Как найти периметр прямой трапеции

Трапеция – это такой четырехугольник, у которого 2 параллельных основания, а остальные стороны не параллельны друг другу. У прямоугольной трапеции один угол прямой, как вы уже наверняка догадались.

Шаг 1. Формула вычисления периметра прямоугольной трапеции

Периметр прямоугольной трапеции вычисляется с помощью суммирования длин всех сторон, что весьма логично. Тут она от остальных фигур ну ничем не отличается:

Шаг 2. Решение задач на тему определения периметра прямоугольной трапеции

Задача №1

Нужно найти периметр прямоугольной трапеции, когда даны длины всех сторон. Тут всё просто. Складываем все 4 значения, и готово. Это самый лёгкий вариант нахождения периметра. Остальные задачи в итоге всё равно сводятся к нему, но нужно рассмотреть и остальные варианты, интересно же!

Задача №2

Нужно найти периметр всё той же прямоугольной трапеции, но в этом случае мы знаем длину нижнего основания AD, которая равна a. Одна из боковых сторон CD, которая не перпендикулярна ему, равна d. Угол между этим основанием и стороной равен Альфа.

Решение задачи №2

Катеты находятся по таким формулам: CE = CD*sin(ADC), в свою очередь ED = CD*cos(ADC). Верхнее основание вычисляется так: BC = AD – ED = a – CD*cos(ADC) = a – d*cos(Альфа). Длина перпендикулярной стороны считается по формуле: AB = CE = d*sin(Альфа). После этих действий вы будете обладать драгоценными знаниями о длине всех сторон трапеции.

Задача №3

Требуется найти периметр трапеции, когда даны длины его оснований. AD = a, BC=c. Также мы знаем длину перпендикулярной стороны AB, которая равна b. Острый угол при неперпендикулярной стороне равен Альфа.

Решение задачи №3

Для начала проведите высоту трапеции на большее основание, начало которой будет лежать в вершине С. После этого восхитительного действия мы получаем отрезок CE и делим трапецию на 2 фигуры: прямоугольник ABCE, а также треугольник ECD (прямоугольный). Гипотенузой треугольника в нашем случае будет известная нам сторона CD, один из катетов будет равен перпендикулярной боковой стороне нашей трапеции (опираемся на правило прямоугольника, по которому параллельные стороны равны). Длина другого отрезка будет равна разности оснований трапеции. И опять вроде всё просто.

Для начала снова проводим перпендикуляр CE и так же получаем прямоугольник ABCE вместе с треугольником CED. Осталось найти длину гипотенузы того треугольника, который мы получили, мы с уверенностью можем сказать, что CD = AB/sin(ADC) = b/sin(Альфа). Мы снова нашли все длины сторон. Осталось только их сложить. Надеемся, вы сможете сделать это без нас.

Комментариев к данному материалу пока нет.

Как найти периметр прямоугольной трапеции

Трапеция – четырехугольник с двумя параллельными основаниями и не параллельными боковыми сторонами. Прямоугольная трапеция имеет прямой угол при одной боковой стороне.

Как найти периметр прямоугольной трапеции

Инструкция

Периметр прямоугольной трапеции равен сумме длин сторон двух оснований и двух боковых сторон. Задача 1. Найдите периметр прямоугольной трапеции, если известны длины всех его сторон. Для этого сложите все четыре значения: P (периметр) = a + b + c + d.Это самый простой вариант нахождения периметра, задачи с другими начальными данными, в конечном итоге, сводятся к ней. Рассмотрим варианты.

Задача 2.Найдите периметр прямоугольной трапеции, если известно нижнее основание AD = a, не перпендикулярная ему боковая сторона CD = d, а угол при этой боковой стороне ADC равен Альфа.Решение.Проведите высоту трапеции из вершины C на большее основание, получим отрезок CE, трапеция разделилась на две фигуры – прямоугольник ABCE и прямоугольный треугольник ECD. Гипотенуза треугольника – это известная нам боковая сторона трапеции CD, один из катетов равен перпендикулярной боковой стороне трапеции (по правилу прямоугольника две параллельные стороны равны – AB = CE), а другой – отрезок, длина которого равна разности оснований трапеции ED = AD – BC.

