Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.
Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.
Формулами
Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.
Через заряд и время
Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.
Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t
Через мощность и напряжение
В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.
Данное выражение вытекает из формулы для расчета мощности: P = IU.
Через напряжение или мощность и сопротивление
Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I2R, откуда
Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.
Через ЭДС, внутреннее сопротивление и нагрузку R
Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:
- внешнее сопротивление проводников (R);
- ЭДС источника питания (ε);
- внутреннее сопротивление источника, обладающего ЭДС (r′).
Примечание! Реальные источники питания обладают внутренним сопротивлением. Поскольку в электрической цепи
показатель силы тока может уменьшаться в связи с возрастанием сопротивления источника питания или в результате падения ЭДС. Именно из-за роста внутреннего сопротивления садится аккумулятор и ослабевает ЭДС элементов питания.
Закон Джоуля-Ленца
Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.
Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ0) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.
Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:
Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.
Измерительными приборами
Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.
Амперметром
Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.
Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.
Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.
Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.
При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.
Мультиметром
Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.
Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.
Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.
Примеры
Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.
Задача 1.
На участке цепи имеются три параллельно включенных резистора (см. рис. 5). Значения сопротивлений резисторов: R1 = 5 Ом; R2 = 25 Ом; R3 = 50 Ом. Требуется рассчитать силу тока для каждого резистора и на всём участке, если на нем поддерживается постоянное напряжение 100 В.
Решение: При параллельном соединении нагрузочных элементов U = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R
- I1 = U/R1 =100/5 = 20 А;
- I2 = U/R2 =100/25 ≈ 4 А;
- I3 = U/R3 =100/50 = 2 А.
Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:
Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)
Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.
Ответ:
- Сила тока на сопротивлениях: I1 =20 А; I2 = 4А; I3 = 2 А.
- Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.
Задача 2.
Мощность электрочайника 2 кВт. Чайник работает от городской сети под напряжением 220 В. Сколько электричества потребляет этот электроприбор?
Решение:
Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.
- 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
- Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
- Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.
Задача 3.
Вычислить силу тока в цепи, если известно, что сопротивление составляет 5 Ом, ЭДС источника питания 6 В, а его внутреннее сопротивление составляет 1 Ом.
Решение.
Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)
I = 6 В / (5 Ом + 1 Ом) = 1 А.
Ответ: сила тока 1 А.
Задача 4.
Сколько энергии потребляет электроплита за 2 часа работы, если сопротивление нагревательного элемента 40 Ом?
Решение:
За время t электричество выполнит работу A = U*I*t.
Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U2/R)*t или
A = ((220 В)2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч
Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.
Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.
Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.
Как найти силу тока — формула в физике через мощность и напряжение, при смешанном соединении, в резисторе, проводнике
Чтобы правильно построить электрические цепочки в физике необходим расчёт параметров электроэнергии. Поскольку цель использования электрического тока в электротехнической технике – выполнение током работы, то появляется вопрос о поиске значения силы тока.
Однако, помимо этого следует понимать различие между разными видами электрической мощности, а также знать несколько способов для их вычисления.
Содержание
Определения
Сила тока – физическая величина, являющаяся одной из главных характеристик электрического тока. Она определяется таким понятием как: направленное движение электрических частиц. Другими словами, сила тока равна заряду, который за одну единицу времени прошёл через сечение проводника. Обозначается сила тока: [ I ] и исчисляется в Амперах (А).
Электрическая мощность — физическая величина, которая показывает с какой скоростью преобразуется или передаётся энергия электричества. Данная величина – характеристика производительности прибора. Обозначается: [ P ] и измеряется в Ватт (Вт).
Интересно! Впервые «Ватт» стали использоваться только в 1882 году. Ранее данный термин заменялся «лошадиными силами» (которые, в некоторых сферах, таких как автомобилестроение, используются и сейчас).
Формулы
Для нахождения силы тока
Сила тока рассчитывается по следующим формулам:
I = q/t
- q – заряд, который проходит через сечение проводника,
- t – время в секундах.
Закон Ома:
I = P/U
- P – электрическая мощность,
- U – электрическое напряжение.
I = U/R
- U – электрическое напряжение,
- R – электрическое сопротивление.
Следствие закона Джоуля-Ленца:
I = корень из Q/Rt
- R – электрическое сопротивление,
- Q – количество теплоты,
- t – время.
