сечениях рамы.

Участок BZ: 2014-10-16 23-31-59 Скриншот экрана

(сжаты левые волокна).

Участок ZC: 

2014-10-16 23-33-34 Скриншот экрана

(сжаты левые волокна); 

2014-10-16 23-34-35 Скриншот экрана

Участок КD:  2014-10-16 23-51-27 Скриншот экрана

(сжаты левые волокна);

2014-10-16 23-52-12 Скриншот экрана

 (сжаты левые волокна).

Участок DС: 

2014-10-16 23-55-19 Скриншот экрана

 (сжаты нижние волокна); 

2014-10-17 00-00-55 Скриншот экрана

Определение экстремального значения изгибающего момента на участке  CD :

2014-10-17 00-02-59 Скриншот экрана

(сжаты верхние волокна). 

Строим эпюры внутренних усилий. Проверяем равновесие узлов рамы.2014-10-17 00-04-45 Скриншот экрана

Узлы  C и D находятся в равновесии.

Построение  эпюр М и в балке с жесткой заделкой  с определенными опорными реакциями. Построение методом характерных точек.

2014-09-14 14-43-57 Скриншот экрана

1. Построение эпюры поперечных сил. Для консольной балки (рис. а) характерные точки: А – точка приложения опорной реакции VA; С – точка приложения сосредоточенной силы; D, B– начало и конец распределенной нагрузки. Для консоли поперечная сила определяется аналогично двухопорной балке. Итак, при ходе слева:

2014-09-14 14-46-40 Скриншот экрана

Для проверки правильности определения поперечной силы в сечениях пройдите балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Помните, что правило знаков при этом изменятся. Результат должен получиться тот же. Строим эпюру поперечной силы (рис,б).

2. Построение эпюры моментов 

Для консольной балки эпюра изгибающих моментов строится аналогично предыдущему построению.Характерные точки для этой балки (см. рис. а) следующие: А – опора; С — точка при­ложения сосредоточенного момента и силы F; и В — начало и конец действия рав­номерно распределенной на­грузки. Поскольку эпюра Qx на участке действия распределенной нагрузки нулевую линию не пересекает, для построения эпюры моментов на данном участке (параболическая кривая) следует выбрать произвольно дополнительную точку для построения кривой, к примеру в середине участка.

Ход слева:

2014-09-14 14-50-48 Скриншот экрана

Ходом справа находим MB = 0.

По найденным значениям строим эпюру изгибающих моментов (см. рис. в).

Построение  эпюр М и Q в балке на двух опорах с определенными опорными реакциями. Построение методом характерных точек.

2014-09-14 13-52-55 Скриншот экрана

1. Построение эпюры Qу.  Из теоретического курса известно, что на участке балки с равномерно распределенной нагрузкой эпюра Qу ограничивается наклонной прямой, а на участке, на котором нет распределенной нагрузки, — прямой, параллельной оси, поэтому для построения эпюры поперечных сил достаточно определить значения Qу в начале и конце каждого участка. В сечении, соответствующем точке приложения сосредоточенной силы, поперечная сила должна быть вычислена чуть левее этой точки (на бесконечно близком расстоянии от нее) и чуть правее ее; поперечные силы в таких местах обозначаются соответственно  2014-09-14 13-55-55 Скриншот экрана.

Строим эпюру Qу методом характерных точек, ходом слева. Для большей наглядности отбрасываемую часть балки на первых порах рекомендуется закрывать листом бумаги. Характерными точками для двухопорной балки (рис. а) будут точки и D – начало и конец распределенной нагрузки, а также  A   и B – точки приложения опорных реакций, E– точка приложения сосредоточенной силы. Проведем мысленно ось y перпендикулярно оси балки через точку С и не будем менять ее положение, пока не пройдем всю балку от C до E. Рассматривая левые отсеченные по характерным точкам части балки, проецируем на ось y действующие на данном участке силы с соответствующими знаками. В результате получаем:2014-09-14 14-27-25 Скриншот экрана

Для проверки правильности определения поперечной силы в сечениях можно пройти балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Результат должен получиться тот же. Совпадение результатов может служить контролем построения эпюры Qу. Проводим нулевую линию под изображением балки и от нее в принятом масштабе откладываем найденные значения поперечных сил с учетом знаков в соответствующих точках. Получим эпюру Qу (рис. б).

