Как найти сумму гармонического ряда

Гармони́ческий ряд — сумма, составленная из бесконечного количества членов, обратных последовательным числам натурального ряда:

{displaystyle sum _{k=1}^{mathcal {infty }}{frac {1}{k}}=1+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{4}}+cdots +{frac {1}{k}}+cdots }.

Ряд назван гармоническим, так как складывается из «гармоник»: k-я гармоника, извлекаемая из скрипичной струны, — это основной тон, производимый струной длиной {frac  {1}{k}} от длины исходной струны[1]. Кроме того, каждый член ряда, начиная со второго, представляет собой среднее гармоническое двух соседних членов.

Суммы первых n членов ряда (частичные суммы)[править | править код]

Отдельные члены ряда стремятся к нулю, но его сумма расходится.
Частичная сумма n первых членов гармонического ряда называется n-м гармоническим числом:

{displaystyle H_{n}=sum _{k=1}^{n}{frac {1}{k}}=1+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{4}}+cdots +{frac {1}{n}}}

Разница между n-м гармоническим числом и натуральным логарифмом n сходится к постоянной Эйлера — Маскерони {displaystyle gamma =0{,}5772...}.

Разница между различными гармоническими числами никогда не равна целому числу и никакое гармоническое число, кроме H_{1}=1, не является целым: {displaystyle forall n>1;;;;sum _{k=1}^{n}{frac {1}{k}}notin mathbb {N} }[2].

Некоторые значения частичных сумм[править | править код]

Формула Эйлера[править | править код]

В 1740 году Эйлером было получено асимптотическое выражение для суммы первых n членов ряда:

{displaystyle H_{n}=ln n+gamma +varepsilon _{n}},

где {displaystyle gamma =0{,}5772...} — постоянная Эйлера — Маскерони, а ln  — натуральный логарифм.

При nrightarrow infty значение {displaystyle varepsilon _{n}rightarrow 0,} следовательно, для больших n

{displaystyle H_{n}approx ln n+gamma } — формула Эйлера для суммы первых n членов гармонического ряда.
Пример использования формулы Эйлера

n {displaystyle H_{n}=sum _{k=1}^{n}{frac {1}{k}}} {displaystyle ln n+gamma } {displaystyle varepsilon _{n}}, (%)
10 2,93 2,88 1,7
25 3,82 3,80 0,5

Более точная асимптотическая формула для частичной суммы гармонического ряда:

{displaystyle H_{n}asymp ln n+gamma +{frac {1}{2n}}-{frac {1}{12n^{2}}}+{frac {1}{120n^{4}}}-{frac {1}{252n^{6}}}dots =ln n+gamma +{frac {1}{2n}}-sum _{k=1}^{infty }{frac {B_{2k}}{2k,n^{2k}}},} где B_{{2k}} — числа Бернулли.

Данный ряд расходится, однако ошибка вычислений по нему никогда не превышает половины первого отброшенного члена[источник не указан 1715 дней].

Расходимость ряда[править | править код]

Гармонический ряд расходится: s_{n}rightarrow infty при {displaystyle nrightarrow infty ,} однако очень медленно (для того, чтобы частичная сумма превысила 100, необходимо около 1043 элементов ряда).

Расходимость гармонического ряда можно продемонстрировать, сравнив его со следующим телескопическим рядом, который получается из логарифмирования {displaystyle left(1+{frac {1}{n}}right)^{n}<e}:

{displaystyle v_{n}=ln(n+1)-ln n=ln left(1+{frac {1}{n}}right)<{frac {1}{n}}.}

Частичная сумма этого ряда, очевидно, равна {displaystyle sum _{i=1}^{n}v_{i}=ln(n+1).} Последовательность таких частичных сумм расходится; следовательно, по определению телескопический ряд расходится, но тогда из признака сравнения рядов следует, что гармонический ряд тоже расходится.

Доказательство через предел последовательности частичных сумм[3][править | править код]

Рассмотрим последовательность {displaystyle H_{n}=sum _{k=1}^{n}{frac {1}{k}}=1+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{4}}+cdots +{frac {1}{n}}.} Покажем, что эта последовательность не является фундаментальной, то есть, что {displaystyle exists varepsilon >0:forall kin mathbb {N}  exists n>k,exists pin mathbb {N} :leftvert H_{n+p}-H_{n}rightvert geq varepsilon .} Оценим разность {displaystyle leftvert H_{n+p}-H_{n}rightvert ={frac {1}{n+1}}+cdots +{frac {1}{n+p}}geq {frac {1}{n+p}}+cdots +{frac {1}{n+p}}={frac {p}{n+p}}.} Пусть {displaystyle pdoteq n.} Тогда {displaystyle forall nin mathbb {N} :leftvert H_{2n}-H_{n}rightvert geq {frac {1}{2}}.} Следовательно, данная последовательность не является фундаментальной и по критерию Коши расходится. Тогда по определению ряд также расходится.

Доказательство Орема[править | править код]

Доказательство расходимости можно построить, если сравнить гармонический ряд с другим расходящимся рядом, в котором знаменатели дополнены до степени двойки. Этот ряд группируется, и получается третий ряд, который расходится:

{begin{aligned}sum _{{k=1}}^{infty }{frac  {1}{k}}&{}=1+left[{frac  {1}{2}}right]+left[{frac  {1}{3}}+{frac  {1}{4}}right]+left[{frac  {1}{5}}+{frac  {1}{6}}+{frac  {1}{7}}+{frac  {1}{8}}right]+left[{frac  {1}{9}}+cdots right]+cdots \&{}>1+left[{frac  {1}{2}}right]+left[{frac  {1}{4}}+{frac  {1}{4}}right]+left[{frac  {1}{8}}+{frac  {1}{8}}+{frac  {1}{8}}+{frac  {1}{8}}right]+left[{frac  {1}{16}}+cdots right]+cdots \&{}=1+ {frac  {1}{2}}   +quad {frac  {1}{2}} quad + qquad quad {frac  {1}{2}}qquad  quad  +quad   {frac  {1}{2}} quad + cdots .end{aligned}}

(Группировка сходящихся рядов всегда дает сходящийся ряд, а значит если после группировки получился ряд расходящийся, то и исходный тоже расходится.)

Это доказательство принадлежит средневековому учёному Николаю Орему (ок. 1350).

Связанные ряды[править | править код]

Обобщённый гармонический ряд[править | править код]

Обобщённым гармоническим рядом (частный случай ряда Дирихле) называют ряд[4]

sum _{{k=1}}^{infty }{frac  {1}{k^{alpha }}}=1+{frac  {1}{2^{alpha }}}+{frac  {1}{3^{alpha }}}+{frac  {1}{4^{alpha }}}+cdots +{frac  {1}{k^{alpha }}}+cdots .

Этот ряд расходится при alpha leqslant 1 и сходится при alpha >1[4].

Сумма обобщённого гармонического ряда порядка alpha равна значению дзета-функции Римана:

{displaystyle sum _{k=1}^{infty }{frac {1}{k^{alpha }}}=zeta (alpha )}

Для чётных это значение явно выражается через число пи — например, сумма ряда обратных квадратов zeta (2)={frac  {pi ^{2}}{6}}. Но уже для α=3 его значение (константа Апери) аналитически неизвестно.

Другой иллюстрацией расходимости гармонического ряда может служить соотношение {displaystyle zeta (1+{frac {1}{n}})sim n.}

Знакопеременный ряд[править | править код]

Первые 14 частичных сумм знакочередующегося гармонического ряда (чёрные отрезки), показывающие сходимость к натуральному логарифму от 2 (красная линия)

В отличие от гармонического ряда, у которого все слагаемые берутся со знаком «+», ряд

sum _{{n=1}}^{infty }{frac  {(-1)^{{n+1}}}{n}};=;1,-,{frac  {1}{2}},+,{frac  {1}{3}},-,{frac  {1}{4}},+,{frac  {1}{5}},-,cdots

сходится по признаку Лейбница. Поэтому говорят, что такой ряд обладает условной сходимостью.
Его сумма равна натуральному логарифму 2:

1,-,{frac  {1}{2}},+,{frac  {1}{3}},-,{frac  {1}{4}},+,{frac  {1}{5}},-,cdots ;=;ln 2.

Эта формула — частный случай ряда Меркатора, то есть ряда Тейлора для натурального логарифма.

Похожий ряд может быть получен из ряда Тейлора для арктангенса:

sum _{{n=0}}^{infty }{frac  {(-1)^{{n}}}{2n+1}};;=;;1,-,{frac  {1}{3}},+,{frac  {1}{5}},-,{frac  {1}{7}},+,cdots ;;=;;{frac  {pi }{4}}.

Это соотношение известно как ряд Лейбница.

Случайный гармонический ряд[править | править код]

В 2003 году изучены[5][6] свойства случайного ряда

{displaystyle sum _{n=1}^{infty }{frac {s_{n}}{n}},}

где s_{n} — независимые, одинаково распределённые случайные величины, которые принимают значения +1 и −1 с одинаковой вероятностью ½. Показано, что этот ряд сходится с вероятностью 1, и сумма ряда есть случайная величина с интересными свойствами. Например, функция плотности вероятности, вычисленная в точках +2 или −2, имеет значение:

0,124 999 999 999 999 999 999 999 999 999 999 999 999 999 7642…,

отличаясь от ⅛ на менее чем 10−42.

«Истончённый» гармонический ряд[править | править код]

См. Ряд Кемпнера[en]

Если рассмотреть гармонический ряд, в котором оставлены только слагаемые, знаменатели которых не содержат цифры 9, то окажется, что оставшийся ряд сходится, и его сумма меньше 80[7]. Позже была найдена более точная оценка, ряд Кемпнера сходится к {displaystyle 22{,}92067661926415034816} (последовательность A082838 в OEIS). Более того, доказано, что если оставить слагаемые, не содержащие любой заранее выбранной последовательности цифр, то полученный ряд будет сходиться. Из этого можно сделать ошибочное заключение о сходимости исходного гармонического ряда, что не верно, поскольку с ростом разрядов в числе n всё меньше слагаемых берётся для суммы «истончённого» ряда. То есть, в конечном счёте отбрасывается подавляющее большинство членов, образующих сумму гармонического ряда, чтобы не превзойти ограничивающую сверху геометрическую прогрессию.

Примечания[править | править код]

  1. Грэхэм Р., Кнут Д., Паташник О. Конкретная математика. Основание информатики. — М.: Мир; БИНОМ. Лаборатория знаний, 2006. — С. 47. — 703 с. ISBN 5-03-003773-X
  2. Harmonic Number — from Wolfram MathWorld. Дата обращения: 6 марта 2010. Архивировано 16 мая 2013 года.
  3. Кудрявцев Н. Л. Лекции по математическому анализу. — 2013. — С. 35.
  4. 1 2 Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. М.: Наука. Главная редакция физико-математической литературы, 1981, 718 с.
  5. «Random Harmonic Series», American Mathematical Monthly 110, 407—416, May 2003
  6. Schmuland’s preprint of Random Harmonic Series. Дата обращения: 6 марта 2010. Архивировано 8 июня 2011 года.
  7. Nick’s Mathematical Puzzles: Solution 72. Дата обращения: 6 марта 2010. Архивировано 28 сентября 2010 года.

Содержание:

Числовые ряды:

При решении ряда математических задач, в том числе и в приложениях математики в экономике, приходится рассматривать суммы, составленные из бесконечного множества слагаемых. Из теории действительных чисел известно лишь, что означает сумма любого конечного числа чисел. Задача суммирования бесконечного множества слагаемых решается в теории рядов.

Основные понятия. Сходимость ряда

Определение. Числовым рядом называется бесконечная последовательность чисел Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Числа Числовые ряды - основные понятия с примерами решения называются членами ряда, а член Числовые ряды - основные понятия с примерами решенияобщим или Числовые ряды - основные понятия с примерами решения-м членом ряда.

Ряд (13.1) считается заданным, если известен его общий член Числовые ряды - основные понятия с примерами решеният.е. задана функция Числовые ряды - основные понятия с примерами решения натурального аргумента. Например, ряд с общим членомЧисловые ряды - основные понятия с примерами решения имеет вид

Числовые ряды - основные понятия с примерами решения

Более сложной является обратная задача: по нескольким первым членам ряда написать общий член. Эта задача имеет бесконечно много решений, но иногда удается найти самое естественное решение.

Пример:

Найти в простейшей форме общий член ряда:

Числовые ряды - основные понятия с примерами решения

Решение:

Нетрудно убедиться, что для ряда а) общий член Числовые ряды - основные понятия с примерами решения а для ряда б) Числовые ряды - основные понятия с примерами решения

Рассмотрим суммы конечного числа членов ряда:

Числовые ряды - основные понятия с примерами решения

Сумма п первых членов ряда Числовые ряды - основные понятия с примерами решения называется Числовые ряды - основные понятия с примерами решения-й частичной суммой ряда.

Определение. Ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм, т.е.

Числовые ряды - основные понятия с примерами решения

Число Числовые ряды - основные понятия с примерами решения называется суммой ряда. В этом смысле можно записать

Числовые ряды - основные понятия с примерами решения

Если конечного предела последовательности частичных сумм не существует, то ряд называется расходящимся.

Пример:

Исследовать сходимость геометрического ряда, т.е. ряда, составленного из членов геометрической профессии

Числовые ряды - основные понятия с примерами решения

Решение:

Необходимо установить, при каких значениях знаменателя профессии Числовые ряды - основные понятия с примерами решения ряд (13.4) сходится и при каких — расходится.

