Как найти показания динамометра в физике

Динамометром называют устройство для измерения силы; пружину, проградуированную пропорционально воздействующей на неё силе.

Опишем устройство динамометра.

  1. Корпус для крепления пружины.

  2. Шкала, нанесённая на корпус.

  3. Пружина из стали с крючком и указателем.

Для градуировки подвешивают груз известной массы, например, (102) грамм. Пружина растягивается под действием веса груза (vec{P}).

динамометр.svg

Рис. (1). Динамометр без груза и с грузом

На нижний конец пружины ставят стрелку-указатель, а на корпус наносят шкалу.

  1. Нулевую отметку ставим в положении, когда пружина не растянута: на неё не действует вес груза.

  2. Подвесим груз массой (102) г. Вес груза, растягивающий пружинку, составит:

    P=m⋅g=0,102кг⋅9,8Н кг ≈1 Н

    .

  3. Отметим положение указателя и запишем значение (1) Н на шкале динамометра.

  4. Подвесив ещё один груз массой (102) г, увеличим силу воздействия на пружину (вес) до (2) Н.

  5. Отметим новое положение указателя значением (2) Н.

  6. Добавляя грузы, закончим градуировку динамометра до конца шкалы.

Для измерения десятых долей ньютона нужно расстояния между отметками (0) и (1), (1) и (2), (2) и (3) и т. д. разделить на (10) равных частей.

С помощью динамометра измеряют силу тяжести, силу упругости, силу трения и другие силы при обосновании их взаимосвязи с весом груза.

На практике применяют медицинские динамометры, ручные динамометры — силомеры.

21633972_w640_h640_dk100.jpg

Рис. (2). Силомер

Виды динамометров:

  • механические (пружинные, рычажные);

  • гидравлические;

  • электронные.

(13) декабря (1932) года заявлен патент Л. В. Павловой и П. Ф. Павлова на изобретение тягового динамометра.

На рисунке изображено измерение силы тяговым динамометром.

трактор.png

Рис. (3). Тяговый динамометр

Источники:

Рис. 1. Динамометр без груза и с грузом. © ЯКласс.
Рис. 3. Тяговый динамометр. © ЯКласс.

На данном уроке мы познакомимся с новым прибором, с помощью которого можно измерить силу, действующую на тело. Как называют прибор для измерения силы?

Динамометр — это прибор для измерения силы. 

Слово «динамометр» образовано от двух греческих слов: «динамис» — «сила» и «метрео» — «измеряю».

Рассмотрим самый простой вид динамометра — пружинный. Это поможет нам разобраться с принципом действия прибора. Основной его частью является стальная пружина.

Не сложно догадаться, что если подвесить к пружине груз, то она растянется. Другими словами, наблюдатель видит, что на подвешенное тело действует сила, и может определить ее величину.

Устройство пружинного динамометра

Как изготовить простейший динамометр?
Простой пружинный динамометр можно изготовить самостоятельно (рисунок 1). Он состоит из нескольких частей:

  • стальная пружина с крючком и указателем на конце;
  • корпус для крепления пружины;
  • шкала.
Рисунок 1. Основные части динамометра

Сначала закрепляем пружину на корпусе таким образом, чтобы ее нижний конец оставался свободным. Затем к нему прикрепляем указатель. Если разогнуть последний виток пружины, то его можно использовать в качестве указателя.

Градуировка шкалы динамометра

Шкалу можно изготовить из полоски обычной бумаги, нанеся на нее штрихи и числа. Поэтому приклеим бумагу на корпус и сделаем на ней первую отметку (рисунок 2, а). Это будет нулевая отметка, которая показывает, где заканчивается нерастянутая пружина.

Рисунок 2. Градуировка динамометра

Из прошлого урока нам известно, что на груз массой $frac{1}{9.8} space кг$ ($102 space г$) будет действовать сила тяжести, равная $1 space Н$. Поэтому подвесим на крючок груз указанной массы и посмотрим, насколько растянется пружина.

Если пружина прекратила растяжение и груз остановился, это означает, что сила тяжести, действующая на тело, и сила упругости пружины уравнялись. Новое положение указателя отметим на бумаге, поставив цифру 1 (рисунок 1, б).