Для мощности электрического тока
P = A/t
- A – работа, которую выполняет электроприбор,
- t – время.
P = UxI
- U – электрическое напряжение,
- I – сила тока.
P = U2/R
- U – электрическое напряжение,
- R – электрическое сопротивление.
Нахождение силы тока при помощи приборов
Помимо формул, в некоторых случаях, гораздо удобнее использовать вычислительные приборы. Самое главное: правильно их использовать. При измерении следует соблюдать определенные правила и помнить о технике безопасности.
Амперметр
Амперметр – самый распространённый прибор для применения его в электрической цепи.
Единственным недостатком данного прибора является его собственное маленькое сопротивление, из-за чего он может сгореть или просто выключиться, если ему придется измерять силу тока, на которую он не рассчитан. Именно поэтому считается, что универсальность амперметра сильно ограничена.
Если появляется необходимость измерить постоянный ток, то для измерения прибором придется разорвать цепь, а также не забыть про полярность подключения. Данный процесс не всегда удобен и как следствие иногда вычисление по формулам является более предпочтительным.
Существует несколько видов амперметров, каждый из которых используется локально, то есть в определенных электрических цепочках. Наиболее популярными стали: тепловой, электромагнитный, магнитноэлектрический, электродинамический и индукционный амперметр.
Правила при работе с амперметром
- Клемму амперметра, на которой изображен «плюс» – соединяем с проводом, который идет от положительного полюса. Клемма с «минусом» – наоборот.
- Подключать амперметр в электрическую цепь, при отсутствии потребителя тока, нельзя.
- Подключается амперметр в цепи последовательно.
Мультиметром
Мультиметр является многофункциональным прибором, то есть он может измерять ток и постоянных, и переменных токов. Его подключение аналогично амперметру (при условии измерения силы тока).
Прежде чем включить мультиметр внутри цепи, важно проверить режим измерения, а также выбрать пределы измерения гораздо больше силы, которую Вы ожидаете увидеть (современные мультиметры имеют цифровое табло).
При нахождении значения переменного тока переключите прибор на нужный режим и записывайте значения только после того, как цифры на дисплее перестанут мигать.
Единицы измерения на практике
Единицы измерения, приведенные в формулах, порой могут оказаться неудобным на практике, и оттого считаются «теоретическими». Например, в паспортах различных электроприборах (лампочек, телевизоров) Вы не увидите электрическую мощность в Ваттах. Это связано с тем, что если преобразовать формулу, то мы получим, что один Ватт – это 1 Джоуль/1 секунду.
И такое выражение крайне неудобное, ведь электроприборы потребляют ток в течение долгого времени: несколько минут, часов, дней, а расчет электричества по электросчетчику проводится раз в месяц!
Такие расчеты не оправданы и, как следствие, на практике время стали выражать не в секундах, а в часах, из-за чего электрический ток больше не выражается в Ваттах, а в ватт-час (ВтхЧ) или киловатт-час (кВтхЧ).
Из-за введения разных терминов (единиц измерения) мощности, следует разобраться как отличать килоВатт от килоВатт в час. Понятие первое показывает непосредственную мощность электротехники. Другими словами, в виде числа показывает способность прибора преобразовывать энергию электричества. КилоВатт в час – это то, сколько килоВатт за единицу времени (один час) может потребить, например, лампочка.
Сама мощность прибора никак не зависит от времени, однако то, какую мощность он может потребить – напрямую зависит от времени.
Узнать мощность электротехники, без использования формул или специальных приборов, можно взглянув на паспорт (инструкцию) выбранного объекта или на наклейку на нем.
- Телевизор в среднем потребляет до 200 Вт.
- Компьютер – 550 Вт.
- Электрический чайник – 1200 Вт.
- Тостер – 1200 Вт.
- Электрообогреватель – 1400 Вт.
- Микроволновая печь (СВЧ) – 1800 Вт.
- Электроплита – 2500 Вт.
Связь мощности тока с действием тока в электрической цепи
Определить нагрузку на прибор в электрической цепи можно с помощью сравнения мощности тока и номинальной мощности электротехники.
В случае, если мощность самого тока меньше, то его недостаточно или он в целом не проявляется. Это значит, что, если подключить мощный прибор – работать он не начнет.