Из школьного курса алгебры известно, что сумма Числовые ряды - основные понятия с примерами решения первых членов геометрической профессии, т.е. Числовые ряды - основные понятия с примерами решения-я частичная сумма ряда при Числовые ряды - основные понятия с примерами решения равна Числовые ряды - основные понятия с примерами решения

Возможно несколько случаев:

1) если Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения т.е. ряд сходится и его сумма Числовые ряды - основные понятия с примерами решения

2) если Числовые ряды - основные понятия с примерами решения следовательно, Числовые ряды - основные понятия с примерами решения и ряд расходится;

3) если Числовые ряды - основные понятия с примерами решения то ряд (13.4) примет видЧисловые ряды - основные понятия с примерами решения его Числовые ряды - основные понятия с примерами решения-я частичная сумма Числовые ряды - основные понятия с примерами решеният.е. ряд расходится;

4) если Числовые ряды - основные понятия с примерами решения то ряд (13.4) примет вид Числовые ряды - основные понятия с примерами решения Числовые ряды - основные понятия с примерами решения при Числовые ряды - основные понятия с примерами решения четном и Числовые ряды - основные понятия с примерами решения — при Числовые ряды - основные понятия с примерами решения нечетном, следовательно, Числовые ряды - основные понятия с примерами решения не существует, и ряд расходится.

Таким образом, геометрический ряд сходится к сумме Числовые ряды - основные понятия с примерами решенияпри Числовые ряды - основные понятия с примерами решения и расходится при Числовые ряды - основные понятия с примерами решения

Пример:

Найти сумму ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Числовые ряды - основные понятия с примерами решения-я частичная сумма ряда

Числовые ряды - основные понятия с примерами решенияУчитывая, что Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения Отсюда Числовые ряды - основные понятия с примерами решеният.е. сумма ряда Числовые ряды - основные понятия с примерами решения

Свойства сходящихся рядов. 1. Если ряд Числовые ряды - основные понятия с примерами решениясходится и имеет сумму Числовые ряды - основные понятия с примерами решения, то и ряд Числовые ряды - основные понятия с примерами решения (полученный умножением данного ряда на число Числовые ряды - основные понятия с примерами решения) также сходится и имеет сумму Числовые ряды - основные понятия с примерами решения.

2. Если ряды Числовые ряды - основные понятия с примерами решениясходятся и их суммы соответственно равны Числовые ряды - основные понятия с примерами решения то и ряд Числовые ряды - основные понятия с примерами решения(представляющий сумму данных рядов) также сходится, и его сумма равна Числовые ряды - основные понятия с примерами решения

Свойства 1 и 2 непосредственно вытекают из свойств пределов числовых последовательностей.

3. Если ряд сходится, то сходится и ряд, полученный из данного путем отбрасывания (или приписывания) конечного числа членов.

Пусть в сходящемся ряде (13.1) отброшены Числовые ряды - основные понятия с примерами решения членов (в принципе можно отбрасывать члены с любыми номерами, лишь бы их было конечное число). Покажем, что полученный ряд

Числовые ряды - основные понятия с примерами решения

имеющий частичную сумму Числовые ряды - основные понятия с примерами решения также сходится.

Очевидно, что Числовые ряды - основные понятия с примерами решения Отсюда следует, что при фиксированном Числовые ряды - основные понятия с примерами решения конечный предел Числовые ряды - основные понятия с примерами решения существует тогда и только тогда, когда существует конечный предел Числовые ряды - основные понятия с примерами решения. А это и означает, что ряд (13.7) сходится. ■

Ряд (13.7), полученный из данного отбрасыванием его первых Числовые ряды - основные понятия с примерами решения членов, называется Числовые ряды - основные понятия с примерами решения-м остатком ряда.

Если сумму Числовые ряды - основные понятия с примерами решения-го остатка ряда обозначить через Числовые ряды - основные понятия с примерами решения т.е.

Числовые ряды - основные понятия с примерами решения

то сумму ряда (13.1) можно представить в виде

Числовые ряды - основные понятия с примерами решения

В результате мы подошли к свойству 4.

4. Для того чтобы ряд (13.1) сходился, необходимо и достаточно, чтобы при Числовые ряды - основные понятия с примерами решения остаток ряда стремился к нулю, т.е. чтобы Числовые ряды - основные понятия с примерами решения

Это свойство вытекает из теоремы о связи бесконечно малых с пределами функций (см. § 6.3).

Установить сходимость (расходимость) ряда путем определения Числовые ряды - основные понятия с примерами решения и вычисления Числовые ряды - основные понятия с примерами решения (как это сделано в примерах 13.2, 13.3) возможно далеко не всегда из-за принципиальных трудностей при нахождении Числовые ряды - основные понятия с примерами решения(суммировании Числовые ряды - основные понятия с примерами решения членов ряда). Проще это можно сделать на основании признаков сходимости, к изучению которых мы переходим.

Необходимый признак сходимости. Гармонический ряд

Теорема (необходимый признак сходимости). Если ряд сходится, то предел его общего члена Числовые ряды - основные понятия с примерами решения при Числовые ряды - основные понятия с примерами решения равен нулю, т.е.

Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решенияВыразим Числовые ряды - основные понятия с примерами решения-й член ряда через сумму его Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решения членов, т.е. Числовые ряды - основные понятия с примерами решения Так как ряд сходится, то Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решения Поэтому

Числовые ряды - основные понятия с примерами решения

Пример №1

Проверить выполнение необходимого признака для ряда (13.6).

Решение:

Выше было доказано, что ряд (13.6) сходится, и действительно Числовые ряды - основные понятия с примерами решения т.е. необходимый признак сходимости выполняется. ►

Следствие. Если предел общего члена ряда (13.1) при Числовые ряды - основные понятия с примерами решенияне равен нулю, т.е. Числовые ряды - основные понятия с примерами решения то ряд расходится.

Предположим противное, т.е. ряд (13.1) сходится. Но в этом случае из приведенной выше теоремы следует Числовые ряды - основные понятия с примерами решения, что противоречит условию, заданному в следствии, т.е. ряд (13.1) расходится. ■

Пример №2

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Решение:

Числовые ряды - основные понятия с примерами решения т.е. необходимый признак сходимости не выполняется, следовательно, ряд расходится. ►

Замечание. Следует подчеркнуть, что рассмотренная теорема выражает лишь необходимый, но недостаточный признак сходимости ряда. Если Числовые ряды - основные понятия с примерами решения то из этого еще не следует, что ряд сходится.

В качестве примера рассмотрим ряд

Числовые ряды - основные понятия с примерами решения

называемый гармоническим.

Необходимый признак сходимости выполнен: Числовые ряды - основные понятия с примерами решения Докажем, что, несмотря на это, гармонический ряд расходится.

Числовые ряды - основные понятия с примерами решенияВначале получим вспомогательное неравенство. С этой целью запишем сумму первых Числовые ряды - основные понятия с примерами решения членов ряда:

Числовые ряды - основные понятия с примерами решения

Найдем разность

Числовые ряды - основные понятия с примерами решения

Заменяя в сумме каждое слагаемое наименьшим, равным Числовые ряды - основные понятия с примерами решенияпридем к вспомогательному неравенству

Числовые ряды - основные понятия с примерами решения

Предположим противное, т.е. что гармонический ряд сходится, тогда Числовые ряды - основные понятия с примерами решения и, переходя к пределу в неравенстве (см. § 6.5), получим, что Числовые ряды - основные понятия с примерами решения

Мы пришли к противоречию, следовательно, наше предположение о сходимости гармонического ряда неверно, т.е. гармонический ряд расходится. ■

В следующих двух параграфах рассмотрим достаточные признаки сходимости.

Ряды с положительными членами

Теорема (признак сравнения). Пусть даны два ряда с положительными членами:Числовые ряды - основные понятия с примерами решения причем члены первого ряда не превосходят членов второго, т.е. при любом Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Тогда: а) если сходится ряд 2, то сходится и ряд 1; б) если расходится ряд 1, то расходится и ряд 2.

Числовые ряды - основные понятия с примерами решенияа) Пусть частичные суммы рядов 1 и 2 соответственно равны Числовые ряды - основные понятия с примерами решения. По условию ряд 2 сходится, следовательно, существует Числовые ряды - основные понятия с примерами решениятак как члены ряда 2 положительны. Рассмотрим последовательность частичных сумм Числовые ряды - основные понятия с примерами решения ряда 1. Эта последовательность является: возрастающей (так как с ростом Числовые ряды - основные понятия с примерами решения увеличивается сумма Числовые ряды - основные понятия с примерами решения положительных слагаемых) и ограниченной (так как Числовые ряды - основные понятия с примерами решения в силу условия (13.11), т.е. Числовые ряды - основные понятия с примерами решения).

Следовательно, на основании признака существования предела (см. § 6.5) последовательность Числовые ряды - основные понятия с примерами решения имеет предел, т.е. ряд 1 сходится.

б) Применим метод доказательства от противного. Предположим, что ряд 2 сходится. Тогда согласно первой части теоремы сходится и ряд 1, что противоречит предположению; т.е. ряд 2 расходится. ■

Замечание. Так как сходимость ряда не изменяется при отбрасывании конечного числа членов ряда, то условие (13.11) не обязательно должно выполняться с первых членов рядов и только для членов с одинаковыми номерами Числовые ряды - основные понятия с примерами решения. Достаточно, чтобы оно выполнялось, начиная с некоторого номера Числовые ряды - основные понятия с примерами решения или чтобы имело место неравенство Числовые ряды - основные понятия с примерами решения где Числовые ряды - основные понятия с примерами решения — некоторое целое число.

Пример №3

Исследовать сходимость ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Сравним данный ряд со сходящимся геометрическим рядом Числовые ряды - основные понятия с примерами решения (его знаменатель Числовые ряды - основные понятия с примерами решения).

Так как члены данного ряда, начиная со второго, меньше членов сходящегося геометрического ряда Числовые ряды - основные понятия с примерами решенияи вообще Числовые ряды - основные понятия с примерами решения то на основании признака сравнения ряд сходится. ►

Пример №4

Исследовать сходимость ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Сравним данный ряд с гармоническим Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения, мысленно отбросив его первый член, равный 1 (что, естественно, не повлияет на расходимость ряда). Так как Числовые ряды - основные понятия с примерами решения и вообще Числовые ряды - основные понятия с примерами решения (ибо Числовые ряды - основные понятия с примерами решеният.е. члены данного ряда больше членов расходящегося гармонического ряда, то на основании признака сравнения ряд расходится. ►

Числовые ряды - основные понятия с примерами решения

сходится при Числовые ряды - основные понятия с примерами решения расходится при Числовые ряды - основные понятия с примерами решения здесь же отметим, что при Числовые ряды - основные понятия с примерами решения расходимость ряда (13.12) следует из признака сравнения, так как в этом случае члены ряда Числовые ряды - основные понятия с примерами решения больше соответствующих членов гармонического рядаЧисловые ряды - основные понятия с примерами решения а в частном случае при Числовые ряды - основные понятия с примерами решения сходимость ряда (13.12) может быть доказана сравнением этого ряда со сходящимся (13.6)).

Нестандартность применения признака сравнения заключается в том, что надо не только подобрать соответствующий «эталонный» ряд, но и доказать неравенство (13.11), для чего часто требуется преобразование рядов (например, отбрасывание или приписывание конечного числа членов, умножение на определенные числа и т.п.). В ряде случаев более простым оказывается предельный признак сравнения.

Теорема (предельный признак сравнения)

Теорема (предельный признак сравнения). Если Числовые ряды - основные понятия с примерами решения — ряды с положительными членами и существует конечный предел отношения их общих членов Числовые ряды - основные понятия с примерами решениято ряды одновременно сходятся либо расходятся.

Числовые ряды - основные понятия с примерами решенияТак как Числовые ряды - основные понятия с примерами решения, то по определению предела числовой последовательности (см. § 6.1) для любого Числовые ряды - основные понятия с примерами решениясуществует такой номер Числовые ряды - основные понятия с примерами решения, что для всех Числовые ряды - основные понятия с примерами решениявыполняется неравенство

Числовые ряды - основные понятия с примерами решения

Если ряд Числовые ряды - основные понятия с примерами решения сходится, то сходится ряд Числовые ряды - основные понятия с примерами решения и в силу признака сравнения будет сходиться рядЧисловые ряды - основные понятия с примерами решения аналогично, если сходится ряд Числовые ряды - основные понятия с примерами решениясходится ряд Числовые ряды - основные понятия с примерами решения и сходится Числовые ряды - основные понятия с примерами решения. Таким образом, из сходимости одного ряда следует сходимость другого. Утверждение теоремы о расходимости рядов доказывается аналогично. 

Пример №5

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Решение:

Сравним данный ряд с расходящимся гармоническимЧисловые ряды - основные понятия с примерами решения (выбор такого ряда для сравнения может подсказать то, что при больших Числовые ряды - основные понятия с примерами решения). Так как Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения то данный ряд, так же как и гармонический, расходится. ►

Весьма удобным на практике является признак Даламбера.

Теорема (признак Даламбера)

Теорема (признак Даламбера). Пусть для ряда Числовые ряды - основные понятия с примерами решения с положительными членами существует предел отношения Числовые ряды - основные понятия с примерами решения-го члена к Числовые ряды - основные понятия с примерами решения-му члену Числовые ряды - основные понятия с примерами решенияТогда, если Числовые ряды - основные понятия с примерами решениято ряд сходится; если Числовые ряды - основные понятия с примерами решения то ряд расходится; если Числовые ряды - основные понятия с примерами решения то вопрос о сходимости ряда остается нерешенным.

 Из определения предела последовательности следует, что для любогоЧисловые ряды - основные понятия с примерами решения существует такой номер Числовые ряды - основные понятия с примерами решения, что для всех Числовые ряды - основные понятия с примерами решения выполняется неравенство Числовые ряды - основные понятия с примерами решения 1) Пусть Числовые ряды - основные понятия с примерами решения Выберем Числовые ряды - основные понятия с примерами решения настолько малым, что число

Числовые ряды - основные понятия с примерами решения

Последнее неравенство будет выполняться для всех Числовые ряды - основные понятия с примерами решения, т.е. для Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения

Получили, что члены ряда Числовые ряды - основные понятия с примерами решения меньше соответствующих членов геометрического ряда Числовые ряды - основные понятия с примерами решения Числовые ряды - основные понятия с примерами решениясходящегося при Числовые ряды - основные понятия с примерами решения Следовательно, на основании признака сравнения этот ряд сходится, а значит, сходится и рассматриваемый ряд Числовые ряды - основные понятия с примерами решения отличающийся от полученного на первые Числовые ряды - основные понятия с примерами решения членов.