Построив эпюру, обратите внимание на следующее: эпюра под распределенной нагрузкой изображается наклонной прямой, под ненагруженными участками — отрезками, параллельными нулевой линии, под сосредоточенной силой на эпюре образуется скачок, рав­ный значению силы. Если наклонная линия под распределенной на­грузкой пересекает нулевую линию, отметьте эту точку, то это точка экстремума, и она является теперь для нас характерной, согласно дифференциальной зависимости между Qу и Мx, в этой точке момент имеет экстремум и его нужно будет определить при построении эпюры изгибающих моментов. В нашей задаче это точка К. Сосредоточенный момент на эпю­ре Qу себя никак не проявляет, так как сумма проекций сил, образую­щих пару, равна нулю.

2. Построение эпюры моментов.Строим эпюру изгибающих моментов, как и поперечных сил, ме­тодом характерных точек, ходом слева. Известно, что на участке балки с равномерно распределенной нагрузкой эпюра изгибающих моментов очерчивается кривой линией (квадратичной параболой), для построения которой надо иметь не менее трех точек и, следовательно, должны быть вычислены значе­ния изгибающих моментов в начале участка, конце его и в одном проме­жуточном сечении. Такой промежуточной точкой лучше всего взять сечение, в кото­ром эпюра Qу пересекает нулевую линию, т.е. где Qу= 0. На эпюре М в этом сечении должна находиться вершина параболы. Если же эпюра Qу не пересекает нулевую линию, то для построения эпюры М следует на данном участке взять дополнительную точку, к примеру, в середине участка (начала и конца действия распределенной нагрузки), помня, что выпуклостью парабола всегда обращена вниз, если на­грузка действует сверху вниз (для строительных специальностей). Существует правило «дождя», которое очень помогает при построении параболической части эпю­ры М.  Для строителей это правило выглядит следующим образом: представьте, что распределенная нагрузка — это дождь, подставьте под него зонт в перевернутом виде, так чтобы дождь не стекал, а собирался в нем. Тогда выпуклость зонта будет обращена вниз. Точно так и бу­дет выглядеть очертание эпюры моментов под распределенной нагрузкой. Для механиков существует так называемое  правило «зонта». Распределенная нагрузка представляется дождем, а очертание эпюры должно напоминать очертания зонтика. В данном примере эпюра построена для строителей.

Если требуется более точное построение эпюры, то должны быть вычислены значения изгибающих моментов в нескольких промежуточ­ных сечениях. Условимся для каждого такого участка изгибающий момент сначала определить в произвольном сечении, выражая его через расстояние х от какой-либо точки. Затем, давая расстоянию х ряд значений, получим значения изгибающих моментов в соответствую­щих сечениях участка. Для участков, на которых нет распределенной нагрузки, изгибающие моменты определяют в двух сечениях, соот­ветствующих началу и концу участка, так как эпюра М на таких участках ограничивается прямой. Если к балке приложен внешний сосредоточенный момент, то обязательно надо вычислять изгибающий момент чуть левее места приложения сосредоточенного момента и чуть правее его.

Для двухопорной балки характерные точки следующие: C и D – начало и конец распределенной нагрузки; Аопора балки; В вторая опора балки и точка приложения сосредоточенного момента; Еправый конец балки; точка К, соответствующая сечению балки, в котором Qу = 0.

Ход слева. Правую часть до рассматриваемого сечения мысленно отбрасываем (возьмите лист бумаги и прикройте им отбрасываемую часть балки). Находим сумму моментов всех сил, действующих слева от сечения относительно рассматриваемой точки. Итак,

2014-09-14 14-32-16 Скриншот экрана

Прежде чем определить момент в сечении К, необходимо найти расстояние х=АК. Составим выражение для поперечной силы в данном сечении и приравняем его к нулю (ход слева):

2014-09-14 14-35-15 Скриншот экрана

Это расстояние можно найти также из подобия треугольников KLN и KIG на эпюре Qу (рис.б).

Определяем момент в точке К:

2014-09-14 14-37-27 Скриншот экрана

Пройдем оставшуюся часть балки ходом справа.

2014-09-14 14-38-34 Скриншот экрана

Как видим, момент в точке D при ходе слева и справа получился одинаковый – эпюра замкнулась. По найденным значениям строим эпюру. Положительные значения откладываем вниз от нулевой линии, а отрицательные – вверх (см. рис. в).

Добавить комментарий