Обратная ситуация, если сила тока слишком велика, то слабые приборы просто сгорят.
С помощью приведенных выше формул можно находить неизвестные переменные, которые используются в вычислительных задачах, связанных с электричеством. Самые распространенные величины в таких задачах: сопротивление, мощность, напряжение.
Каждый электроприбор имеет свою электрическую мощность и рассчитан на определенную силу тока. При избытке – прибор может сломаться, а при недостатке – не будет работать.
Иногда удобней будет использовать вычислительные «помощники», такие, как амперметр и мультиметр. Они изобретены для того, чтобы измерить силу тока в цепи, однако важно помнить об особенностях их использования.
Фото определения силы тока
Об авторе: Эксперт в области электричества, общих вопросов
Задать вопрос
Закон Ома
Закон Ома — главный закон электротехники, который открыл в 1826 году выдающийся немецкий ученый Георг Симон Ом. Вместе с экспертом разберем формулировку, формулу и задачи на закон Ома с решением
Физика — наука эмпирическая. Ее основные законы вытекают из практического опыта и частенько много лет не имеют теоретических обоснований. Именно так обстоит дело с главным законом электротехники, который открыл в 1826 году выдающийся немецкий ученый Георг Симон Ом.
Электрические явления люди наблюдали сотни лет. Но никак не связывали между собой заряженность потертого янтаря и молнию. Только на исходе XVIII столетия электричество стали внимательно исследовать. В 1795 году Алессандро Вольта изобрел «вольтов столб», химическую батарею, и обнаружил появление тока в проводнике, соединяющем ее полюса. Сферы применения электричества стремительно множились, и появилась острая необходимость в расчетных формулах для инженеров. Эту задачу решали многие ученые, но первым сформулировал главную формулу электротехники именно Георг Ом. Он ввел в обиход понятие сопротивления и опытным путем установил зависимость между основными характеристиками электрической цепи.
Определение закона Ома простыми словами
Электрическая цепь состоит из двухполюсного источника напряжения, то есть батареи, аккумулятора или генератора. Если полюса источника соединить проводами, то по ним потечет электрический ток. Его величина определяется сопротивлением проводников. Наглядное представление этой зависимости — обыкновенный водопровод. Аналогом источника напряжения является насос или водонапорная башня, создающая давление в магистрали, количество воды, прошедшее по трубе, — подобие силы тока, а кран соответствует сопротивлению. Полностью открытый, он не ограничивает поток, по мере закручивания отверстие для воды уменьшается, пока не закроется совсем.
Закон Ома для участка цепи
Опытным путем исследователь установил взаимосвязь характеристик электрической цепи. Классическая формулировка закона Ома звучит так:
«Сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению».
Формула закона Ома для участка цепи
В таком виде закон Ома приведен в школьных учебниках физики. Согласно этой простой формуле, для определения уровня тока в проводнике достаточно величину напряжения на его сторонах разделить на некий условно постоянный коэффициент, то есть на сопротивление. Почему «условно»? Потому что величина сопротивления может меняться в зависимости от температуры. Поэтому, кстати, лампы накаливания чаще всего перегорают при включении. Сопротивление холодной спирали ниже, чем нагретой, скачок тока при подаче напряжения вызывает ее резкое расширение и разрыв. Но если этот момент преодолен и нить накала уцелела, то ее сопротивление растет, и ток ограничивается. А при температуре жидкого гелия, например, сопротивление падает до нуля, наступает сверхпроводимость.
Закон Ома для замкнутой полной цепи
Предыдущая формулировка годится только для участка цепи, где отсутствует сам источник электродвижущей силы. В реальности ток течет по замкнутому контуру, где обязательно есть батарея или генератор, имеющий собственное внутреннее сопротивление. Поэтому формула закона Ома для полной цепи выглядит несколько сложнее
Формула закона Ома для замкнутой полной цепи
Применение закона Ома
Георг Ом дал в руки инженеров средство для решения задач, связанных с электрическими цепями. Тепловые и световые приборы, электродвигатели, генераторы, линии электропередач, кабели связи рассчитываются на основе этой простой формулы. Нет такой области электротехники, где она не находит применения. Даже в радиотехнике используется закон Ома, но в дифференциальной форме. «Все гениальное — просто», как считали Еврипид, Леонардо да Винчи, Наполеон Бонапарт и Альберт Эйнштейн, несомненные гении. Закон Ома целиком и полностью подтверждает эту истину.