2) Пусть Числовые ряды - основные понятия с примерами решения Возьмем Числовые ряды - основные понятия с примерами решения настолько малым, что Числовые ряды - основные понятия с примерами решения Тогда из условия Числовые ряды - основные понятия с примерами решения следует, что Числовые ряды - основные понятия с примерами решения Это означает, что члены ряда возрастают, начиная с номера Числовые ряды - основные понятия с примерами решенияпоэтому предел общего члена ряда не равен нулю, т.е. не выполнен необходимый признак сходимости, и ряд расходится. ■

Пример №6

Исследовать сходимость рядов:

Числовые ряды - основные понятия с примерами решения

Решение:

а) Так как Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения то по признаку Даламбера ряд сходится.

б) Так как Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения то по признаку Даламбера ряд расходится. ►

Замечание 1. Если Числовые ряды - основные понятия с примерами решения то ряд расходится.

Замечание 2. Если Числовые ряды - основные понятия с примерами решения то, как отмечалось выше, признак Даламбера ответа о сходимости ряда не дает, и рекомендуется перейти к другим признакам сходимости.

Теорема (интегральный признак сходимости)

Теорема (интегральный признак сходимости). Пусть дан рядЧисловые ряды - основные понятия с примерами решения члены которого положительны и не возрастают, т.е.Числовые ряды - основные понятия с примерами решенияа функция Числовые ряды - основные понятия с примерами решения, определенная при Числовые ряды - основные понятия с примерами решениянепрерывная и невозрастающая и

Числовые ряды - основные понятия с примерами решения

Тогда для сходимости ряда Числовые ряды - основные понятия с примерами решения необходимо и достаточно, чтобы сходился несобственный интеграл Числовые ряды - основные понятия с примерами решения

Рассмотрим ряд

Числовые ряды - основные понятия с примерами решения

Его Числовые ряды - основные понятия с примерами решения-й частичной суммой будет

Числовые ряды - основные понятия с примерами решения

Сходимость ряда (13.14) означает существование предела последовательности его частичных сумм (13.15), т.е. сходимость несобственного интеграла Числовые ряды - основные понятия с примерами решенияпоскольку Числовые ряды - основные понятия с примерами решенияВ силу монотонности функции Числовые ряды - основные понятия с примерами решения на любом отрезке Числовые ряды - основные понятия с примерами решения или, учитывая (13.13),

Числовые ряды - основные понятия с примерами решения

Интегрируя (13.16) на отрезкеЧисловые ряды - основные понятия с примерами решения получим

Числовые ряды - основные понятия с примерами решения

откуда

Числовые ряды - основные понятия с примерами решения

Если ряд Числовые ряды - основные понятия с примерами решения сходится, то по признаку сравнения рядов в силу первого неравенства (13.17) должен сходиться ряд (13.14), а значит, и несобственный интеграл Числовые ряды - основные понятия с примерами решения Обратно, если сходится J/(jc)c&, т.е. ряд (13.14), то согласно тому же признаку сравнения на основании второго неравенства (13.17) будет сходиться ряд Числовые ряды - основные понятия с примерами решения а следовательно, и данный ряд Числовые ряды - основные понятия с примерами решения

Пример №7

Исследовать сходимость обобщенного гармонического ряда Числовые ряды - основные понятия с примерами решения

Решение:

Пусть Числовые ряды - основные понятия с примерами решенияФункция Числовые ряды - основные понятия с примерами решения при Числовые ряды - основные понятия с примерами решения (а значит, и при Числовые ряды - основные понятия с примерами решения) положительная и невозрастающая (точнее убывающая). Поэтому сходимость ряда равносильна сходимости несобственного интеграла Числовые ряды - основные понятия с примерами решения Имеем Числовые ряды - основные понятия с примерами решения Если Числовые ряды - основные понятия с примерами решения

Если Числовые ряды - основные понятия с примерами решения то

Числовые ряды - основные понятия с примерами решения Итак, данный ряд сходится при Числовые ряды - основные понятия с примерами решения и расходится при Числовые ряды - основные понятия с примерами решения

Ряды с членами произвольного знака

Знакочередующиеся ряды. Под знакочередующимся рядом понимается ряд, в котором члены попеременно то положительны, то отрицательны

Числовые ряды - основные понятия с примерами решения

Теорема (признак Лейбница). Если члены знакочередующегося ряда убывают по абсолютной величине Числовые ряды - основные понятия с примерами решения и предел его общего члена при Числовые ряды - основные понятия с примерами решения равен нулю, т.е.Числовые ряды - основные понятия с примерами решениято ряд сходится, а его сумма не превосходит первого члена: Числовые ряды - основные понятия с примерами решения.

 Рассмотрим последовательность частичных сумм четного числа членов при Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Эта последовательность возрастающая (так как с ростом Числовые ряды - основные понятия с примерами решения увеличивается число положительных слагаемых в скобках) и ограниченная (это видно из того, что Числовые ряды - основные понятия с примерами решения можно представить в виде

Числовые ряды - основные понятия с примерами решения

откуда следует, что Числовые ряды - основные понятия с примерами решения). На основании признака существования предела (см. § 6.5) последовательность Числовые ряды - основные понятия с примерами решения имеет предел Числовые ряды - основные понятия с примерами решения

Попутно заметим, что, переходя к пределу в неравенстве Числовые ряды - основные понятия с примерами решенияполучим, что Числовые ряды - основные понятия с примерами решения

Теперь рассмотрим последовательность частичных сумм нечетного числа членов при Числовые ряды - основные понятия с примерами решения Очевидно, что Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения поэтому, учитывая необходимый признак сходимости ряда,

Числовые ряды - основные понятия с примерами решения

Итак, при любом Числовые ряды - основные понятия с примерами решения (четном или нечетном) Числовые ряды - основные понятия с примерами решения т.е. ряд сходится. Рис. 13.1 иллюстрирует сходимость Числовые ряды - основные понятия с примерами решения к числу Числовые ряды - основные понятия с примерами решения слева при четном Числовые ряды - основные понятия с примерами решения и справа при нечетном Числовые ряды - основные понятия с примерами решения. ■

Числовые ряды - основные понятия с примерами решения

Из рис. 13.1 вытекает еще одна оценка для суммы Числовые ряды - основные понятия с примерами решения сходящегося знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница: при любом Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Пример №8

Исследовать сходимость ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Так как члены знакочередующегося ряда убывают по абсолютной величине Числовые ряды - основные понятия с примерами решения и предел общего члена Числовые ряды - основные понятия с примерами решения то по признаку Лейбница ряд сходится. ►

Замечание. В теореме Лейбница существенно не только условие Числовые ряды - основные понятия с примерами решения но и условие Числовые ряды - основные понятия с примерами решения Так, например, для ряда ,

Числовые ряды - основные понятия с примерами решениявторое условие нарушено и, хотя Числовые ряды - основные понятия с примерами решения ряд расходится. Это видно, если данный ряд представить (после попарного сложения его членов) в виде Числовые ряды - основные понятия с примерами решения

т.е. «удвоенного» гармонического ряда.

Следствие. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница, по абсолютной величине не превышает абсолютной величины первого отброшенного члена.

По формуле (13.9) сумму сходящегося ряда можно представить как сумму Числовые ряды - основные понятия с примерами решения членов ряда и суммы Числовые ряды - основные понятия с примерами решения-гo остатка ряда, т.е. Числовые ряды - основные понятия с примерами решения Полагая приближенно Числовые ряды - основные понятия с примерами решения мы допускаем погрешность, равную Числовые ряды - основные понятия с примерами решения Так как при четном Числовые ряды - основные понятия с примерами решения Числовые ряды - основные понятия с примерами решения-й остаток знакочередующегося ряда Числовые ряды - основные понятия с примерами решения представляет ряд, удовлетворяющий условиям теоремы Лейбница, то его сумма Числовые ряды - основные понятия с примерами решения не превосходит первого члена Числовые ряды - основные понятия с примерами решения Так как при нечетном Числовые ряды - основные понятия с примерами решения для Числовые ряды - основные понятия с примерами решения-го остатка рядаЧисловые ряды - основные понятия с примерами решения его сумма Числовые ряды - основные понятия с примерами решения то, очевидно, что при любом Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Пример №9

Какое число членов ряда Числовые ряды - основные понятия с примерами решения надо взять, чтобы вычислить его сумму с точностью до 0,001?

Решение:

По условию Числовые ряды - основные понятия с примерами решения Учитывая следствие теоремы Лейбница (13.18), запишем более сильное неравенствоЧисловые ряды - основные понятия с примерами решения или Числовые ряды - основные понятия с примерами решения откуда Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решения или Числовые ряды - основные понятия с примерами решения т.е. необходимо взять не менее 31 члена ряда. ►

Знакопеременные ряды. Пусть Числовые ряды - основные понятия с примерами решения знакопеременный ряд (13.1), в котором любой его член Числовые ряды - основные понятия с примерами решения может быть как положительным, так и отрицательным.

Теорема (достаточный признак сходимости знакопеременного ряда). Если ряд, составленный из абсолютных величин членов данного ряда (13.1)

Числовые ряды - основные понятия с примерами решения

сходится, то сходится и данный ряд.

 Обозначим Числовые ряды - основные понятия с примерами решения суммы абсолютных величин членов данного ряда (13.1), входящих в него со знаком «плюс» и «минус».

Тогда частичная сумма данного ряда Числовые ряды - основные понятия с примерами решения а ряда, составленного из абсолютных величин его членов, Числовые ряды - основные понятия с примерами решения По условию ряд (13.19) сходится, следовательно, существует конечный предел Числовые ряды - основные понятия с примерами решения

Последовательности Числовые ряды - основные понятия с примерами решения являются возрастающими (так как с увеличением Числовые ряды - основные понятия с примерами решения увеличиваются Числовые ряды - основные понятия с примерами решения) и ограниченными

Числовые ряды - основные понятия с примерами решения значит, существуют пределы Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решения и соответственно предел частичной суммы данного ряда

Числовые ряды - основные понятия с примерами решения т.е. ряд (13.1) сходится. ■

Следует отметить, что обратное утверждение неверно. Ряд (13.19) может расходиться, а ряд (13.1) сходиться. Например, ряд Числовые ряды - основные понятия с примерами решения сходится по признаку Лейбница, а ряд из абсолютных величин его членов Числовые ряды - основные понятия с примерами решения(гармонический ряд) расходится.

Поэтому введем следующие определения.

Определение 1. Ряд называется абсолютно сходящимся, если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов.

Определение 2. Ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Таким образом, рассмотренный выше ряд Числовые ряды - основные понятия с примерами решения— абсолютно сходящийся, а ряд Числовые ряды - основные понятия с примерами решения условно сходящимся.

Грубо говоря, различие между абсолютно сходящимися и условно сходящимися рядами заключается в следующем: абсолютно сходящиеся ряды сходятся в основном в силу того, что их члены быстро убывают, а условно сходящиеся — в результате того, что положительные и отрицательные слагаемые уничтожают друг друга.

Свойства абсолютно и условно сходящихся рядов существенно отличаются. Абсолютно сходящиеся ряды по своим свойствам напоминают конечные суммы, их можно складывать, перемножать, переставлять местами члены ряда.

Условно сходящиеся ряды такими свойствами не обладают.

Возьмем, например, ряд Числовые ряды - основные понятия с примерами решенияПереставим члены местами и сгруппируем их следующим образом:

Числовые ряды - основные понятия с примерами решения

Перепишем ряд в виде:

Числовые ряды - основные понятия с примерами решения

т.е. от перестановки членов ряда сумма его уменьшилась в 2 раза.

Можно показать (теорема Римана), что от перестановки членов условно сходящегося ряда можно получить ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

Пример №10

Найти сумму ряда Числовые ряды - основные понятия с примерами решения доказав его сходимость.

Решение:

Очевидно, что общий член ряда Числовые ряды - основные понятия с примерами решения

Представим сумму Числовые ряды - основные понятия с примерами решения членов ряда в виде Числовые ряды - основные понятия с примерами решения Так как при Числовые ряды - основные понятия с примерами решения последовательность Числовые ряды - основные понятия с примерами решения имеет конечный предел, то ряд сходится, и его сумма

Числовые ряды - основные понятия с примерами решения

Пример №11

Исследовать сходимость ряда:

Числовые ряды - основные понятия с примерами решения

Решение:

а) Проверим выполнение необходимого признака сходимости, найдя предел общего члена:

Числовые ряды - основные понятия с примерами решения

Для вычисления предела отношения двух бесконечно больших функций натурального аргумента правило Лопиталя непосредственно применять нельзя, ибо для таких функций не определено понятие производной. Поэтому применяя теорему о «погружении» дискретного аргумента Числовые ряды - основные понятия с примерами решения в непрерывный Числовые ряды - основные понятия с примерами решения, получим Числовые ряды - основные понятия с примерами решения

следовательно, ряд расходится.

б) Очевидно, что задан ряд с положительными членами, так как Числовые ряды - основные понятия с примерами решения ибо аргумент синуса Числовые ряды - основные понятия с примерами решения при любом Числовые ряды - основные понятия с примерами решения. Так как члены данного ряда меньше членов сходящегося геометрического ряда со знаменателем

Числовые ряды - основные понятия с примерами решения(ибо при Числовые ряды - основные понятия с примерами решения), то данный ряд сходится.

в) Представим общий член ряда в виде

Числовые ряды - основные понятия с примерами решенияПрименим предельный признак сравнения, сравнив данный ряд со сходящимся «эталонным» рядом (13.12) при Числовые ряды - основные понятия с примерами решения Так как предел отношения общих членов двух рядов

Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения

есть конечное число, не равное нулю, то данный ряд, так же как и «эталонный», сходится.