Так мы уже получили начало шкалы и необходимо ее продолжить. И сделать это можно по-разному:

  1. Поочередно подвешивать грузы массой $204 space г$, $306 space г$, $408 space г$ и т. д., проставляя соответствующие отметки: 2, 3, 4 и т. д.
  2. Воспользоваться двумя имеющимися отметками (0 и 1) и с помощью линейки отложить отрезки такой же длины, отметив их числами 2, 3, 4 и т. д.

Теперь у нас есть шкала, которая позволяет измерять силу с точностью до целых. Но точность нашей шкалы можно улучшить до десятых, нанеся на нее дополнительные деления — 0.1; 0.2; 0.3; 0.4 и т. д.

Как нанести на шкалу динамометра деления, соответствующие $0.1 space Н$?
Для этого разделим расстояние между отметками 0 и 1 на 10 одинаковых частей, поставив соответствующие штрихи. Аналогично поделим на части и другие отрезки ( между отметками 2 и 3, 3 и 4, и т. д.).

Описанным способом мы осуществили градуировку шкалы, цена деления которой равна $0.1 space Н$. 

Принцип действия динамометра

Итак, мы видим, что для измерения силы, действующей на груз, необходимо уравнять ее с силой растяжения пружины динамометра. Указатель, закрепленный на пружине, покажет величину этой силы согласно шкале. Таким образом, можно сделать вывод, что:

Устройство динамометра основывается на сравнении измеряемой силы с силой упругости пружины.

Например, если подвесить груз какой-то массы, то мы будем сравнивать силу тяжести, действующую на этот груз, и величину силы упругости растянутой пружины.

Если мы возьмем крючок на конце пружины и потянем за него, то мы будем сравнивать силу, приложенную нами, с силой упругости пружины (рисунок 3). Так, с помощью динамометра можно измерять различные силы.

Рисунок 3. Измерение с помощью динамометра приложенной силы

Вспомним закон Гука — он гласит, что сила упругости тела при растяжении прямо пропорциональна изменению длины тела. Принцип работы динамометра подтверждает этот закон — пружина удлиняется во столько же раз, во сколько увеличивается сила ее упругости.

Виды динамометров

Какие типы динамометров вам известны?
Можно выделить несколько видов динамометров на основе принципа их действия:

  1. Механические динамометры (рычажные или пружинные) 

В основе работы механических динамометров лежит деформация. Принцип действия пружинного динамометра подробно описан выше. В рычажном динамометре под действием измеряемой силы происходит деформация рычага, которая и показывает величину силы.

  1. Гидравлические динамометры 

Принцип действия таких динамометров основан на определении количества жидкости, вытесняемой из цилиндра под действием измеряемой силы.

  1. Электрические динамометры

У таких динамометров имеется датчик, который преобразует деформацию в электрический сигнал. Это вид динамометров стал широко применяться в последнее время.

Современные модели динамометров могу соединять и использовать в себе несколько принципов действия.

Применение динамометров

Динамометры имеют очень широкое применение. Например, в медицине используются специальные медицинские динамометры. Они предназначены для измерения силы различных мышечных групп человека.

Одним из таких приборов является ручной динамометр, который называется силомером (рисунок 4). С его помощью измеряется мускульная сила руки при сжатии кисти в кулак.

Рисунок 4. Силомер — электронный кистевой динамометр

Для того чтобы измерить тяговые усилия локомотивов, тракторов, морских буксиров и другой техники, используют специальные тяговые динамометры (рисунок 5).

Рисунок 5. Применение тягового динамометра

Такие динамометры способны измерять силы до нескольких десятков тысяч ньютонов. Современные модели имеют пульт дистанционного управления с дисплеем (рисунок 6).

Рисунок 6. Тяговый динамометр

При монтаже проводов и кабелей используют динамометры для определения силы натяжения провода (рисунок 7). Существуют специальные монтажные таблицы с необходимыми значениями. 

Рисунок 7. Динамометр для монтажных работ

Динамометры используют не только в специальной технике, но и в обычных для нас местах: в метро, в автобусах и даже в лифте. Здесь эти приборы используют для измерения силы сжатия створок различных автоматических дверей.