Сила трения
Единицы измерения силы трения, от чего она зависит и какие виды существуют
подробнее
Задача на закон Ома с решением
Задача для участка электрической цепи
Электрочайник, включенный в сеть с напряжением 220 В, потребляет ток 1,1 А. Каково сопротивление электрочайника.
Дано:
U = 220 В
I = 1,1 А
Решение:
Согласно закону Ома для участка цепи:
R=U/I=220/1,1=200 Ом
Ответ: R = 200 Ом.
Задача для полной замкнутой цепи
Источник постоянного тока с ЭДС E = 24 В и внутренним сопротивлением r = 1,5 Ом замкнут на внешнее сопротивление R = 11 Ом. Определить силу тока в цепи.
Дано:
Е=24 В, r=1,5 Ом, R = 11 Ом
Решение:
По закону Ома для замкнутой цепи: I = E/(R + r) = 24/(11+1,5) = 1,92 А.
Ответ: I=1, 92 А.
Популярные вопросы и ответы
Отвечает Николай Герасимов, старший преподаватель физики в Домашней школе «ИнтернетУрок».
Сколько всего законов Ома в физике?
Существует два закона Ома: закон Ома для участка цепи и закон Ома для полной (замкнутой) цепи. Первый связывает сопротивление участка, силу тока в нём и разность потенциалов (напряжение) на его концах. Кроме того, в нем отражено наличие в цепи источника тока.
Второй учитывает и потребителей электрического тока (электрические лампы, обогреватели, телевизоры и так далее), и его источники (генераторы, батарейки, аккумуляторы). Дело в том, что любой источник тока обладает внутренним сопротивление, которое влияет на силу тока. Именно это и учитывается в законе Ома для полной (замкнутой) цепи.
При каких условиях выполняется закон Ома?
Согласно закону Ома, существует линейная зависимость между силой тока в участке цепи и напряжением на его концах. Он отлично выполняется для металлических проводников при любых напряжениях, а вот для тока в вакууме, газе, растворах или расплавах электролитов, полупроводниках линейная зависимость нарушается, и применять закон Ома в том виде, в котором его изучают в школьном курсе, уже нельзя.
Для чего нужен закон Ома?
Трудно переоценить значимость этого закона. Он позволил производить расчет электрических цепей, без которых практически невозможно представить жизнь современного человека, так как они лежат в основе любого электроприбора, начиная от обычной лампы накаливания и заканчивая самыми современными компьютерами.
В каком классе проходят закон Ома?
В школьном курсе ученики впервые знакомятся с электрическими явлениями и законом Ома для участка цепи в 8 классе. Более подробно о причинах возникновения электрического тока и его источниках ученики знакомятся в курсе старшей школы (10 или 11 класс, в зависимости от программы). Здесь же ученики впервые встречаются и с законом Ома для полной (замкнутой) цепи.
Закон Ома назван в честь своего открывателя это ученый Георг Симон Ом. Свои эксперименты в области электричества он начал вдохновляясь опытами Фурье. Ом проводил свои опыты с различными материалами и изучение их электропроводности. Так была разработана знаменитая формула, которая стала краеугольной в современной физике, которая вошла в школьные учебники: I=U/R. Сила тока пропорциональна величине напряжения и имеет обратную пропорциональность сопротивлению.
В статье подробно разобраны области теории и практического применения принципов закона Ома в современной электротехнике. В качестве дополнения, в материале содержатся два обучающих видеоролика и один научный материал на тему статьи.
Закон Ома
Закон Ома показывает отношения между напряжением (U), током (I) и сопротивлением (R). Записано это может быть тремя разными способами:
U = I × R
или
I = V/R
или
R = V/I
Где:
- V – напряжение в вольтах (В);
- I – сила тока в амперах (А);
- R – сопротивление в омах (Ом);
Для большинства схем амперы – слишком большие величины, а омы – слишком маленькие. Поэтому в формулу можно подставлять миллиамперы и килоомы. Если силу тока подставлять в миллиамперах (мА), то сопротивление обязательно должно быть в килоомах (кОм) и наоборот. Напряжение – всегда в вольтах.