г) Применим признак Даламбера, заметив, что общий член ряда Числовые ряды - основные понятия с примерами решения имеет вид Числовые ряды - основные понятия с примерами решения

Тогда Числовые ряды - основные понятия с примерами решенияи Числовые ряды - основные понятия с примерами решения т.е. данный ряд сходится.

д) Применим признак Даламбера:

Числовые ряды - основные понятия с примерами решения

т.е. вопрос о сходимости ряда остается открытым. Проверим выполнение необходимого признака (с этого можно было начать исследование): Числовые ряды - основные понятия с примерами решения т.е. необходимый признак выполнен, но вопрос о сходимости ряда по-прежнему не решен.

Применим признак сравнения в более простой предельной форме. Сравним данный ряд, например, с гармоническим.

Числовые ряды - основные понятия с примерами решеният.е. ответа о сходимости ряда нет. Аналогичная картина (Числовые ряды - основные понятия с примерами решения или Числовые ряды - основные понятия с примерами решения) наблюдается и при использовании других «эталонных» рядов (см. § 13.3). Применим, наконец, признак сравнения в обычной форме. Сравним данный ряд с тем же гармоническим рядом, у которого отброшен первый член:

Числовые ряды - основные понятия с примерами решенияТак как члены рассматриваемого ряда больше членов расходящегося гармонического ряда Числовые ряды - основные понятия с примерами решенияЧисловые ряды - основные понятия с примерами решения и вообще

Числовые ряды - основные понятия с примерами решения что вытекает из очевидного неравенства Числовые ряды - основные понятия с примерами решения), то данный ряд расходится. ►

Пример №12

Исследовать сходимость ряда:

Числовые ряды - основные понятия с примерами решения

Решение:

а) Предел общего члена ряда Числовые ряды - основные понятия с примерами решения так как знаменатель дроби стремится к нулю, а числитель колеблется, принимая значения 1 (при четном Числовые ряды - основные понятия с примерами решения) и —1 (при нечетном Числовые ряды - основные понятия с примерами решения). Следовательно, необходимый признак сходимости не выполнен, и ряд расходится.

б) Так как члены знакочередующегося ряда, начиная со второго, убывают по абсолютной величине —

Числовые ряды - основные понятия с примерами решения

и предел общего члена Числовые ряды - основные понятия с примерами решения (это можно установить, например, с помощью правила Лопиталя), то по признаку Лейбница ряд сходится. Ряд Числовые ряды - основные понятия с примерами решения составленный из абсолютных величин членов данного ряда, расходится, так как его члены больше членов расходящегося гармонического ряда, умноженного на Числовые ряды - основные понятия с примерами решения Следовательно, данный ряд условно сходящийся.

в) Ряд, составленный из абсолютных величин членов данного ряда, сходится, так как его члены меньше членов сходящегося ряда (13.12) при Числовые ряды - основные понятия с примерами решенияследовательно, данный ряд сходится и притом абсолютно. ►

Определение ряда и его сходимость

Пусть

Числовые ряды - основные понятия с примерами решения

бесконечная последовательность чисел.

Определение 27.1.1. Выражение

Числовые ряды - основные понятия с примерами решения

называется числовым рядом, а элементы последовательности Числовые ряды - основные понятия с примерами решениячленами ряда.

Поскольку выражение (27.1.2) рассматривается как единое целое, то для задания ряда необходимо задать каждый его член Числовые ряды - основные понятия с примерами решения Обычно член ряда задается как некоторая функция от своего номера. Аналитическое выражение этой функции называют общим членом ряда. Например, общим членом ряда геометрической прогрессии Числовые ряды - основные понятия с примерами решения является Числовые ряды - основные понятия с примерами решения

Припишем теперь определенный смысл выражению (27.1.2), т.е. введем определение.

Определение 27.1.2. Сумма n первых членов ряда (27.1.2) Числовые ряды - основные понятия с примерами решения называется n-ой частичной суммой этого ряда.

Ясно, что первая, вторая, третья и т.д. частичные суммы ряда Числовые ряды - основные понятия с примерами решения

составляют бесконечную последовательность: Числовые ряды - основные понятия с примерами решения

Определение 27.1.3. Ряд (27.1.2) называется сходящимся, если последовательность Числовые ряды - основные понятия с примерами решенияего частичных сумм имеет конечный предел:Числовые ряды - основные понятия с примерами решения

Значение S этого предела называется суммой ряда (27.1.2). Ряд (27.1.2) называется расходящимся, если последовательность его частичных сумм предела не имеет (например, если члены последовательности возрастают по модулю неограниченно).

Содержание теории числовых рядов состоит в установлении сходимости или расходимости тех или иных рядов и в вычислении сумм сходящихся рядов.

В принципе можно доказывать сходимость или расходимость каждого ряда, а также вычислять сумму сходящегося ряда, опираясь непосредственно на определения сходимости и суммы. Для этого в каждом случае составляется аналитическое выражение для n- ой частичной суммы ряда и находится предел этого выражения при возрастании n.

Пример:

Для ряда Числовые ряды - основные понятия с примерами решения-я частичная сумма Числовые ряды - основные понятия с примерами решения, и предел ееЧисловые ряды - основные понятия с примерами решения, поэтому этот ряд сходится и его сумма равна 1.

Пример:

Последовательность вида

Числовые ряды - основные понятия с примерами решения

называется геометрической прогрессией, где а – первый член, а

q – её знаменатель; выражение Числовые ряды - основные понятия с примерами решения называется общим членом геометрической прогрессии.

Числовой рядЧисловые ряды - основные понятия с примерами решения члены которого являются членами геометрической прогрессии, называется геометрическим рядом со знаменателем q .

Если в прогрессии (27.1.3) имеется только конечное число членов, то прогрессия называется конечной; в противном случае, если за каждым членом прогрессии следует ещё хотя бы один член, то прогрессия называется бесконечной.

В случае конечной прогрессии Числовые ряды - основные понятия с примерами решенияможно говорить о сумме всех её членов Числовые ряды - основные понятия с примерами решения, которую можно назвать n- ой частичной суммой геометрического ряда.

Известно, что при Числовые ряды - основные понятия с примерами решения, эта сумма равна Числовые ряды - основные понятия с примерами решения. Из определения 27.1.3 следует, что суммой геометрического ряда

Числовые ряды - основные понятия с примерами решения

называется предел её частичных сумм Числовые ряды - основные понятия с примерами решения при неограниченном возрастании n:

Числовые ряды - основные понятия с примерами решения

Так как а и q от n не зависят, то последнюю формулу представим в виде:

Числовые ряды - основные понятия с примерами решения

Если Числовые ряды - основные понятия с примерами решения то предел Числовые ряды - основные понятия с примерами решения равен нулю, и мы получаем

Числовые ряды - основные понятия с примерами решения, т.е. при Числовые ряды - основные понятия с примерами решения прогрессия (27.1.5) сходится. Следователь-

но, сходится и ряд (27.1.4). Если же Числовые ряды - основные понятия с примерами решения, то предел справа в равенстве (27.1.5) не существует и, следовательно, ряд (27.1.4) расходится.

Итак, мы привели примеры, в которых исследование сходимости рядов проводили, применяя определение 27.1.3., т.е. вычисляли частичные суммы и находили предел их последовательностей. Ясно, что в общем случае, составление аналитического выражения для n- ой частичной суммы трудный вопрос. Кроме того, при исследовании рядов нередко значения сумм не представляют интереса, т.к. нужно определить только сходится ряд или нет. Поэтому представляют интерес методы анализа рядов, когда не требуется вычислять суммы рядов. Далее перейдем к изложению таких методов.

Свойства сходящихся рядов

Пусть дан ряд

Числовые ряды - основные понятия с примерами решения

Определение 27.2.1. Ряд Числовые ряды - основные понятия с примерами решенияназывается n-м остатком ряда (27.2.1.)

Очевидно, m- я частичная суммаn -го остатка ряда равна разности Числовые ряды - основные понятия с примерами решениячастичных сумм самого ряда. Кроме того, Числовые ряды - основные понятия с примерами решения, откуда, переходя к пределу по m при Числовые ряды - основные понятия с примерами решения, получим Числовые ряды - основные понятия с примерами решения

Предел слева есть сумма исходного ряда, а предел справа-сумма Числовые ряды - основные понятия с примерами решения его n – го остатка: Числовые ряды - основные понятия с примерами решения. Ясно, что из существования предела в левой части равенства следует существование другого предела в правой части и наоборот. Поэтому если сходится один из остатков ряда, то сходится и сам ряд. Точно так же из сходимости ряда следует сходимость каждого его остатка. Кроме того, справедлива следующая теорема.

Теорема 27.2.1. Если ряд (27.2.1) сходится, то сумма его n-го остатка с ростом n стремится к нулю.

Доказательство. Выше показано, что Числовые ряды - основные понятия с примерами решения. Так как это равенство справедливо для любого n, то мы можем перейти в нем по n к пределу:Числовые ряды - основные понятия с примерами решения

Но для сходящегося ряда Числовые ряды - основные понятия с примерами решения, поэтому Числовые ряды - основные понятия с примерами решения

Рассмотрим теперь свойства сходящихся рядов, которые позволяют действовать с ними, как с конечными суммами.

Теорема 27.2.2. Если ряд

Числовые ряды - основные понятия с примерами решения

имеет сумму S, то ряд

Числовые ряды - основные понятия с примерами решения

полученный из предыдущего умножением всех членов на одно и тоже число a, имеет сумму aS.

Доказательство. Обозначим последовательность частичных сумм ряда (27.2.2) Числовые ряды - основные понятия с примерами решения Тогда последовательность частичных сумм ряда (27.2.3) очевидно будет иметь вид:Числовые ряды - основные понятия с примерами решения. И поэтому Числовые ряды - основные понятия с примерами решения. Так как ряд

(27.2.2) сходится, то Числовые ряды - основные понятия с примерами решениясуществует и, следовательно, существует предел Числовые ряды - основные понятия с примерами решения ив силу этого же равенства он равен aS.

Теорема 27.2.3. Если ряды

Числовые ряды - основные понятия с примерами решения и Числовые ряды - основные понятия с примерами решениясходятся, а их суммы соответственно равныЧисловые ряды - основные понятия с примерами решения, то и рядЧисловые ряды - основные понятия с примерами решенияназываемый суммой данных рядов, также сходится и его сумма равна сумме сумм данных рядов Числовые ряды - основные понятия с примерами решения, другими словами, сходящиеся ряды можно почленно складывать.

Доказательство. Пусть Числовые ряды - основные понятия с примерами решения и

Числовые ряды - основные понятия с примерами решения . Тогда n -ая частичная сумма Числовые ряды - основные понятия с примерами решения ряда

Числовые ряды - основные понятия с примерами решения будет равнаЧисловые ряды - основные понятия с примерами решения и так как Числовые ряды - основные понятия с примерами решения существуют, то

Числовые ряды - основные понятия с примерами решения существует и равенЧисловые ряды - основные понятия с примерами решения, т.е.

Числовые ряды - основные понятия с примерами решения

Следствие. Разность двух сходящихся рядов-ряд сходящийся.

Теорема 27.2.4. Свойства сходимости или расходимости ря-,ki не нарушается, если в ряде исключить или приписать к нему любое конечное число членов.

Доказательство. ПустьЧисловые ряды - основные понятия с примерами решения два ряда, причём второй получается из первого исключением первых двух членов. Тогда, если Числовые ряды - основные понятия с примерами решения – n-я частичная сумма первого ряда, а Числовые ряды - основные понятия с примерами решения – n-я частичная сумма второго ряда, то, очевидно, что

Числовые ряды - основные понятия с примерами решения

Из этого равенства следует, что, если Числовые ряды - основные понятия с примерами решения имеет предел, то Числовые ряды - основные понятия с примерами решения также имеет предел. Ясно, что эти пределы будут различны, а, именно Числовые ряды - основные понятия с примерами решения Если же Числовые ряды - основные понятия с примерами решения не имеет предела, то Числовые ряды - основные понятия с примерами решения также не имеет предела. Числовые ряды - основные понятия с примерами решения

Теорема 27.2.5. (Необходимое условие сходимости ряда). Если ряд Числовые ряды - основные понятия с примерами решения сходится, то его общий член стремится к нулю, т.е.

Числовые ряды - основные понятия с примерами решения

Доказательство. Пусть ряд Числовые ряды - основные понятия с примерами решения сходится и его сумма равна S. Из определения n -ой частичной суммы следует, что общий член ряда можно представить в виде разности и-ой частичной суммы и (n-1)-ой частичной суммы: Числовые ряды - основные понятия с примерами решения. Переходя к пределу в этом равенстве, получим утверждение теоремы:

Числовые ряды - основные понятия с примерами решения

Отметим, что условие (27.2.4) не является достаточным, т.е. общий член может стремиться к нулю, но ряд все же может быть расходящимся. Но если общий член ряда не стремится к нулю, то ряд будет расходящийся.

  • Заказать решение задач по высшей математике

Пример №13

Исследуем на сходимость гармонический ряд

Числовые ряды - основные понятия с примерами решения

Решение:

Вначале находим предел общего члена: Числовые ряды - основные понятия с примерами решения. Нетрудно, однако, показать, что сумма n первых членов гармонического ряда беспредельно возрастает. Для этого сгруппируем слагаемые, начиная со второго, в группы из 1, 2, 4, 8,… членов:Числовые ряды - основные понятия с примерами решения так что в k – ой группе будет Числовые ряды - основные понятия с примерами решения членов. Fx л и в каждой групп заменим все члены последним, то получим ряд:

Числовые ряды - основные понятия с примерами решения сумма n первых членов которого, равнаЧисловые ряды - основные понятия с примерами решения, очевидно, стремится к Числовые ряды - основные понятия с примерами решения :

Числовые ряды - основные понятия с примерами решения Но сумма n первых членов заданного гармонического ряда больше суммы n первых членов преобразованного ряда, т.е. Числовые ряды - основные понятия с примерами решения. Тогда Числовые ряды - основные понятия с примерами решения, что означает, чтоЧисловые ряды - основные понятия с примерами решения следовательно, гармонический ряд расходится.