Упражнения

Упражнение №1

Определите цену деления каждого прибора и силу тяжести, действующую на каждый груз (рисунок 8).

Рисунок 8. Динамометры с грузами

Показать ответ

Скрыть

Определим цену деления динамометра, изображенного на рисунке 8, а. Возьмем два крайних подписанных деления: $1 space Н$ и $0 space Н$. Вычтем меньшее значение из большего и разделим на количество делений между ними:
$frac{1 space Н space − space 0 space Н}{10} = 0.1 space Н$.
Цена деления этого динамометра равна $0.1 space Н$.
На подвешенный груз действует сила тяжести, равная $1 space Н$.

Определим цену деления динамометра, изображенного на рисунке 8, б. Возьмем два крайних подписанных деления: $1 space Н$ и $0 space Н$. Вычтем меньшее значение из большего и разделим на количество делений между ними:
$frac{1 space Н space − space 0 space Н}{2} = 0.5 space Н$.
Цена деления этого динамометра равна $0.5 space Н$.
На подвешенный груз действует сила тяжести, равная $6 space Н$.

Упражнение №2

Чему равен вес каждого груза на рисунке 8? Укажите точку его приложения.

Показать ответ

Скрыть

Груза и динамометры у нас неподвижны, поэтому вес каждого груза будет равен силе тяжести, действующей на него. Значение же силы тяжести мы видим по показаниям динамометров.

Для груза на рисунке 8, а:
$P = F_{тяж} = 1 space Н$.

Для груза на рисунке 8, б:
$P = F_{тяж} = 6 space Н$.

На рисунке 9 изображен вес этих тел. Вес приложен к подвесу в обоих случаях.

Рисунок 9. Вес подвешенных грузов

Упражнение №3

По рисунку 10 определите, с какой силой растягивается каждая пружина под действием подвешенного к ней груза (масса одного груза $102 space г$).

Рисунок 10. Растяжение пружины под действием груза

Дано:
$m = 102 space г$
$g = 10 frac{Н}{кг}$

СИ:
$m = 0.102 space кг$

$F_1 — ?$
$F_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Под действием какой силы будет растягиваться пружина? Она растягивается под влиянием силы тяжести, действующей на подвешенный к ней груз.

Рассчитаем силу, растягивающую причину на рисунке 10, а:
$F_1 = F_{тяж1} = gm$,
$F_1 = 10 frac{Н}{кг} cdot 0.102 space кг = 1.02 space Н$.

Рассчитаем силу, растягивающую причину на рисунке 10, б:
$F_2 = F_{тяж2} = g cdot 2m$,
$F_2 = 10 frac{Н}{кг} cdot 2 cdot 0.102 space кг = 2.04 space Н$.

Ответ: $F_1 = 1.02 space Н$, $F_2 = 2.04 space Н$.

Цель работы: научиться пользоваться динамометром для определения силы. Сравнить силу трения скольжения при постоянной скорости, максимальную силу трения покоя и силу трения скольжения.

Для определения количественного значения величины силы в физике используются различные приборы, называемые динамометрами. В нашей работе мы будем использовать пружинный динамометр.

С помощью динамометра мы измерим максимальную силу трения покоя и силу трения скольжения при постоянной скорости тела. Эти силы окажутся равными (о том, почему они одинаковы, вы узнаете в старших классах). Если же мы измерим силу трения качения и сравним ее с силой трения скольжения нашего бруска, то первая окажется гораздо меньше второй. Это связано с тем, что трение скольжения и трение качения имеют разные причины возникновения.

Подробный ход работы описан в учебнике на стр. 150-151. Пример выполнения работы:

1) Измерим силу тяжести и вес бруска: F<sub>T</sub> = Р = 2Н.

2) Измерим вес бруска с грузом: Р = 3Н. 3) Измерим силу трения скольжения: F<sub>тр</sub>, = 1,8 Н; Сравним ее с весом бруска с грузом: F<sub>тр</sub> < Р.

None Сравним ее с силой трения скольжения: F<sub>тр</sub>, = F<sub>тр</sub>.