Чтобы проще запомнить три разные версии определения Закона Ома, можно воспользоваться «VIR-треугольником».
- Если надо вычислить напряжение, закрываем пальцем V. У нас остаются I и R. Они на одном уровне, значит между ними ставим знак умножения. Получается: V = I × R .
- Если вычисляем ток, закрываем пальцем I. У нас остаётся V над R. Значит напряжение делится на сопротивление: I = V/R .
- Аналогичным образом поступаем при вычислении сопротивления. Закрываем R. Остаётся V над I. Значит: R = V/I .
Закон Ома, определение: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Есть также частный случай – Закон Ома для участка цепи – сила тока в участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению этого участка.
Закон Ома для цепи
Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).
Итак, закон Ома для рассматриваемого участка цепи имеет вид:
φ1-φ2=I*R, где
- I – ток, протекающий по участку цепи.
- R – сопротивление этого участка.
- φ1-φ2 – разность потенциалов между точками 1-2.
Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R. Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).
В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:
- U1=I*R1
- U2=I*R2
- Un=I*Rn
- U=I*(R1+R2+…+Rn
Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:
U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn
Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.
Для ЭДС
Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:
Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.
Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.
Для полной цепи
Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.
Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.
Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:
I = U / (R + r)
Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.
Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.
Для переменного тока
Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).
Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.
Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.
Для замкнутой цепи
На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие активного сопротивления от реактивного в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.
Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.
Формула для расчета падения напряжения на индуктивном сопротивлении:
U = I ⋅ ωL
Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).
Формула для расчета падения напряжения на емкостном сопротивлении:
U = I / ω ⋅ С
С – емкость реактивного сопротивления.
Эти две формулы – частные случаи закона Ома для переменных цепей.
Полный же будет выглядеть следующем образом:
I = U / Z
Здесь Z – полное сопротивление переменной цепи известное как импеданс.
Сфера применения
Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:
- Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
- В сверхпроводниках;
- Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
- В вакуумных и газовых радиолампах;
- В диодах и транзисторах.
Последовательное и параллельное включение элементов
Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение. Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.
Цепь последовательно включенных резистивных элементов
Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:
- I = I1= I2 ;
- U = U1+ U2 ;
- R = R1+ R2
Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения. Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.
При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx. Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.
Цепь параллельно включенных резистивных элементов
На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:
- I = I1+ I2 … ;
- U = U1= U2 … ;
- 1 / R = 1 / R1+ 1 / R2 + …
Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение. Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.
Интегральная и дифференциальная формы закона
Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры. Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.
Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.
Под дифференциальный расчет берется формула: J = ό * E. Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.
Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления, тем больше я понимаю что делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.
Как разными способами найти силу тока
Содержание
- 1 Зачем нужно находить силу тока
- 2 Вычисление тока, если известны мощность и напряжение
- 3 Определение мощности прибора
- 4 Вычисление тока при известных значениях напряжения и сопротивления
- 5 Использование мощности и сопротивления
- 6 Непосредственное измерение силы тока
- 7 Видео по теме
Знание силы тока в электрической цепи является в некоторых случаях необходимым. Ее определяют не только с помощью непосредственного измерения, но и расчетов. В последнем случае нужную информацию можно получить на основе технических характеристик оборудования.
Зависимости между основными электрическими величинами
Зачем нужно находить силу тока
Любое вещество состоит из атомов, которые включают в себя положительно заряженное ядро и вращающиеся вокруг него электроны. При отсутствии электрического поля движение этих частиц является хаотичным. Но как только проводник становится частью электрической цепи, подключённой к источнику питания, электроны начинают двигаться по направлению к положительному полюсу.
Ток проявляется через заряд. Каждый электрон несёт в себе элементарный отрицательный электрический заряд. Сила тока — это количество электронов, проходящих через поперечное сечение проводника за какой-то отрезок времени. Следовательно, можно сделать вывод, что рассматриваемый параметр определяют заряд и время.
Электроток, выраженный через заряд и время
Найти силу тока в проводнике можно только в том случае, когда электрическая цепь подключена к источнику питания. Например, это может быть включение бытового прибора в электросеть с переменным напряжением, равным 220 В. Разным приборам для работы нужна разная мощность. В некоторых случаях даже выключенное оборудование может потреблять небольшое количество электричества, если оставить его вилку в розетке. Поэтому рассчитать силу тока в цепи можно через мощность и напряжение.