Пример №14

Найти формулу для общего члена ряда

Числовые ряды - основные понятия с примерами решения

считая, что каждый его последующий член определяется по тому же закону, по которому образованы записанные члены, и найти ею сумму.

Решение:

Каждый член данного ряда представляет собой дробь, числитель которой равен 1, а знаменатель равен произведению двух последовательных натуральных чисел Числовые ряды - основные понятия с примерами решения . Следовательно, искомая формула общего члена ряда имеет вид:

Числовые ряды - основные понятия с примерами решения

Для вычисления суммы ряда составим n -ую частичную сумму:

Числовые ряды - основные понятия с примерами решения

Представим выражение для общего члена в виде разности:

Числовые ряды - основные понятия с примерами решения

тогда

Числовые ряды - основные понятия с примерами решения

Переходя к пределу, получаем сумму ряда:

Числовые ряды - основные понятия с примерами решения

Пример №15

Исследовать сходимость ряда

Числовые ряды - основные понятия с примерами решения

Решение:

Общий член ряда определяется формулой Числовые ряды - основные понятия с примерами решения

Вычислим предел модуля общего члена:Числовые ряды - основные понятия с примерами решения

Так как предел общего члена не стремится к нулю, то ряд расходится.

Признаки сходимости числовых знакоположительных рядов

Рассмотрим числовые ряды с положительными членами. Существует много приёмов, называемых признаками сходимости, позволяющих установить сходимость или расходимость числовых рядов Так мы познакомились с методом исследования сходимости ряда на основании выяснения имеет ли предел последовательность частичных сумм. Стремление к нулю члена ряда по мерс роста его номера также является признаком сходимости, хотя только необходимым. Ниже мы приведём ряд достаточных признаков сходимости.

Признаки сравнения

Теорема 27.3.1. (I признак сравнения). Пусть Числовые ряды - основные понятия с примерами решения

и

Числовые ряды - основные понятия с примерами решения

два ряда, причём члены первого ряда, начиная с некоторого номера k , не превосходят соответствующих членов второго

Числовые ряды - основные понятия с примерами решения

Тогда из сходимости ряда (27.3.2) следует сходимость ряда (27.3.1), а из расходимости ряда (27.3.1) следует расходимость ряда (27.3.2).

Доказательство. Так как исключение конечного числа членов ряда не влияет на его сходимость (теорема 27.2.4.), то достаточно доказать теорему для случая когда неравенства (27.3.3) выполняются для k = 1.

Пусть Числовые ряды - основные понятия с примерами решения последовательности частичных сумм рядов (27.3.1) и (27.3.2) соответственно. Это возрастающие последовательности, так как члены рядов неотрицательные числа. В силу неравенств (27.3.3), имеем Числовые ряды - основные понятия с примерами решения

Пусть ряд (27.3.2) сходится. Тогда сходится соответствующая последовательность частичных сумм ряда (27.3.2), т.е.Числовые ряды - основные понятия с примерами решения

Поскольку выполняются неравенства (27.3.3), то члены последовательности частичных сумм ряда (27.3.1) удовлетворяют неравенствуЧисловые ряды - основные понятия с примерами решения для всех т. Следовательно, последовательность Числовые ряды - основные понятия с примерами решения возрастает и ограничена: Числовые ряды - основные понятия с примерами решения

Поэтому, в силу признака Больцано-Всйсрштраса, последовательность частичных сумм ряда (27.3.1) сходится. По определению 27.1.3, сходится и ряд (27.3.1).

Пусть теперь ряд (27.3.1) расходится. Это значит, что его частичные суммы неограниченно возрастают. Но тогда, в силу неравенств (27.3.3), неограниченно возрастают и частичные суммы ряда (27.3.2), что означает, что этот ряд расходится. 

Пример №16

Пусть дан ряд Числовые ряды - основные понятия с примерами решения

Исследуем его сходимость.

Решение:

Необходимый признак выполняется, т.е. Числовые ряды - основные понятия с примерами решения

Для исследования сходимости заданного ряда применим 1 признак

сравнения (теорему 27.3.1). Сравним заданный рядЧисловые ряды - основные понятия с примерами решенияс гармоничсским рядом Числовые ряды - основные понятия с примерами решения. Так как выполняются неравенстваЧисловые ряды - основные понятия с примерами решениято ряд Числовые ряды - основные понятия с примерами решениярасходится, потому что расходится гармонический ряд.

Пример №17

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Решение:

Очевидно, что предел общего члена при возрастании т стремится к нулю.

Сравним данный ряд, общий член которого Числовые ряды - основные понятия с примерами решенияс гармоническим рядомЧисловые ряды - основные понятия с примерами решения который сходится, так как Числовые ряды - основные понятия с примерами решения

Поскольку Числовые ряды - основные понятия с примерами решения для Числовые ряды - основные понятия с примерами решения т.е. выполняются неравенства (27.3.3), то на основании первого признака сравнения заключаем, что исследуемый ряд также сходится.

Теорема 27.3.2. (II признак сравнения). Если для рядовЧисловые ряды - основные понятия с примерами решения иЧисловые ряды - основные понятия с примерами решения отношение общих членов Числовые ряды - основные понятия с примерами решения стремится к некоторому положительному и конечному пределу:

Числовые ряды - основные понятия с примерами решения

то ряды Числовые ряды - основные понятия с примерами решениясходятся или расходятся одновременно.

Доказательство. Предельное соотношение (27.3.4), в силу определения Числовые ряды - основные понятия с примерами решенияозначает, что, начиная с некоторою номера N ,

выполняется неравенствоЧисловые ряды - основные понятия с примерами решения. Это неравенство равносильно неравенству:

Числовые ряды - основные понятия с примерами решения

Обозначив Числовые ряды - основные понятия с примерами решения, неравенство (27.3.5) запишется в виде:

Числовые ряды - основные понятия с примерами решения

Предположим, что ряд Числовые ряды - основные понятия с примерами решения сходится. Поскольку выполняется неравенство Числовые ряды - основные понятия с примерами решения то, из первого признака сравнения, следует сходимость ряда Числовые ряды - основные понятия с примерами решения в силу теоремы 27.2.2, и ряда Числовые ряды - основные понятия с примерами решения . Если же ряд Числовые ряды - основные понятия с примерами решениярасходится, то расходится и ряд Числовые ряды - основные понятия с примерами решения по теореме 27.2.2. Тогда, поскольку выполняется неравенство Числовые ряды - основные понятия с примерами решения, расходится и ряд Числовые ряды - основные понятия с примерами решения в силу I признака сравнения. Аналогично рассуждая можно показать, что из сходимости ряда Числовые ряды - основные понятия с примерами решения следует сходимость ряда Числовые ряды - основные понятия с примерами решения по I признаку сравнения с использованием теоремы 27.2.2. 13Числовые ряды - основные понятия с примерами решения

Последовательность Числовые ряды - основные понятия с примерами решения называется сходящейся, если существует такое вещественное число а , что для любого положительного числа Числовые ряды - основные понятия с примерами решения найдется номер Числовые ряды - основные понятия с примерами решения такой, что для всехЧисловые ряды - основные понятия с примерами решения выполняется неравенство Числовые ряды - основные понятия с примерами решения

Пример №18

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Решение:

Очевидно, что Числовые ряды - основные понятия с примерами решения. Поэтому, воспользуемся признаком сравнения, сравнив заданный ряд с гармоническим. Найдем предел отношения общих членов исследуемого ряда и гармонического:

Числовые ряды - основные понятия с примерами решения

Теорема 27.3.2 выполняется, поэтому из расходимости гармонического ряда Числовые ряды - основные понятия с примерами решенияследует расходимость исследуемого ряда.

Признаки Д’Аламбсра и Коши

Иногда вместо признаков сравнения оказываются полезными некоторые специальные признаки сходимости ряда. Отметим среди них признаки Д’Аламбсра и Коши, непосредственно получающиеся из признаков сравнения, если в качестве ряда сравнения взять соответствующим образом выбранную геометрическую прогрессию.

Теорема 27.3.3. (признак Д’Аламбера). Если для ряда

Числовые ряды - основные понятия с примерами решения

с положительными членами существует такой номер Числовые ряды - основные понятия с примерами решения, начиная с которого, т.е. при Числовые ряды - основные понятия с примерами решения, отношение последующего члена к предыдущему удовлетворяет неравенству: Числовые ряды - основные понятия с примерами решения, то ряд (27.3.6) сходится. Если же существует номер Числовые ряды - основные понятия с примерами решения, начиная с которого, т.е. при Числовые ряды - основные понятия с примерами решения отношение последующего члена к предыдущему больше единицы:Числовые ряды - основные понятия с примерами решения то ряд (27.3.6) расходится.

Доказательство. Пусть 0 Числовые ряды - основные понятия с примерами решения q Числовые ряды - основные понятия с примерами решения 1 и пусть существует такой номер Числовые ряды - основные понятия с примерами решения, что при Числовые ряды - основные понятия с примерами решения. выполняется неравенство:Числовые ряды - основные понятия с примерами решенияПерепишем это неравенство в виде: Числовые ряды - основные понятия с примерами решения. Тогда, начиная с номера Числовые ряды - основные понятия с примерами решения буду последовательно выполнятся неравенства:

Числовые ряды - основные понятия с примерами решения

Ряд Числовые ряды - основные понятия с примерами решения, являясь суммой член геометрической прогрессии со знаменателем Числовые ряды - основные понятия с примерами решения, сходите Из неравенств (27.3.7) следует, что по I признаку сравнения, сходится и ряд Числовые ряды - основные понятия с примерами решениязначит и весь ряд (27.3.6

т.к. на сходимость ряда не влияет исключение конечного числа е^ членов.

Если же существует такое Числовые ряды - основные понятия с примерами решения, что выполняется неравенствЧисловые ряды - основные понятия с примерами решения для всех Числовые ряды - основные понятия с примерами решения, то, переписав его в виде Числовые ряды - основные понятия с примерами решения, можно для всех Числовые ряды - основные понятия с примерами решения, последовательно записать следующие неравенство

Числовые ряды - основные понятия с примерами решения

Так как по предположению Числовые ряды - основные понятия с примерами решения, то n-ный член ряда будучи ограниченным снизу положительной постоянной не стремится к нулю. Следовательно, не выполняется необходимое условие сходимости ряда, и поэтому ряд (27.3.6) расходится. Числовые ряды - основные понятия с примерами решения

Следствие 1. Пусть существует предел отношения последующего члена ряда (27.3.6) к предыдущему равный r :

Числовые ряды - основные понятия с примерами решения

Тогда, еслиЧисловые ряды - основные понятия с примерами решения то ряд (27.3.6) сходится: если же Числовые ряды - основные понятия с примерами решения то ряд (21.3.6) расходится.

Доказательство. Воспользовавшись определением предела, для фиксированного Числовые ряды - основные понятия с примерами решения, можно утверждать, что начиная с некоторого номера Числовые ряды - основные понятия с примерами решения, для всех Числовые ряды - основные понятия с примерами решения, все отношения Числовые ряды - основные понятия с примерами решения будут отличатся от значения предела r на число Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Рассмотрим правую часть двойного неравенства: Числовые ряды - основные понятия с примерами решения . Тогда сославшись на доказанную теорему 27.3.3, в случае если r Числовые ряды - основные понятия с примерами решения1, получаем сходимость ряда. Рассматривая левую часть неравенства

Числовые ряды - основные понятия с примерами решения , получаем расходимость ряда приr > 1. Следствие доказано.

Пример №19

Рассмотрим ряд Числовые ряды - основные понятия с примерами решения, сходимость которого исследуем, используя признак Даламбера, т.е. следствие 1.

Решение:

Выпишем вначале значения Числовые ряды - основные понятия с примерами решения

Числовые ряды - основные понятия с примерами решения

Затем вычислим предел отношения последующего члена ряда к предыдущему:

Числовые ряды - основные понятия с примерами решения

Так как этот предел меньше 1, то, в силу следствия 1, данный ряд сходится.

Заметим, что при исследовании сходимости ряда обычно (как правило, но не всегда) применяют следствие 1 из теоремы 27.3.3.

Теорема 27.3.4. (признак Kouiu). Если для ряда

Числовые ряды - основные понятия с примерами решения

с положительными членами, начиная с некоторого номера Числовые ряды - основные понятия с примерами решения. выполняется неравенство Числовые ряды - основные понятия с примерами решениядля всех Числовые ряды - основные понятия с примерами решения, то ряд (27.3.6) сходится. Если же существует такой номер Числовые ряды - основные понятия с примерами решения, начиная с которого выполняется неравенство Числовые ряды - основные понятия с примерами решения для всех Числовые ряды - основные понятия с примерами решения, то данный ряд расходится.

Доказательство. Пусть существует такой номер Числовые ряды - основные понятия с примерами решения, что при всехЧисловые ряды - основные понятия с примерами решения выполняется неравенство Числовые ряды - основные понятия с примерами решения Тогда, возводя обе части неравенства в степень n, получим Числовые ряды - основные понятия с примерами решения. Так как сходится геометрический ряд Числовые ряды - основные понятия с примерами решения, то на основании признака сравнения, получаем, что ряд Числовые ряды - основные понятия с примерами решения сходится. Если же существует номер Числовые ряды - основные понятия с примерами решения, такой что Числовые ряды - основные понятия с примерами решения для всех Числовые ряды - основные понятия с примерами решения, то ясно, что Числовые ряды - основные понятия с примерами решения, и значитЧисловые ряды - основные понятия с примерами решения (не выполняется необходимый признак сходимости), поэтому ряд Числовые ряды - основные понятия с примерами решениярасходится.Числовые ряды - основные понятия с примерами решения

Следствие 2. Пусть существует предел корня n -ой степени из n-го члена ряда (27.3.9):

Числовые ряды - основные понятия с примерами решения

Тогда, если Числовые ряды - основные понятия с примерами решения, то ряд (27.3.9) сходится, если жеЧисловые ряды - основные понятия с примерами решения, то ряд (27.3.9) расходится.