5) Определим силу трения качения: F<sub>тр.к.</sub> = 0,2 Н. Сравним ее с силой трения скольжения:

Вывод: научились пользоваться пружинными динамометром. Экспериментально убедились, что сила трения скольжения F<sub>тр</sub>, = F<sub>тро.</sub>(только, при постоянной скорости тела!) иF<sub>тр.к.</sub>&lt;&lt;F<sub>тр.</sub>

Номер Название Описание
Технологическая карта
Номер Название Описание
Динамометр Описывается изготовление простейшего динамометра, рассказывается, где он может применяться на практике.
Равнодействующая сил Даётся определение равнодействующей сил. Рассказывается, как определить равнодействующую сил, направленных по одной прямой в одну сторону или в противоположные стороны.
Номер Название Вид Сложность Баллы Описание
Определи цену деления 1 вид – рецептивный лёгкое 1 Б. По рисунку требуется определить цену деления динамометра.
Определи показания динамометра 1 вид – рецептивный лёгкое 1 Б. Определяются показания динамометра, к которому подвешен груз. К каждому случаю прилагается рисунок. В ходе решения нужно определить цену деления динамометра.
Определи равнодействующую сил 1 вид – рецептивный лёгкое 1 Б. Определяется вес груза, которым можно заменить вес трёх грузиков, чтобы показание динамометра не изменилось.
Равнодействующая противоположно направленных сил 1 вид – рецептивный лёгкое 1 Б. Предлагается определить равнодействующую противоположно направленных сил.
Определи одну из двух сил, зная их равнодействующую 2 вид – интерпретация среднее 2 Б. Предлагается определить одну из двух сил, действующих на тело, если известна их равнодействующая. Действующие на тело силы могут быть или противоположно направлены или одинаково направлены.
Сравнение силы натяжения пружины динамометра 2 вид – интерпретация среднее 3 Б. Определяется сила натяжения пружины динамометра под действием подвешенного к ней груза в каждом случае, полученные результаты сравниваются. Делается вывод о том, в каком случае сила больше и на сколько.
Определи длину векторов, изображающих силы 2 вид – интерпретация среднее 1 Б. Требуется определить длину векторов, изображающих силы, действующие на груз. Для этого дан масштаб.
Вычисление сил, действующих на парашютиста 3 вид – анализ сложное 3 Б. Предлагается вычислить силы, действующие на парашютиста, который спускается равномерно.
Измерение силы двумя динамометрами 3 вид – анализ сложное 3 Б. Предлагается измерять силы двумя динамометрами, расположенными параллельно.
Измерение силы двумя динамометрами (угол тупой) 3 вид – анализ сложное 3 Б. Предлагается определить силу каждого динамометра, если они образуют угол 120 градусов, известен вес тела, подвешенного к этим двум динамометрам.
Номер Название Рекомендованное время: Сложность Баллы Описание
Тренировка по теме «Измерение силы с помощью динамометра» лёгкое 4 Б. Предлагаются задания, в которых по рисунку нужно определить цену деления динамометра, показания динамометра. Необходимо найти вес груза, которым можно заменить вес трёх грузиков, чтобы показание динамометра не изменилось, а также найти равнодействующую противоположно направленных сил.
Номер Название Рекомендованное время: Сложность Баллы Описание
Домашняя работа по теме «Измерение силы с помощью динамометра» среднее 7 Б. Предлагается определить суммарную силу тяги, действующую на поезд, силу натяжения пружины динамометра под действием подвешенного к ней груза и полученные результаты сравнить; найти одну из двух сил, действующих на тело, если известна их равнодействующая; определить длину векторов, изображающих силы, действующие на груз (с использованием масштаба).
Проверочная работа по теме «Измерение силы с помощью динамометра» среднее 10 Б. Предлагается определить силу натяжения пружины динамометра под действием подвешенного к ней груза; найти одну из сил, действующих на тело (если известна равнодействующая сил); определить силу каждого из двух динамометров, расположенных параллельно (если известен вес подвешенного к ним тела), а также изобразить силы, действующие на груз, векторами в данном масштабе. Работа проверяется учителем.