Слишком интенсивный электроток способен создавать проблемы. Он может, например, привести к перегреву деталей или к их разрушению. Если большой ток пройдёт через человека, то это нанесет серьёзный вред его здоровью или даже станет опасным для жизни. Для нормального и безопасного функционирования оборудования важно, чтобы электроток соответствовал установленным нормативам. Определение силы тока по мощности и напряжению позволяет проверить, насколько она соответствует требованиям.
Вычисление тока, если известны мощность и напряжение
Есть простой способ, как узнать ток, зная мощность и напряжение. В данном случае рассчитать постоянный ток можно по формуле:
Расчет для переменного тока через мощность усложняется, поскольку его величина и направление постоянно меняются. Это обстоятельство нужно учитывать при расчетах. Если питание однофазное, то используется такая формула:
Чтобы определить силу переменного тока в трехфазной сети, следует воспользоваться формулой:
При рассмотрении переменного тока нужно учитывать не только активную, но и реактивную мощность. Первая связана с активным сопротивлением, а вторая — с реактивным (ёмкостным и индуктивным). Соотношение между различными видами отражается с помощью cos φ.
Косинус угла «фи» обычно указывают в технической документации прибора. Если эту информацию нельзя получить из документации, то в расчетах очень мощных устройств принимают значение 0.8. Для большинства обычных бытовых приборов в вычислениях используют 0.95.
Подставив в формулу, применяемую для определения силы тока на участке цепи, значения напряжения U = 220 В для однофазной цепи и 380 В для трехфазной, а также cos φ = 0.95, получим следующие выражения:
Как видим, сила тока в трехфазной и однофазной сети при одинаковой нагрузке будет разной. В однофазной она втрое больше, чем в трехфазной.
Определение мощности прибора
Перед тем как найти силу электрического тока, нужно определить величину используемой мощности:
- Ее значение должно указываться в технической документации. Однако она не всегда доступна. В частности, документация может быть утеряна.
- На задней панели приборов часто имеется наклейка, на которой приведены важнейшие характеристики устройства. В числе прочих обычно указывают мощность.
Задняя панель прибора с указанием основных данных
- Можно воспользоваться таблицей с указанием средних значений мощности для различных видов устройств.
Мощность разных приборов
При вычислениях необходимо помнить, что пусковая мощность может превышать рабочую. Расчёт силы тока должен учитывать обе этих величины. Когда пусковая мощность вызывает резкое мгновенное увеличение силы тока, оно не должно превышать допустимой величины. Для бытовой техники пусковую мощность указывают редко. Поэтому перед тем как рассчитать силу тока, необходимо обратиться к соответствующим справочникам, чтобы найти определенное значение мощности. Для получения ее точной величины следует провести измерение ваттметром.
Вычисление тока при известных значениях напряжения и сопротивления
Если известно напряжение и сопротивление, то сила тока вычисляется по формуле, вытекающей из закона Ома:
Если известны значения ЭДС, внутреннего сопротивления и нагрузки, то можно найти силу тока, используя закон Ома для полной цепи:
Использование мощности и сопротивления
Как известно, мощность можно находить по формуле.
Применив в данном выражении закон Ома, можно привести его к следующему виду:
Теперь силу тока можно выразить так:
Следовательно, вычислить силу тока можно разными способами.
Непосредственное измерение силы тока
Величину силы тока можно не только рассчитывать, но и измерять, используя такие приборы, как амперметр или мультиметр. Любой из них при измерениях должен стать частью электрической цепи. Поэтому прибор нужно подключать последовательно.
Если нет большой нужды измерять силу тока амперметром, то лучше вычислить этот параметр, используя формулы, даже если для этого придется измерить напряжение. Вольтметром эта процедура осуществляется без разрыва электроцепи, чего нельзя сделать при использовании амперметра.
Также применяется магнитометрический способ. Примером его использования являются токовые клещи. Перед тем как определить силу электротока, их устанавливают так, чтобы они охватывали провод. Поскольку вокруг проводника при протекании тока образуется магнитное поле, которое клещи улавливают, то по его характеристикам прибор определяет силу тока в цепи.