Доказательство. Из определения предела следует, что для фиксированного Числовые ряды - основные понятия с примерами решения существует номер Числовые ряды - основные понятия с примерами решения, начиная с которого выполняется неравенство Числовые ряды - основные понятия с примерами решения Это неравенство равносильно неравенствуЧисловые ряды - основные понятия с примерами решения. Из правой части неравенства следуетЧисловые ряды - основные понятия с примерами решения, поскольку Числовые ряды - основные понятия с примерами решениясколь угодно малое число. Тогда из теоремы 27.3.4, получаем сходимость ряда (27.3.9). Рассматривая левую часть неравенстваЧисловые ряды - основные понятия с примерами решения, получимЧисловые ряды - основные понятия с примерами решения и еслиЧисловые ряды - основные понятия с примерами решения, то из теоремы 27.3.4 следует расходимость ряда (27.3.9). Следствие доказано.

Пример №20

Рассмотрим ряд Числовые ряды - основные понятия с примерами решения, сходимость которого исследуем по признаку Коши, т.е. применим следствие 2.

Решение:

Выпишем значение n-го члена ряда Числовые ряды - основные понятия с примерами решения н вычислим предел корня n -ой степени: Числовые ряды - основные понятия с примерами решения

Так как этот предел меньше 1, то, согласно следствию 2, ряд сходится.

Замечание. Если пределы (27.3.8) и (27.3.10) равны 1, то для исследования сходимости ряда (27.3.9) нужно применять другие признаки, с которыми можно ознакомиться в [3].

Интегральный признак сходимости

Рассмотрим признак, достоинство которого состоит в исключительно высокой его чувствительности. Этим признаком проводится исследование сходимости там, где сформулированные признаки Д’Аламбсра и Коши «не работают».

Каждый член числового ряда Числовые ряды - основные понятия с примерами решения можно рассматривать как значение функции f от его номера:

Числовые ряды - основные понятия с примерами решения

Эта функция определена пока только для целых положительных значений аргумента. Поэтому, доопределив значение функции f для всех нецелых значений аргумента, больших единицы, мы сможем, говорить о функции f(x), принимающей значения для любого Числовые ряды - основные понятия с примерами решения и при х = n, равные членам числового ряда. Теорема 27.3.5. Пусть дан ряд

Числовые ряды - основные понятия с примерами решения

члены которого положительны и не возрастают Числовые ряды - основные понятия с примерами решения Если функция f, определённая для всех Числовые ряды - основные понятия с примерами решения, неотрицательна и монотонно убывает, то ряд (27.3.11) сходится или расходится тогда и только тогда, когда сходится или

расходится интеграл Числовые ряды - основные понятия с примерами решения

Доказательство. Пусть члены ряда (27.3.11) удовлетворяют условиям теоремы. Изобразим их графически, откладывая по оси Ох независимую переменную, а по оси Оу – соответствующие значения Числовые ряды - основные понятия с примерами решения . Числовые ряды - основные понятия с примерами решения

При таком графическом изображении сумма n первых членов ряда Числовые ряды - основные понятия с примерами решенияпредставляет сумму площадей описанных прямоугольников, которая заключает внутри себя площадь, ограниченной кривой Числовые ряды - основные понятия с примерами решения, осью Ох и прямыми Числовые ряды - основные понятия с примерами решения и поэтому будет выполняться неравенство:

Числовые ряды - основные понятия с примерами решения

С другой стороны, криволинейная трапеция содержит сумму площадей вписанных прямоугольников, которая равна Числовые ряды - основные понятия с примерами решения Поэтому, выполняется неравенство:

Числовые ряды - основные понятия с примерами решения

Из (27.3.12) и (27.3.13) следует неравенство:

Числовые ряды - основные понятия с примерами решения

Предположим, что несобственный интеграл Числовые ряды - основные понятия с примерами решения сходится. Это означает, что Числовые ряды - основные понятия с примерами решения является конечным числом. Тогда из неравенства (27.3.14) следует, что последовательность частичных сумм Числовые ряды - основные понятия с примерами решения возрастающая и ограничена при всех n. Тогда в силу теоремы: “возрастающая последовательность, ограниченная сверху, сходится”, числовой ряд (27.3.11) сходится. Если же несобствснный интегралЧисловые ряды - основные понятия с примерами решения расходится, т.е. Числовые ряды - основные понятия с примерами решения, то из неравенства (27.3.12) следует, что последовательность частичных суммЧисловые ряды - основные понятия с примерами решения не ограничена. Тогда в силу определения 27.1.3 ряд будет расходящимся. Числовые ряды - основные понятия с примерами решения

Пример №21

Исследовать сходимость ряда Числовые ряды - основные понятия с примерами решения

Решение:

Применим интегральный признак. Рассмотрим функцию Числовые ряды - основные понятия с примерами решения которая положительна и убывает при х> 2, и исследуем сходимость несобственного интеграла:

Числовые ряды - основные понятия с примерами решения

Так как несобственный интеграл расходится, то расходится и рядЧисловые ряды - основные понятия с примерами решения в силу инте1рального признака Коши.

Замечание. Исследовать сходимость данного ряда при помощи следствий 1 и 2 не представляется возможным, так как соответствующие пределы равны 1.

Пример №22

Исследовать сходимость ряда Дирихле

Числовые ряды - основные понятия с примерами решения

Решение:

Если Числовые ряды - основные понятия с примерами решения, то общий член ряда Числовые ряды - основные понятия с примерами решения не стремится к нулю. На основании следствия из необходимого признака сходимости, следует расходимость ряда Дирихле при Числовые ряды - основные понятия с примерами решения.

Пусть а > 0, тогда необходимый признак, очевидно, выполняется. Применим интегральный признак Коши. Введем функцию

Числовые ряды - основные понятия с примерами решения, которая положительная и не возрастает при Числовые ряды - основные понятия с примерами решения и исследуем сходимость несобственного интегралаЧисловые ряды - основные понятия с примерами решения

Вычислим определенный интеграл, записанный под знаком предела:

Числовые ряды - основные понятия с примерами решения

ЕслиЧисловые ряды - основные понятия с примерами решения существует и равен Числовые ряды - основные понятия с примерами решения а при Числовые ряды - основные понятия с примерами решения указанный предел не существует.

Таким образом, при a>1 несобственный интеграл Числовые ряды - основные понятия с примерами решения сходится, следовательно, сходится и ряд Дирихле, а при Числовые ряды - основные понятия с примерами решения несобственный интеграл расходится, следовательно, расходится и ряд Дирихле.

  • Знакопеременные ряды
  • Степенные ряды
  • Элементы матричного анализа
  • Уравнение линии
  • Несобственные интегралы
  • Дифференциальные уравнения первого порядка
  • Линейные дифференциальные уравнения второго порядка
  • Системы дифференциальных уравнений

Гармонический ряд представляет собой сумму, составленную из бесконечного количества членов, обратных числам натурального ряда:

т.е. сумма всех чисел вида 1/n, где n – натуральное число, изменяющееся от нуля до бесконечности.

Ряд назван гармоническим так как каждый его член, начиная со второго, является гармоническим средним двух соседних.

Сумма первых n членов ряда

Отдельные члены ряда стремятся к нулю, нопредполагается чтосумма всех его членов расходится, т.е. что n-ное гармоническое число больше n-ного натурального.
n-ной частичной суммой sn гармонического ряда называется n-ное гармоническое число, представляющее собой только сумму n первых членов гармонического ряда.:

Некоторые значения частичных сумм ( например для случая 1 слагаемого и 5-ти первых членов):
S1 = 1; S5 = 137/60 = приблизительно 2,283

Теоретико-числовые свойства частичных сумм: для любых n > 1 сумма первых n членов рядаSn будет дробным числом.

Формула Эйлера

В 1740 году Л. Эйлером было получено асимптотическое выражение для суммы первых n членов ряда. Теоретико-числовые свойства частичных сумм
Для любых n>1

Сходимость ряда

Предполагалось до 7 августа 2010 года, что при стремлении n к бесконечностиSn также стремится к бесконечности, оставаясь меньше соответствующего натурального числа.
Предполагалось также Гармонический ряд расходится очень медленно: чтобы частичная сумма превысила 100, необходимо около 1043 элементов ряда.

Сходимость гармонического ряда можно продемонстрировать, сравнив его с числами натурального ряда:
очевидно, что частичная сумма каждых n первых членов не может превышать такое же натуральное число n, которое равно числу членов гармонического ряда.

Рассмотрим известные доказательстване сходимости гармонического ряда

Доказательство Орема

Доказательство расходимости можно построить, группируя слагаемыетаким образом, чтобы сумма слагаемых в скобках была меньше 1/2. При этом получается ряд 1+1/2+1/2+…+1/2 +… :

Последний ряд, очевидно, расходится. Это доказательство принадлежит средневековому учёному Николаю Орему (ок. 1350).

В приведенном доказательстве проигнорирован очевидный факт: количество членов гармонического ряда строго равно количеству натуральных чисел (по определению). А при группировке членов ряда, для того чтобы получить 1/2 каждый раз в скобки объединялось все больше и большее количество членов гармонического ряда: 1, 2, 4, … т.е. 2^n соответственно.

Альтернативное доказательство расходимости

Предположим, что гармонический ряд сходится к сумме S:

Тогда, перегруппируя дроби так, что в первую группу объединяются только 1 и дроби с нечетными знаменателями, а во вторую группу – только с четными, и когда вынесем из второй скобки 1/2 а потом заменим вторую скобку на S и перенеся S/2 в левую часть, а также подставив обратно вместо S сумму ряда, получим что сумма дробей с четными знаменателями равна сумме дробей с нечетными знаменателями +1.
Это равенство, очевидно, неверно, так как единица больше одной второй, одна треть больше одной четвёртой, и так далее. Таким образом, наше предположение о сходимости ряда ошибочно, и ряд расходится.

Это равенство, также очевидно, может быть и верно, так как одна вторая больше одной третьей, одна четвёртая больше одной пятой, и так далее. Таким образом, необходимо также доказать, что сумма ряда: 1/2 – 1/3 + 1/4 – 1/5 + …

не равна 1.

В данном доказательстве также не учитывается тот факт, что каждому натуральному числу взаимооднозначно соответствует только один член гармонического ряда.

Частичные суммы

n-ая частичная сумма гармонического ряда, т.е. сумма только первых n членов ряда

называется n-ым гармоническим числом.

Разница между n-м гармоническим числом и натуральным логарифмом n сходится к постоянной Эйлера-Маскерони.

Разница между различными гармоническими числами никогда не равна целому число и никакое гармоническое число, кроме 1, не является целым числом.

Связанные ряды

Ряд Дирихле

Обобщенным гармоническим рядом (или рядом Дирихле) называют ряд, состоящий из членов гармонического ряда, возведенных в степень меньше или равную 1, или в степень большую 1. Считается, что Обобщенный гармонический ряд расходится при α≤1 и сходится при α>1.

Сумма обобщённого гармонического ряда порядка α равна значению дзета-функции Римана от аргумента α.

Для чётных это значение явно выражается через число пи, например, дзета-функции Римана от аргумента α=2 равна числу пи в квадрате деленному на 6 , а уже для α=3 его значение аналитически неизвестно.

Знакопеременный ряд

В отличие от гармонического ряда, у которого все слагаемые берутся со знаком «+», ряд

сходится по признаку Лейбница. Поэтому говорят, что такой ряд обладает условной сходимостью.

Его сумма равна натуральному логарифму 2:

Эта формула — частный случай Ряд Меркатора (англ.), ряда Тейлора для натурального логарифма.

Похожий ряд может быть получен из ряда Тейлора для арктангенса, известного как ряд Лейбница.

Отметим, что если сходится гармонический ряд, то, естественно сходится и любой другой знакопеременный ряд, состоящий только из членов гармонического ряда.

Случайный гармонический ряд

Бирон Шмуланд из Университета Альберты рассмотрел свойства случайного ряда, в котором числителислагаемых рядаsn независимые, одинаково распределённые случайные величины, которые принимают значения +1 и −1 с одинаковой вероятностью ½. Показано, что эта сумма с вероятностью 1, и сумма ряда есть случайная величина с интересными свойствами. Например, функция плотности вероятности, вычисленная в точках +2 или −2 имеет значение 0,124 999 999 999 999 999 999 999 999 999 999 999 999 999 7642 …, отличаясь от 1/8 на менее чем 10−42. Статья Шмуланда объясняет, почему эта величина близка, но не равна 1/8.

«Истончённый» гармонический ряд

Ряд Кемпнера (англ.)

Если рассмотреть гармонический ряд, в котором оставлены только слагаемые, знаменатели которых не содержат цифры 9, то окажется, что оставшаяся сумма сходится к числу <80, точнее — к 22,92067 66192 64150 34816. Более того, доказано, что если оставить слагаемые, не содержащие любой заранее выбранной последовательности цифр, то полученный ряд будет сходиться.

Учитывая сходимость Ряда Кемпнера можно предположить что сходимость гармонического ряда хотя пока и не доказана, но имеет место быть! (см. обсужд.)