трактор.png

Класс (72 часа)Что изучают физика. История возникновения наук о природе. Явления природы. Физические явления. Физические тела и их характеристики: форма, объем. Вещество.

Методы физических исследований: наблюдения и опыт. Знакомство с физическими величинамиИзмеренияФизические величины. Единицы величины.

Измерение величины. Измерительные приборы. Шкала измерительного прибора.

None Единицы площади. Определение площади прямоугольника и квадрата. Измерение площади палеткой.

Экспериментальные работы1. Определение размеров тела;

2. Изготовление курвиметра и измерение длины кривых линий различными способами; 3. Измерение длины окружности курвиметром и определение числа π.

динамометр.png

4. Измерение площади фигуры неправильной формы палеткой; 5. Измерение площади круга и определение числа π.

6. Измерение размеров малых тел методом рядов. Измерение объема.

Единицы объема. Определение объема прямоугольного параллелепипеда и куба. Мензурка.

Экспериментальные работы7. Измерение объема твердых, жидких и сыпучих тел;

8. Измерение объема тел с помощью отливного стакана. Механическое движениеМеханическое движение.

Тело отсчета. Траектория движения. Классификация механического движения в зависимости от формы траектории.

Пройденный путь. Единицы пройденного пути. Относительность траектории и пройденного пути.

Измерение времени. Момент времени. Промежуток времени.

Единицы времени. Приборы для измерения времени: часы, секундомер. Из истории часов; солнечные, песочные, огненные и водяные часы.

Скорость движения. Единицы скорости. Спидометр.

Относительная скорость. Космические скорости.

Равномерное и неравномерное движение. Расчет пройденного пути и времени движения. Графическое изображение движения: графики зависимости пройденного пути от времени.

21633972_w640_h640_dk100.jpg

Стробоскопический метод изучения движения. Экспериментальные работы9. Измерение времени движения различных тел;

10. Измерение периода колебательного движения. Масса телаМасса тела.

Единицы массы. Определение массы тела взвешиванием.

Экспериментальные работы.

11. Определение массы твердых, жидких и сыпучих тел взвешиванием; 12. Изготовление разновесов;

13. Измерение длины и площади через взвешивание.

Сила. Измерение силы с помощью динамометраВзаимодействие тел. Условие равномерного движения тела. Сила. Изменение скорости и деформация тел под действием силы. Характеристики силы как векторной физической величины: модуль, направление, точка приложения. Единицы силы. Прибор для измерения силы — динамометр. Равнодействующая одинаковых по модулю и противоположно направленных сил.

Сила тяжести. Деформация тел под действием силы тяжести. Измерение силы тяжести.

Зависимость силы тяжести от массы тела. Сила упругости. Виды деформаций.

Измерение силы упругости. Зависимость силы упругости от деформации и жесткости тела. Устройство динамометра.

Давление. Единицы давления. Способы увеличения и уменьшения давления.

Сила трения. Виды трения: трение покоя, трение скольжения, трение качения, вязкое трение. Зависимость силы трения скольжения от силы давления и качества поверхности трущихся тел.

Сила Архимеда. Равновесие тел в жидкости. Условия плавания тел.

Принцип действия динамометра известен не очень большому количеству людей, собственно, как и сам этот прибор. Мы исправим это недоразумение, составив краткую характеристику такого инструмента. Возможно, он мог бы решить некоторые ваши задачи, а вы об этом и не догадывались!

Его относят к приборам, измеряющим силы или силовые моменты. Промышленные предприятия, на которых требуются силовые измерения, применяют подобные приспособления. Часто они необходимы для того, чтобы осуществить плановые поверки стендов, а также агрегатов, которые предназначены для различных испытаний.

Используют их и при поверках силовых приборов, когда требуется определить силы 1 или 3 разрядов. Широко применяются данные приборы и в качестве эталонных средств по ГОСТу 8. 065 и в тех работах, где нужно производить калибровку.

Первым прибором, который помогал измерить силы, были весы. Впервые их изображение появилось в печати в семнадцатом веке. В следующем столетии Сальтером было предложено для подобных целей устройство с пружиной, при помощи груза она растягивалась.