Найдите катеты треугольника: по существующим формулам CE = CD*sin(ADC) и ED = CD*cos(ADC).Теперь вычислите верхнее основание – BC = AD – ED = a – CD*cos(ADC) = a – d*cos(Альфа).Узнайте длину перпендикулярной боковой стороны – AB = CE = d*sin(Альфа).Итак, вы получили длины всех сторон прямоугольной трапеции.

Сложите полученные значения, это и будет периметр прямоугольной трапеции:P = AB + BC + CD + AD = d*sin(Альфа) + (a – d*cos(Альфа)) + d + a = 2*a + d*(sin(Альфа) – cos(Альфа) + 1).

Задача 3.Найдите периметр прямоугольной трапеции, если известны длины его оснований AD = a, BC = c, длина перпендикулярной боковой стороны AB = b и острый угол при другой боковой стороне ADC = Альфа.Решение.Проведите перпендикуляр CE, получите прямоугольник ABCE и треугольник CED.Теперь найдите длину гипотенузы треугольника CD = AB/sin(ADC) = b/sin(Альфа).Итак, вы получили длины всех сторон.

Сложите полученные значения:P = AB + BC + CD + AD = b + c + b/sin(Альфа) + a = a + b*(1+1/sin(Альфа) + с.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как найти периметр трапеции: равнобедренной, разносторонней, прямоугольной

Принятые в формулах обозначения

Во всех приведенных ниже математических записях верны такие прочтения букв.

произвольная трапеция равнобедренная трапеция название
а а нижнее основание
в в верхнее основание
с, d с боковые стороны
н н высота
m m средняя линия
d1, d2 d1 диагонали
s s площадь
α, β α углы при нижнем основании
γ, δ γ, δ углы на пересечении диагоналей

Найти периметр трапеции

Введите данные:

Вводить можно числа или дроби (-2.4, 5/7, …).

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) – равен полуразности оснований:

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

b = a – 2 h ctg α = a – 2 c cos α

c = h = a – b
sin α 2 cos α

2. Формула длины сторон трапеции через диагонали и другие стороны:

a = d 1 2 – c 2 b = d 1 2 – c 2 c = √ d 1 2 – ab
b a

3. Формулы длины основ через площадь, высоту и другую основу:

a = 2S – b b = 2S – a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

Формулы длины средней линии равнобедренной трапеции:

m = a – h ctg α = b + h ctg α = a – √ c 2 – h 2 = b + √ c 2 – h 2

2. Формула средней линии трапеции через площадь и сторону:

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны:

h = 1 √ 4 c 2 – ( a – b ) 2
2

2. Формула высоты через стороны и угол прилегающий к основе:

h = a – b tg β = c sin β
2

В исходных данных: все стороны

Для того чтобы найти высоту трапеции в общем случае потребуется воспользоваться такой формулой:

н = √(с 2 – (((а – в) 2 + с 2 – d 2 )/(2(а – в))) 2 ). Номер 1.

Не самая короткая, но и встречается в задачах достаточно редко. Обычно можно воспользоваться другими данными.

Формула, которая подскажет, как найти высоту равнобедренной трапеции в той же ситуации, гораздо короче:

н = √(с 2 – (а – в) 2 /4). Номер 2.

Периметр произвольной трапеции

Периметр произвольной трапеции, в которой AB=a , BC=b , CD=c , AD=d , имеет вид:

[ LARGE P_ = a + b + c + d ]

где:
P – периметр трапеции
a, b, c, d – стороны трапеции

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и она делит боковую сторону точкой касания на два отрезка — и , то , то

Решение задач о прямоугольной трапеции

Прямоугольной называют трапецию, у которой углы при одной из боковых сторон равны 90 0 . Рассмотрим пример, как найти боковую сторону трапеции, если известны три другие стороны.