В пользу сходимости гармонического ряда свидетельствует и такой мысленный эксперимент: запишем три столбца,

№ п/п строки Частичная Сумма гармонического геометрическая прогрессияс коэффициентом,

(натуральное) ( ряда, до члена 1/n ) например ((256 в степени 256)-1)/(256 в степени 256)

1 1 ((256 в степени 256)-1)/(256 в степени 256)
2 1+1/2 +((256 в степени 256)-1)/(256 в степени 256)^2
3 1/3+1/2+1 +((256 в степени 256)-1)/(256 в степени 256)^3 . . … .
256 1+1/2+1/3 + …+ 1/256 +((256 в степени 256)-1)/(256 в степени 256)^256

(256 в степени 256) 1+1/2+…+1/(256^256) +((256^256)-1)^(256-1)^256)) ^((256^256)-1)^(256-1)^256))

(256 в степени 256) +1)) …. …

Очевидно, что для любого натурального, стермящегося к бесконечности, всегда найдется такое натуральное+1, которое будучи разделенным на то же самое натуральное +2 даст такой коэффициент, который будет меньше единицы и обеспечит сходимость суммы членов ряда геометрической прогрессии, каждый из которыхзаведомо меньше соответствующего (с таким же номером), члена гармонического ряда.

Примечания

См. http://ru.wikipedia.org/wiki/%D0%93%D0%B0%D1%80%D0%BC%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D1%8F%D0%B4

Содержание

Гармонический ряд

Гармонический ряд — сумма, составленная из бесконечного количества членов, обратных последовательным числам натурального ряда.

Ряд назван гармоническим, так как складывается из «гармоник»: $k$-я гармоника, извлекаемая из скрипичной струны, — это основной тон, производимый струной длиной $frac{1}{k}$ от длины исходной струны.

Отдельные члены ряда стремятся к нулю, но его сумма расходится. $n$-ной частичной суммой $s_n$ гармонического ряда называется $n$-ное гармоническое число:

$$s_n=sum_{k=1}^n frac{1}{k}=1 + frac{1}{2} + frac{1}{3} + frac{1}{4} + cdots +frac{1}{n}$$

Доказательство группировкой слагаемых

Сумма каждой группы не меньше одной второй, поэтому сумма гармоческого ряда не меньше чем $1+frac{1}{2}+frac{1}{2}+frac{1}{2}+frac{1}{2}+cdots = infty$

Для сравнения сумма $1+1/2+1/4+1/8+1/16+1/32+…=2$

$$int_1^infty frac{1}{x} dx = infty$$

Формула Эйлера

В 1740 году Эйлером было получено асимптотическое выражение для суммы первых членов ряда:
$$ s_n = ln(n) + gamma + epsilon_n,$$

где $gamma = 0.5772ldots$ — постоянная Эйлера — Маскерони, а $ln$ — натуральный логарифм.

При значение $n to infty$ значение $epsilon_n to 0$, следовательно, для больших $n$:

$s_n approx ln(n) + gamma$ — формула Эйлера для суммы первых членов гармонического ряда.

Гармонический ряд расходится очень медленно (для того, чтобы частичная сумма превысила 100, необходимо около $10^{43}$ элементов ряда).

ln(10^43) = 43 * ln(10) = 99,011158998744

Среднее гармоническое

Среднее гармоническое нескольких положительных чисел – это число, обратное среднему арифметическому их обратных.

Для двух чисел среднее гармоническое – это удвоенное произведение чисел, деленное на их сумму:

$$ frac{2ab}{a+b}$$

Для трех чисел среднее гармоническое – это утроенное произведение чисел, деленное на сумму их попарных произведений.

Каждый член гармонического ряда, начиная со второго, является гармоническим средним двух соседних.

Сумма чисел, обратных простым

Эйлер также доказал поразительный факт, что сумма, включающая только числа, обратные простым числам – расходится (сумма величин, обратных к первым n простым числам, неограниченно растёт с ростом n), т.е.

$$sum_{ptext{ prime }}frac1p = frac12 + frac13 + frac15 + frac17 + frac1{11} + frac1{13} + frac1{17} +cdots = infty.$$

Depleted harmonic series

The depleted harmonic series – ряд, в котором удалены все члены, в знаменателе которых есть цифра 9. Доказано, что такой ряд сходится к числу меньше 80.

Более того, доказано, что если оставить слагаемые, не содержащие любой заранее выбранной последовательности цифр, то полученный ряд будет сходиться.

Знакопеременный ряд

$1 ,-, frac{1}{2} ,+, frac{1}{3} ,-, frac{1}{4} ,+, frac{1}{5} ,-, cdots ;=; ln 2.$

Ряд сходится по признаку Лейбница.

В математике гармонический ряд – это расходящийся бесконечный ряд

∑ n = 1 ∞ 1 n = 1 + 1 2 + 1 3 + 1 4 + 1 5 + ⋯. { displaystyle sum _ {n = 1} ^ { infty} { frac {1} {n}} = 1 + { frac {1} {2}} + { frac {1} {3}} + { frac {1} {4}} + { frac {1} {5}} + cdots.}{ displaystyle  sum _ {n = 1} ^ { infty} { frac {1} {n}} = 1 + { frac {1} {2}} + { frac {1} {3}} + { frac {1} {4}} + { frac {1} {5}} +  cdots.}

Его название происходит от концепции обертонов или гармоник в музыке : длины волн обертонов вибрирующей струны составляют 1/2, 1/3, 1/4 и т. д. от основной длины волны струны. Каждый член ряда после первого – это среднее гармоническое соседних членов; фраза «гармоническое среднее» также происходит от музыки.

Содержание

  • 1 История
  • 2 Дивергенция
    • 2.1 Сравнительный тест
    • 2.2 Интегральный тест
  • 3 Скорость дивергенции
  • 4 Частичные суммы
  • 5 Связанные серии
    • 5.1 Чередование серия гармоник
    • 5.2 Общая серия гармоник
    • 5.3 Серия p
    • 5.4 Серия ln
    • 5.5 Серия φ
    • 5.6 Последовательность случайных гармоник
    • 5.7 Серия обедненных гармоник
  • 6 Применения
  • 7 См. Также
  • 8 Ссылки
  • 9 Внешние ссылки

История

Дивергенция гармонического ряда была впервые доказана в XIV веке Николь Орем, но это достижение ушло в безвестность. Доказательства были даны в 17 веке Пьетро Менголи и Иоганном Бернулли, последнее доказательство опубликовал и популяризировал его брат Якоб Бернулли.

Исторически гармонические последовательности имели определенная популярность у архитекторов. Это было особенно важно в период барокко, когда архитекторы использовали их для определения пропорций планов этажей, этажей и установить гармоничные отношения между внутренними и внешними архитектурными деталями церквей и дворцов.

Дивергенция

Есть несколько хорошо известных доказательств дивергенции гармонического ряда. Некоторые из них приведены ниже.

Сравнительный тест

Один из способов доказать дивергенцию – это сравнение гармонического ряда с другим расходящимся рядом, где каждый знаменатель заменяется следующей по величине степенью двойки :

1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9 + ⋯ ≥ 1 + 1 2 + 1 4 + 1 4 + 1 8 + 1 8 + 1 8 + 1 8 + 1 16 + ⋯ { displaystyle { begin {alignat} {8} 1 + { frac {1} {2}} + { frac {1} {3}} + { frac {1} {4 }} + { frac {1} {5}} + { frac {1} {6}} + { frac {1} {7}} + { frac {1} {8}} + { frac {1} {9}} + cdots \ [5pt] {} geq 1 + { frac {1} {2}} + { frac {1} { color {красный } { mathbf {4}}}} + { frac {1} {4}} + { frac {1} { color {красный} { mathbf {8}}}} + { frac {1} { color {red} { mathbf {8}}}} + { frac {1} { color {red} { mathbf {8}}}} + { frac {1} { 8}} + { frac {1} { color {red} { mathbf {16}}}} + cdots end {alignat}}}{ displaystyle { begin {alignat} {8} 1 + { frac {1} {2}} + { frac { 1} {3}} + { frac {1} {4}} + { frac {1} {5}} + { frac {1} {6}} + { frac {1} {7}} + { frac {1} {8}} + { frac {1} {9}} +  cdots \ [5pt] {}  geq 1 + { frac {1} { 2}} + { frac {1} { color {red} { mathbf {4}}}} + { frac {1} {4}} + { frac {1} { color { red} { mathbf {8}}}} + { frac {1} { color {red} { mathbf {8}}}} + { frac {1} { color {red} { mathbf {8}}}} + { frac {1} {8}} + { frac {1} { color {red} { mathbf {16}}}} +  cdots  end {выравнивается }}}

Каждый член гармонического ряда больше или равна соответствующему члену второго ряда, и поэтому сумма гармонического ряда должна быть больше или равна сумме второй серии. Однако сумма второй серии бесконечна:

1 + (1 2) + (1 4 + 1 4) + (1 8 + 1 8 + 1 8 + 1 8) + (1 16 + ⋯ + 1 16) + ⋯ знак равно 1 + 1 2 + 1 2 + 1 2 + 1 2 + ⋯ = ∞. { displaystyle { begin {align} 1 + left ({ frac {1} {2}} right) + left ({ frac {1} {4}} + { frac {1} {4} } right) + left ({ frac {1} {8}} + { frac {1} {8}} + { frac {1} {8}} + { frac {1} {8} } right) + left ({ frac {1} {16}} + cdots + { frac {1} {16}} right) + cdots \ [5pt] {} = {} 1+ { frac {1} {2}} + { frac {1} {2}} + { frac {1} {2}} + { frac {1} {2}} + cdots = infty. end {align}}}{ displaystyle { begin {align} 1 +  left ( { frac {1} {2}}  right) +  left ({ frac {1} {4}} + { frac {1} {4}}  right) +  left ({ frac {1 } {8}} + { frac {1} {8}} + { frac {1} {8}} + { frac {1} {8}}  right) +  left ({ frac {1 } {16}} +  cdots + { frac {1} {16}}  right) +  cdots \ [5pt] {} = {} 1 + { frac {1} {2}} + { frac {1} {2}} + { frac {1} {2}} + { frac {1} {2}} +  cdots =  infty.  End {align}}}

Отсюда следует (из сравнительного теста ), что сумма гармонического ряда также должна быть бесконечной. Точнее, приведенное выше сравнение доказывает, что

∑ n = 1 2 k 1 n ≥ 1 + k 2 { displaystyle sum _ {n = 1} ^ {2 ^ {k}} { frac {1} { n}} geq 1 + { frac {k} {2}}}{ displaystyle  sum _ {n = 1} ^ {2 ^ {k}} { frac {1} { n}}  geq 1 + { frac {k} {2}}}

для каждого положительного целого числа k.

Это доказательство, предложенное Николь Орем примерно в 1350 году, многие в математическом сообществе считают высшим достижением средневековой математики. Сегодня это стандартное доказательство, которому преподают на уроках математики. Тест конденсации Коши является обобщением этого аргумента.

Интегральный тест

Иллюстрация интегрального теста.

Можно доказать, что гармонический ряд расходится, сравнив его сумму с несобственным интегралом. В частности, рассмотрите расположение прямоугольников, показанных на рисунке справа. Каждый прямоугольник имеет ширину 1 единицу и высоту 1 / n, поэтому общая площадь бесконечного числа прямоугольников является суммой гармонического ряда:

площадь прямоугольников = 1 + 1 2 + 1 3 + 1 4 + 1 5 + ⋯ { displaystyle { begin {array} {c} { text {area of}} \ { text {rectangles}} end {array}} = 1 + { frac {1} {2} } + { frac {1} {3}} + { frac {1} {4}} + { frac {1} {5}} + cdots}{ displaystyle { begin {array} {c} { text {area of}} \ { text {rectangles}}  end {array}} = 1 + { frac {1} {2}} + { frac {1} {3}} + { frac {1} {4}} + { frac {1} {5} } +  cdots}

Кроме того, общая площадь под кривой y = 1 / x от 1 до бесконечности задается расходящимся несобственным интегралом :

площадью под кривой = ∫ 1 ∞ 1 xdx = ∞. { displaystyle { begin {array} {c} { text {area under}} \ { text {curve}} end {array}} = int _ {1} ^ { infty} { frac {1} {x}} , dx = infty.}{ displaystyle { begin {array} {c} { text {area under}} \ { text { кривая}}  end {array}} =  int _ {1} ^ { infty} { frac {1} {x}} , dx =  infty.}

Поскольку эта область полностью содержится внутри прямоугольников, общая площадь прямоугольников также должна быть бесконечной. Точнее, это доказывает, что

∑ n = 1 k 1 n>∫ 1 k + 1 1 x d x = ln ⁡ (k + 1). { displaystyle sum _ {n = 1} ^ {k} { frac {1} {n}}> int _ {1} ^ {k + 1} { frac {1} {x}} , dx = ln (k + 1).}{displaystyle sum _{n=1}^{k}{frac {1}{n}}> int _ {1} ^ {k + 1} { frac {1} {x}} , dx =  ln (k + 1).}

Обобщение этого аргумент известен как интегральный критерий.

Скорость расхождения

Гармонический ряд расходится очень медленно. Например, сумма первых 10 членов меньше 100. Это потому, что частичные суммы ряда имеют логарифмический рост. В частности,

∑ n = 1 k 1 n = ln ⁡ k + γ + ε k ≤ (ln ⁡ k) + 1 { displaystyle sum _ { n = 1} ^ {k} { frac {1} {n}} = ln k + gamma + varepsilon _ {k} leq ( ln k) +1}{ displaystyle  sum _ {n = 1} ^ {k} { frac {1} {n}} =  ln k +  gamma +  varepsilon _ {k}  leq ( ln k) +1}

, где γ – Постоянная Эйлера – Маскерони и ε k ~ 1 / 2k, которое стремится к 0, когда k стремится к бесконечности. Леонард Эйлер доказал и это, и более поразительный факт, что сумма который включает только , обратные простым числам, а также d iverges, то есть

∑ p простое 1 p = 1 2 + 1 3 + 1 5 + 1 7 + 1 11 + 1 13 + 1 17 + ⋯ = ∞. { displaystyle sum _ {p { text {prime}}} { frac {1} {p}} = { frac {1} {2}} + { frac {1} {3}} + { frac {1} {5}} + { frac {1} {7}} + { frac {1} {11}} + { frac {1} {13}} + { frac {1} { 17}} + cdots = infty.} sum _ {p { text {prime}}} { frac {1} {p}} = { frac {1} {2}} + { frac {1} {3}} + { frac {1} {5} } + { frac {1} {7}} + { frac {1} {11}} + { frac {1} {13}} + { frac {1} {17}} +  cdots =  infty.