Был прибор с циферблатом, там измерение выполнялось замкнутой кольцеобразной пружиной. Уже позже появились нажимы Прони и динамометры Томсона, Броуна, Межи и Геффнер-Альтенека. Последние модели усовершенствовали, и на сегодняшний день представилась возможность использовать их во многих отраслях.

Основные элементы, которые включают динамометры растяжения: силовое звено (упругий элемент) и отсчетное устройство. В силовом звене идет непосредственно измерение усилий: там происходит деформация или небольшие колебания. С их помощью и передаются сигналы на отсчетное устройство. Такими инструментами измеряются усилия в таких единицах измерения, как Ньютоны и килограмм-сила.

Итак, что измеряют динамометром, мы разобрались, теперь посмотрим, как подразделяются данные приборы по принципу действия.

Они бывают механическими, которые классифицируют на пружинные и рычажные, гидравлическими и электрическими. Кроме таких прикладных задач, бывают и специфические разновидности силового прибора, например, тормозные и трансмиссионные. Теперь остановимся на каждом подробнее.

Виды силомерных инструментов – как они работают?

Механические инструменты такого вида делятся на пружинные и рычажные.

  • Ручной пружинный динамометр устроен так, что сила передается пружинам, они, в свою очередь, будут сжиматься и растягиваться, а направление уже будут создавать приложенные силы. После сжатий и растягиваний на приборе будут видны показатели. Вот они и будут основными величинами, именно их он и регистрирует.
  • В рычажных моделях деформация образуется с помощью установленного рычага.

Принцип работы гидравлического прибора основан на вымещениях измеряемой силой жидкостей из цилиндров. В конструкции имеется специальное цилиндрическое устройство, заполненное жидкостью. Когда на приспособлении создается усилие, то жидкость подступает к трубке и затем к аппарату, который записывает и регистрирует показатели. Таким нехитрым законом физики получилось создать довольно точный прибор.

А что же что измеряется динамометром электрического типа? Приборы такого вида состоят из датчиков, с их помощью преобразуется деформация от воздействий сил в электрические сигналы. Также имеются и дополнительные датчики, они усиливают и записывают электрические сигналы от первых датчиков.

Если необходимо преобразовывать силы или силовые моменты в деформацию, то нужно пользоваться индуктивными, пьезоэлектрическими, тензорезисторными и вибрационно-частотными датчиками сопротивлений.

Когда будет создаваться силовой момент, то датчик тут же будет деформироваться, а токи моста сопротивлений будут меняться. У электрических сигналов силы всегда пропорциональны деформациям элементов, а значит, и силам воздействий. При помощи второго датчика будет усиливаться сигнал, а показатели будут записываться для следующей обработки.

Принцип работы тормозного измерителя силы основан на поглощении мощностей обследуемых агрегатов. Приборы такого типа отличаются конструктивными решениями, то есть могут быть установлены в тормоза разных видов. Это могут быть гидравлические тормоза Прони или электромагнитные, а с помощью двигателей определяется мощность.

Во время работы происходит воздействие на вал, и вращательными усилиями или крутящими моментами происходит измерение прибором. Наиболее часто измеряется скорость вращений валов при помощи тахометра.

Результаты измерений сопоставляются, находится входная и выходная мощности прибора. При помощи гидравлического тормоза есть возможность измерить мощность на агрегатах с высокими оборотами.

В приборах трансмиссионного типа установлено устройство – тензодатчик. Он тесно связан с приводным валом, с его же помощью происходит и измерение деформаций кручений. Деформации меняют электрические сопротивления на тензодатчике. Наиболее часто такими приборами пользуются на судовых двигателях.

[custom_ads_shortcode1]

Почему не каждый слышал про динамометр?

Почему мы редко слышим об использовании этого приспособления? На самом деле, это очень специфический прибор, и сферы его применения не так доступны. Например, инструменты для замера силы широко применяются там, где необходимо измерять требуемую мощность для сжатия створок. Это почти все автоматически закрывающиеся системы.