Задача Даны три стороны, одна из которых перпендикулярная боковая.

Допустим, нам дана прямоугольная трапеция АВСД, у которой АВ перпендикулярно ВС. Известно, что АВ = 12 см, ВС = 1 см, АД = 6 см. Необходимо найти большую боковую сторону.

Из точки С опускаем проводим высоту СК и получаем прямоугольный треугольник СДК и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны СК = АВ = 12 см, а АК = ВС = 1 см.

Находим отрезок КД:

  • КД = АД – АК = 6 – 1 = 5 (см)

Согласно теореме Пифагора:

  • СД 2 =СК 2 +КД 2 =12 2 +5 2 =144+25=169
  • СД = √169 = 13 (см)

Ответ: СД = 13 см

Задача Даны оба основания и угол при основании

Дана трапеция АВСД, у которой основания ВС и АД равны 6 и 10 см соответственно, угол ВАД – прямой, а СДА равен 45 градусов. Найдите меньшую боковую сторону.

  1. Проводим высоту СК и получаем прямоугольный треугольник СКД и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны АК = ВС = 6 см.
  2. КД = АД – АК = 10 – 6 = 4 см
  3. cos 45 = √2/2 = КД / СД, отсюда СД = КД / cos 45
  4. Получаем СД = 4/√2/2 = 4√2 (см)

Ответ: СД = 4√2 см

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Определение периметра прямоугольной трапеции

Периметр прямоугольной трапеции определяется по той же формуле, что и периметр равнобедренной, однако в этом случае формула имеет вид:

Периметр ABCD = АВ+ВС+СD+AD. Рассмотрим пример определения периметра прямоугольной трапеции. В данном примере сторона АВ = 5 см, ВС = 7см, AD = 10 см, длина стороны СD неизвестна.

  • опустим высоту из вершины С, высота CH = AB = 5см;
  • исходя из рисунка 3, AH = BC = 7 см;
  • HD = AD – AH = 10 – 7 = 3 см;
  • далее для нахождения периметра, необходимо определить длину стороны СD, являющейся в равнобедренном треугольнике СHD гипотенузой. Согласно теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, таким образом, длина стороны СD = 5,83 см: CD = = 5,83 см;
  • подставляя полученные значения в формулу, получим периметр равный 27,83 см: Периметр ABCD = 5+7+5,83+10 = 27,83 см.

Итак, определить длину одной из сторон трапеции можно воспользовавшись теоремой Пифагора. Так же, для определения длины различных сторон трапеции могут помочь следующие формулы:

  • формула расчета длины основания через среднюю линию;
  • формулы длин сторон через высоту и угол при нижнем основании трапеции;
  • формулы длин сторон трапеции через диагонали, высоту и угол между диагоналями;
  • формулы длин сторон равнобедренной трапеции через площадь.

Как видно, для решения задач, связанных с расчетом длины сторон трапеции, существует более чем широкий спектр математических приемов, выбор которых обусловлен конкретной ситуацией.

Известны: диагонали и углы между ними

Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:

Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:

н = (d1 2 * sin γ) / (а + в) или н = (d1 2 * sin δ) / (а + в). Номер 6.

Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:

н = (d1 2 * sin γ) / 2m или н = (d1 2 * sin δ) / 2m. Номер 6а.

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции – параллельные стороны
  • Боковые стороны – две другие стороны
  • Средняя линия – отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция – трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция – трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a – h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a – c· cos α – d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
2 m 2 m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 – 2 ad· cos β

d 2 = √ a 2 + c 2 – 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 = d 2 + ab – a ( d 2 – c 2 )
a – b
d 2 = c 2 + ab – a ( c 2 – d 2 )
a – b

d 1 = √ h 2 + ( a – h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a – h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab – d 2 2

d 2 = √ c 2 + d 2 + 2 ab – d 1 2

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

3. Формула площади через диагонали и угол между ними:

S = d 1 d 2 · sin γ = d 1 d 2 · sin δ
2 2

4. Формула площади через четыре стороны:

S = a + b c 2 – ( ( a – b ) 2 + c 2 – d 2 ) 2
2 2( a – b )

5. Формула Герона для трапеции

S = a + b √ ( p – a )( p – b )( p – a – c )( p – a – d )
| a – b |

где

p = a + b + c + d – полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p – a )( p – c )( p – d 1)

где

a – большее основание

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти периметр прямоугольной трапеции вписанной окружности

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 42. Найдите радиус окружности.

В четырехугольник можно вписать окружность тогда и только тогда, когда

Периметр прямоугольной трапеции, описанной около окружности, равен 32, её большая боковая сторона равна 9. Найдите радиус окружности.

Пусть радиус вписанной окружности равен r, тогда длина меньшей боковой стороны равна 2r. Суммы длин противоположных сторон описанного вокруг окружности четырехугольника равны, поэтому сумма оснований трапеции равна сумме длин ее боковых сторон или 2r + 9. Тогда для периметра трапеции имеем 2(2r + 9) = 32, откуда r = 3,5.

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/formula/trapezium/

http://ege.sdamgia.ru/test?likes=27938

[/spoiler]

В данной публикации мы рассмотрим, каким образом можно посчитать периметр трапеции и разберем примеры решения задач.

  • Формула вычисления периметра

  • Примеры задач

Формула вычисления периметра

Периметр (P) трапеции равняется сумме длин всех ее сторон.

P = a + b + c + d

Периметр трапеции

  • b и d – основания трапеции;
  • a и с – ее боковые стороны.

Периметр равнобедренной трапеции

В равнобедренной трапеции боковые стороны равны (a=c), из-за чего ее, также, называют равнобокой. Периметр считается так:

P =  2a + b + d или P = 2с + b + d

Периметр равнобедренной трапеции

Периметр прямоугольной трапеции

Для расчета периметра используется такая же формула, что и для разносторонней трапеции.

P = a + b + c + d

Периметр прямоугольной трапеции

Примеры задач

Задание 1
Найдите периметр трапеции, если ее основания равны 7 и 10 см, а боковые стороны – 4 и 5 см.

Решение:
Используем стандартную формулу, подставив в нее известные нам длины сторон: P = 7 см + 10 см + 4 см + 5 см = 26 см.

Задание 2
Периметр равнобедренной трапеции равняется 22 см. Найдите длину боковой стороны, если основания фигуры равны 3 см и 9 см.

Решение:
Как мы знаем, периметр равнобедренной трапеции вычисляется по формуле: P = 2a + b + d, где а – боковая сторона.
Ее длина, умноженная на два равна: 2a = P – b – d = 22 см – 3 см – 9 см = 10 см.
Следовательно, длина боковой стороны составляет: a = 10 см / 2 = 5 см.

A trapezoid is a flat, closed shape with four straight faces and a pair of parallel faces. Parallel sides of a trapezoid are called bases, and nonparallel sides are called legs. A trapezoid can also have parallel sides. Parallel planes can be horizontal, vertical, or inclined.

Trapezoid

A trapezoid is a polygon with only one pair of parallel sides. This parallel side is also called the parallel base of the trapezoid. The other two sides of the trapezoid are not parallel and are called the legs of the trapezoid. One school of mathematics asserts that a trapezoid can have a pair of parallel sides, while another school of mathematics asserts that a trapezoid can have more than one pair of parallel sides. Considering the second definition, a parallelogram is also trapezoidal accordingly. However, the first definition does not consider a parallelogram to be a trapezoid. 

Types Of Trapezoid

Trapezoids can be divided into three categories,

  • Right Trapezoid: A right-angled trapezoid is a trapezoid in which a pair of right angles are adjacent to each other.

  • Isosceles Trapezoid: If the nonparallel sides or legs of a trapezoid are the same length, they are said to be an isosceles trapezoid.