Частичные суммы

Первые тридцать чисел гармоники

n Частичная сумма гармонического ряда, H n
, выраженная в виде дроби десятичной дроби относительный размер
1 1 ~ 1 1
2 3 /2 ~ 1,5 1,5
3 11 /6 ~ 1,83333 1,83333
4 25 /12 ~ 2,08333 2,08333
5 137 / 60 ~ 2,28333 2,28333
6 49 /20 ~ 2,45 2,45
7 363 / 140 ~ 2.59286 2,59286
8 761 /280 ~ 2,71786 2.71786
9 7129 /2520 ~ 2,82897 2,82897
10 7381 / 2520 ~ 2.92897 2.92897
11 83711 /27720 ~ 3.01988 3.01988
12 86021 / 27720 ~ 3.10321 3.10321
13 1145993 /360360 ~ 3,18013 3,18013
14 1171733 / 360360 ~ 3,25156 3,25156
15 1 195757 / 360360 ~ 3.31823 3.31823
16 2436559 /720720 ~ 3.38073 3,38073
17 42142223 / 12252240 ~ 3.43955 3.43955
18 14274301 /4084080 ~ 3,49511 3,49511
19 275295799 / 77597520 ~ 3,54774 3,54774
20 55835135 /15519504 ~ 3.59774 3.59774
21 18858053 /5173168 ~ 3.64536 3.64536
22 19093197 / 5173168 ~ 3.69081 3.69081
23 444316699 /118982864 ~ 3.73429 3.73429
24 1347822955 /356948592 ~3.77596 3.77596
25 34052522467 /8923714800 ~ 3.81596 3.81596
26 34395742267 / 8923714800 ~ 3.85442 3.85442
27 312536252003 /80313433200 ~ 3.89146 3.89146
28 315404588903 / 80313433200 ~ 3.92717 3.92717
29 9227046511387 /2329089562800 ~ 3.96165 3,96165
30 9304682830 147 / 2329089562800 ~ 3.99499 3.99499

Конечные частные суммы расходящегося гармонического ряда,

H n = ∑ k = 1 n 1 k, { displaystyle H_ {n} = sum _ {k = 1} ^ {n} { frac {1} {k}},}{ displaystyle H_ {n} =  sum _ {k = 1} ^ {n} { frac {1} {k }},}

называются числами гармоник.

Разница между H n и ln n сходится к константе Эйлера – Маскерони. Разница между любыми двумя номерами гармоник никогда не бывает целой. Номера гармоник не являются целыми числами, за исключением H 1 = 1.

Родственные серии

Чередующиеся гармонические ряды

Первые четырнадцать частичных сумм чередующихся гармонических рядов ( черные отрезки), сходящиеся к натуральному логарифму 2 (красная линия).

Ряд

∑ n = 1 ∞ (- 1) n + 1 n = 1 – 1 2 + 1 3 – 1 4 + 1 5 – ⋯ { displaystyle sum _ {n = 1} ^ { infty} { frac {(-1) ^ {n + 1}} {n}} = 1 – { frac {1} {2 }} + { frac {1} {3}} – { frac {1} {4}} + { frac {1} {5}} – cdots}{ displaystyle  sum _ {n = 1} ^ { infty} { frac {(-1) ^ {n + 1}} {n}} = 1 - { frac {1} {2}} + { frac {1} {3}} - { frac {1} {4}} + { frac {1} {5}} -  cdots}

известен как чередующийся гармонический ряд . Эта серия сходится с помощью теста чередующейся серии. В частности, сумма равна натуральному логарифму 2 :

1 – 1 2 + 1 3 – 1 4 + 1 5 – ⋯ = ln ⁡ 2. { displaystyle 1 – { frac {1} {2}} + { frac {1} {3}} – { frac {1} {4}} + { frac {1} {5}} – cdots = ln 2.}{ displaystyle 1 - { frac {1} {2}} + { frac {1} {3}} - { frac {1} {4}} + { frac {1} {5}} -  cdots =  ln 2.}

чередующийся гармонический ряд, в то время как условно сходящийся, не является абсолютно сходящимся : если члены в ряду систематически переупорядочиваются, обычно сумма становится другой и, в зависимости от перестановки, возможно, даже бесконечно.

Формула переменного гармонического ряда является частным случаем ряда Меркатора, ряда Тейлора для натурального логарифма.

Родственный ряд может быть получен из ряда Тейлора для арктангенса :

∑ n = 0 ∞ (- 1) n 2 n + 1 = 1 – 1 3 + 1 5 – 1 7 + ⋯ = π 4. { displaystyle sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n}} {2n + 1}} = 1 – { frac {1} {3}} + { frac {1} {5}} – { frac {1} {7}} + cdots = { frac { pi} {4}}.}{  displaystyle  sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n}} {2n + 1}} = 1 - { frac {1} {3}} + { frac {1} {5}} - { frac {1} {7}} +  cdots = { frac { pi} {4}}.}

Это известно как серия Лейбница.

Общий гармонический ряд

Общий гармонический ряд имеет форму

∑ n = 0 ∞ 1 an + b, { displaystyle sum _ {n = 0} ^ { infty} { frac {1} {an + b}},}{ displaystyle  sum _ {n = 0} ^ { infty} { frac {1} {an + b}},}

где a ≠ 0 и b – действительные числа, а b / a не равно нулю или отрицательному целому числу.

При сравнении предельных значений с гармоническим рядом все общие гармонические ряды также расходятся.

p-ряд

Обобщением гармонического ряда является p-ряд (или гипергармонический ряд ), определяемый как

∑ n = 1 ∞ 1 np { displaystyle sum _ {n = 1} ^ { infty} { frac {1} {n ^ {p}}}} sum _ {n = 1} ^ { infty} { frac {1} {n ^ {p}}}

для любого действительного числа p. Когда p = 1, p-ряд – это расходящийся гармонический ряд. Либо интегральный тест, либо тест конденсации Коши показывает, что p-ряд сходится для всех p>1 (в этом случае он называется сверхгармоническим рядом ) и расходится для всех p ≤ 1. Если p>1, то сумма p-ряда равна ζ (p), то есть дзета-функция Римана, вычисленная в p.

Задача нахождения суммы для p = 2 называется проблемой Базеля ; Леонард Эйлер показал, что это π / 6. Значение суммы для p = 3 называется константой Апери, поскольку Роджер Апери доказал, что это иррациональное число.

ln-ряд

С p-серией связан ln-series, определенный как

∑ n = 2 ∞ 1 n (ln ⁡ n) p { displaystyle sum _ { n = 2} ^ { infty} { frac {1} {n ( ln n) ^ {p}}}}{ displaystyle  sum _ {n = 2} ^ { infty} { frac {1} {n ( ln n) ^ {p}}}}

для любого положительного действительного числа p. Это можно показать с помощью интегрального теста, что он расходится при p ≤ 1, но сходится при всех p>1.

φ-ряд

Для любой выпуклой, действительной функции φ такой, что

lim sup u → 0 + φ (u 2) φ (u) < 1 2, {displaystyle limsup _{uto 0^{+}}{frac {varphi left({frac {u}{2}}right)}{varphi (u)}}<{frac {1}{2}},}{ displaystyle  limsup _ {u  to 0 ^ {+}} { frac { varphi  left ({ frac {u} {2}}  right)} { varphi (u)}} <{ frac {1} {2}},}

ряд

∑ N = 1 ∞ φ (1 n) { displaystyle sum _ {n = 1} ^ { infty} varphi left ({ frac {1} {n}} справа)}{ displaystyle  sum _ {n = 1} ^ { infty}  varphi  left ({ frac { 1} {n}}  right)}

сходится.

Случайный гармонический ряд

Случайный гармонический ряд

∑ n = 1 ∞ snn, { displaystyle sum _ {n = 1} ^ { infty} { frac {s_ {n}} {n}},}{ displaystyle  sum _ {n = 1} ^ { infty} { гидроразрыв {s_ {n}} {n}},}

где s n – независимые, одинаково распределенные случайные величины, принимающие значения +1 и -1 с равной вероятностью 1/2, является хорошо известным примером в теории вероятностей для ряда случайных величин, который сходится с вероятностью 1. Факт такой сходимости является простым следствием либо теоремы Колмогорова о трех рядах, либо тесно связанного с ним максимального неравенства Колмогорова. Байрон Шмуланд из Университета Альберты дополнительно исследовал свойства случайного гармонического ряда и показал, что сходящийся ряд – это случайная величина с некоторыми интересными свойствами. В частности, функция плотности вероятности этой случайной величины, оцененная как +2 или -2, принимает значение 0,12499999999999999999999999999999999999764…, отличающееся от 1/8 менее чем на 10. В статье Шмуланда объясняется, почему эта вероятность так близко, но не совсем к 1/8. Точное значение этой вероятности дается интегралом произведения бесконечного косинуса C 2, деленного на π.

Истощенный гармонический ряд

Истощенный гармонический ряд, в котором удалены все члены, в которых цифра 9 появляется в любом месте знаменателя, может быть показано, что они сходятся к значению 22.92067661926415034816…. Фактически, когда все члены, содержащие любую конкретную строку цифр (в любом основании ), удаляются, ряд сходится.

Приложения

Гармонический ряд может быть противоречит здравому смыслу для студентов, впервые столкнувшихся с ним, потому что это расходящийся ряд, хотя предел n-го члена при стремлении n к бесконечности равен нулю. Дивергенция гармонического ряда также является источником некоторых очевидных парадоксов. Одним из примеров этого является «червяк на резинке ». Предположим, что червяк ползет по бесконечно эластичной резиновой ленте длиной один метр, в то время как резинка равномерно растягивается. Если червь движется со скоростью 1 сантиметр в минуту, а полоса растягивается на 1 метр в минуту, дойдет ли червь до конца резинки? Ответом, как это ни парадоксально, будет «да», поскольку через n минут отношение расстояния, пройденного червем, к общей длине резиновой ленты составляет

1 100 ∑ k = 1 n 1 k. { displaystyle { frac {1} {100}} sum _ {k = 1} ^ {n} { frac {1} {k}}.} frac {1} {100}  sum_ {k = 1} ^ n  frac {1} {k}.

(На самом деле фактическое соотношение немного меньше чем эта сумма при непрерывном расширении ленты.)

Поскольку ряд становится произвольно большим, когда n становится больше, в конечном итоге это отношение должно превышать 1, что означает, что червяк достигает конца резиновой ленты. Однако значение n, при котором это происходит, должно быть чрезвычайно большим: приблизительно e, т.е. число, превышающее 10 минут (10 лет). Хотя гармонический ряд действительно расходится, это происходит очень медленно.

Другой проблемой, связанной с гармоническим рядом, является проблема Jeep, которая (в одной форме) спрашивает, сколько всего топлива требуется для джипа с ограниченным расходом топлива. пропускная способность для пересечения пустыни, возможно, оставляя капли топлива по пути. Расстояние, которое можно преодолеть с заданным количеством топлива, связано с частичными суммами гармонического ряда, которые растут логарифмически. Таким образом, необходимое количество топлива увеличивается экспоненциально с желаемой дистанцией.

Проблема наложения блоков : блоки, выровненные в соответствии с гармонической последовательностью, перекрывают расщепления любой ширины.

Другим примером является проблема наложения блоков : учитывая набор одинаковые домино, очевидно, что их можно сложить на краю стола так, чтобы они свисали с края стола, не падая. Противоречивый результат состоит в том, что их можно сложить таким образом, чтобы свес был произвольно большим, при условии наличия достаточного количества костяшек домино.

Более простой пример, с другой стороны, – пловец, который продолжает прибавлять в скорости. при касании стенок бассейна. Пловец начинает пересекать 10-метровый бассейн со скоростью 2 м / с, и с каждым переходом к скорости прибавляется еще 2 м / с. Теоретически скорость пловца неограничена, но количество переходов через бассейн, необходимое для достижения этой скорости, становится очень большим; например, чтобы достичь скорости света (игнорируя специальную теорию относительности ), пловцу нужно пересечь бассейн 150 миллионов раз. В отличие от этого большого числа, время, необходимое для достижения заданной скорости, зависит от суммы ряда при любом заданном количестве переходов (итераций) пула:

10 2 ∑ k = 1 n 1 k. { displaystyle { frac {10} {2}} sum _ {k = 1} ^ {n} { frac {1} {k}}.}{ frac {10} {2}}  sum _ {k = 1} ^ {n} { frac {1} {k}}.

Вычисление суммы (итеративно) показывает, что для получения до скорости света требуется всего 97 секунд. Продолжая движение дальше этой точки (превышая скорость света, снова игнорируя специальную теорию относительности ), время, необходимое для пересечения бассейна, фактически приближается к нулю, поскольку количество итераций становится очень большим, и хотя время, необходимое Чтобы пересечь пул, кажется, стремится к нулю (при бесконечном количестве итераций), сумма итераций (время, затрачиваемое на полное пересечение пула) все равно будет расходиться с очень низкой скоростью.

См. Также

На Викискладе есть материалы, связанные с Гармонический ряд .
  • Эта функция Дирихле
  • Гармоническая прогрессия
  • Список сумм взаимных величин

Ссылки

Внешние ссылки

  • , Энциклопедия математики, EMS Press, 2001 [1994]
  • «Гармонические ряды расходятся снова и снова» (PDF). Обзор AMATYC. 27 : 31–43. 2006.
  • Вайсштейн, Эрик У. «Гармонический ряд». MathWorld.
  • Вайсштейн, Эрик У. «Задача наложения книг». MathWorld.
  • Худельсон, Мэтт (1 октября 2010 г.). «Доказательство без слов: сумма переменного гармонического ряда равна ln 2» (PDF). Математический журнал. 83 (4): 294. doi :10.4169/002557010X521831.

Добавить комментарий