Работу таких приборов можно увидеть в дверях трамваев или автобусов. Под контролем такого приспособления открываются двери в вагонах поездов, метро, грузовых и пассажирских лифтов, гаражных ворот, автомобильных окон, сдвигающихся люков на крыше…Если вспомнить некоторые случаи из жизни, то можно представить и различные травмы от таких дверей. Поэтому при разработке любых конструкций с такими приборами созданы специальные нормы и правила, не только связанные с установками, но и с их пользованием.

При разработке рассчитываются все необходимые значения сил сжатий, особенно если это закрывающиеся системы. Производители учитывают все показатели при конструировании подобных механизмов.

[custom_ads_shortcode2]

Как развивается этот прибор сегодня?

Современная промышленность не останавливается на достигнутом. Появления таких приборов в жизни людей позволили создавать много полезных устройств, которые облегчают жизнь. Производители в своей работе используют новые открытия, новые технологии.

Постепенно старые модели уходят из обихода и появляются новые, более удобные. Так, на сегодняшний день вместо привычных механических все больше используются электронные силомеры. Они отличаются составляющими элементами.

Устройство электронных приборов содержит тензодатчик, то есть силовой датчик, измерительные индикаторы и соединительные провода или радиоканалы. Принцип работы такого вида прибора основан на измерении деформаций тензометрическим датчиком за счет воздействий прикладываемых сил. В процессе работы образуется электрический сигнал, полностью прямо пропорциональный сообщенной деформации. Полученные показатели и являются силовыми величинами.

В настоящее время именно такими приборами пользуются во многих промышленных отраслях для поверок испытательных машин, либо стендов. Поэтому производители стараются выпускать чаще такие приборы, предназначение которых – определять не только изменяющиеся, но и статические силы растяжений и сжатий.

Последняя модель измерительного прибора СИУ2 и СИУ работает именно с помощью инструмента сжатий. Их применение наиболее востребовано на предприятиях, где необходимо проводить проверки испытательных конструкций.

Смотрите также:

  • Особенности отделки некоторых помещений
  • Для чего нужен электрический счетчик?
  • История ячеистого бетона — от седой старины до наших дней
  • Что делает тахеометр?
  • Полнотелый керамический кирпич — универсальный материал строительства
  • Как заделать трещины в стяжке пола?
  • Источники:

    • 5terka.com
    • www.yaklass.ru
    • mylektsii.ru
    • chudoogorod.ru

    Динамометр (силомер) — прибор, предназначенный для измерения сил. Действие такого прибора основано на том, что упругие деформации пропорциональны прикладываемым силам.

    На рис. 109 показан динамометр, используемый в школах при выполнении лабораторных работ по физике. Он состоит из пружины 1, один конец которой прикреплен к основанию 2. К другому концу пружины прикреплена стрелка 3 и проволока 4 с крючком па конце. На основание 2 нанесена шкала 5, пользуясь которой можно определить силу, растягивающую пружину. Отметка «0» на шкале соответствует нерастянутому состоянию пружины. Этот динамометр предназначен для измерения сил в ньютонах. Об атом свидетельствует буква Н (или N) над шкалой.

    Строение динамометра

    На шкалы динамометров цифры нанесены только против некоторых штрихов. Как же узнать значения деформирующих пружину сил, если стрелка динамометра не совпадает с оцифрованным штрихом? Для этого нужно прежде всего узнать цену деления шкалы прибора (т. е. на сколько изменяется значение силы, когда стрелка смещается на одно деление – расстояние между двумя соседними штрихами). После этого подсчитывают число делений между двумя соседними оцифрованными штрихами. Например, на рис. 109 между штрихами, около которых стоят цифры 2 и 3, находится 10 делений. Следовательно, цена деления этого динамометра равна (3 – 2) / 10 = 0,1 Н на деление. Стрелка динамометра отстоит на 4 деления от штриха с цифрой 2. Поэтому модуль деформирующих пружину сил равен 2 Н + 4 · 0,1 Н = 2,4 Н.

    Найденное значение силы упругости не является истинным. Динамометр, как и всякий прибор, имеет погрешность. В паспорте школьного динамометра, рассчитанного на измерение сил в пределах от 0 до 5 Н, говорится, что погрешность прибора Δпр = 0,05 Н в любом месте шкалы. С учетом погрешности отсчета, равной Δо = 0,05, получаем, что общая погрешность Δ = Δпр + Δо = 0,10 Н. Следовательно, истинное значение измерешюй силы лежит в промежутке от (2,40 – 0,10) Н = 2,3 Н до (2,40 + 0,10) Н = 2,5 Н. Кратко результат измерения силы можно записать в виде: 2,3 Н ≤ F ≤ 2,5 Н.

    На рисунке 110 показан медицинский динамометр для измерения мускульной силы руки при сжатии кисти в кулак. Имеются динамометры (рис. 111), на шкалы которых нанесены деления, позволяющие измерять массу подвешиваемого тела непосредственно в килограммах (или других единицах измерения массы).

    Медицинский динамометр

    Когда динамометр с подвешенным телом покоится относительно Земли, динамометр показывает вес тела. При этом вес тела по модулю пропорционален его массе (P = m · g). Это и позволяет задать цену деления шкалы динамометра в единицах массы, а сам прибор использовать для измерения массы.

    Динамометр-весы

    Промышленность выпускает динамометры, предназначенные для измерения сил от сотых долей ньютона до нескольких десятков килоньютонов. На рис. 112 показан так называемый тяговый динамометр.

    Тяговый динамометр

    Итоги

    Динамометр – прибор для измерения сил.

    Принцип действия динамометров основан на однозначной зависимости модуля упругих деформаций от модуля деформирующих сил.

    Точность измерения сил определяется погрешностью динамометра, которая указывается в паспорте прибора.

    Вопросы

    1. Что такое динамометр? На чем основан принцип действия динамометра?
    2. Как изготовить простейший динамометр и отградуировать его?
    3. Как определить погрешность измерения сил динамометром?

    Упражнения

    1. Определите массу гири, показанной на рис. 109. Указание: модуль ускорения свободного падения считайте равным 10 м/с2. Погрешность динамометра Δ = 0,10 Н.

    2. Определите модуль силы, с которой трактор, показанный на рис. 112, тянет прицеп. Указание: погрешность тягового динамометра считайте равной цене деления между соседними штрихами на его шкале.

    * 3. На рис. 113 представлен современный цифровой динамометр с подвешенной гирей массой 2 кг. Штатив, на котором закреплен динамометр, стоит на полу лифта. Найдите ускорение лифта в момент фотографирования, если в неподвижном лифте на шкале динамометра были цифры 2,00, а в движущемся – 2,50.

    Цифровой динамометр

    4. Возьмите несколько бытовых динамометров разных конструкций. Определите для каждого прибора пределы измерения и цену деления шкалы. Проведите взвешивание одного и того же тела разными динамометрами. Сравните результаты с учетом погрешности измерений.

    5. Приготовьте напольные весы. Установите их в кабине лифта, стоящего на первом этаже, встаньте на них и зафиксируйте показание. Нажмите кнопку верхнего этажа, наблюдайте за изменением показаний весов в моменты, соответствующие: а) началу разгона лифта; б) равномерному движению; в) началу торможения перед остановкой. Объясните причины изменений в показаниях весов. Повторите эксперимент при спуске лифта с верхнего этажа на первый. Сопоставьте результаты экспериментов, объясните различия.

    Задача. Какими будут показания динамометра, если к нему подвесить гирю массой displaystyle m=0,8 кг? Чему равен вес гири?

    Решение

    Думаем:  показания динамометра — это фактически сила, с которой тело действует на сам динамометр. В нашем случае на динамометр действует тело с собственной силой тяжести, тогда:

    displaystyle F=mg (1)

    Вес — это сила, с которой тело действует на опору или подвес. В нашем случае:

    displaystyle P=F=mg (2)

    Считаем: решать особо нечего, просто подставим числа из дано в наши рассуждения. Осталось вспомнить константы — ускорение свободного падения (displaystyle g=10 м/с2).

    displaystyle F=0,8*10=8,0 Н

    displaystyle P=0,8*10=8,0 Н

    Ответdisplaystyle P=8,0 Н, displaystyle P=8,0 Н.

    Ещё задачи на тему «Силы. Динамика.»

    Добавить комментарий