  • Scalene Trapezoid: If the sides and angles of a trapezoid are not equal, we call it a scalene trapezoid.

Perimeter Of Trapezoid

The perimeter of a trapezoid is equal to the sum of the lengths of the sides of the trapezoid. The formula for the perimeter of a trapezoid is as simple as the sum of the lengths of its four sides. In the trapezoid ABCD below, consider the case where sides AB and CD (base) are parallel to each other, but sides AD and BC (legs) are not. The perimeter of a trapezoid ABCD can be calculated using the formula perimeter (P) = AB + BC + CD + DA. It can also be expressed as the sum of the lengths of parallel sides and the sum of the lengths of non-parallel sides. where AB and CD are parallel sides and AD and BC are nonparallel sides.

How to find the perimeter of a trapezoid? 

The perimeter of a trapezoid can be calculated by following these steps:

Step 1: Record the dimensions of all sides of the trapezoid.

Step 2: Add the lengths of all sides.

Step 3: Once the perimeter value is obtained, record the units with this value.

Example: What is the perimeter of the trapezoid when the nonparallel sides are 10 units long and the parallel sides are 5units long?

Solution: 

Suppose the sum of the lengths of the nonparallel sides = 10 units, then the sum of the parallel sides = 5 units. The perimeter of a trapezoid = Sum of the lengths of parallel sides + Sum of lengths of non-parallel sides ⇒ P = 10 units + 5 units.

So, perimeter (P) = 15 units.

How to find the perimeter of a Trapezoid with a missing side?

The perimeter of a trapezoid can be calculated even if there are not enough sides. In such cases, you can use the given sides of the trapezoid, apply the Pythagoras theorem and other properties to find the missing sides, and then calculate the perimeter.

Example: Find the perimeter of the trapezoid PQRS with dimensions  PQ = 110m, SV = 40m, VU = 110m, UR = 70m, QU = 80m.

Solution

Use the given dimensions to find the missing PS and QR faces.

Step 1: If we take the △QUR, we get QU = 80m and UR = 70m. We can see that △QUR is a right-angled triangle. So we can use the Pythagoras theorem to calculate the QR value.

Step 2: According to the Pythagoras theorem, QR2 = QU2 + UR2. This means QR2 = 802 + 702. So QR2 =  6400 +4900 ⇒ QR = √11300 = 106.301m.

Step 3: Since QU = 80m,  PQ is parallel to SR, so PV is also 80m, so we can now calculate the missing side PS of the trapezoid. 

Step 4: Taking the right triangle △PSV,  PV = 80m, SV = 40m, so applying the Pythagoras theorem we get PS2 = PV2 + SV2. This means PS2 = 802 + 402. So, PS2 = 6400 + 1600 ⇒ PS = √8000 = 89.44m.   

Step 5: Now that we know all the faces of the trapezoid, we can add up all four faces to find the perimeter. This means that the perimeter of the trapezoid is PQRS = PQ + QR + RS + SP ⇒ 110 + 106.301 + 220 + 89.44 = 525.741 m.

Sample Questions

Question 1: Give two basic trapezoidal formulas.

Answer:

Perimeter  of Trapezoid = sum of all sides of trapezoid = a + b + c +d

Area of Trapezoid = A = [(a + b)/2] × h.

Where a , b , c , d are length of four sides of trapezoid.

Question 2: Is a trapezoid / trapezoid considered a quadrilateral?  

Answer: 

A quadrilateral is a closed shape having four sides. As a result,  trapezoids are sometimes called quadrilaterals. Some people describe a trapezoid as a quadrilateral with only one set of parallel sides and remove the parallelogram from the definition. Others define a trapezoid as a quadrilateral with at least one pair of parallel sides, making a parallelogram a particular type of trapezoid. Trapezoids come in different sizes of angles.

Question 3: What is the difference between a trapezoid and a trapezium?

Answer:  

A trapezium is a quadrilateral with a pair of parallel sides facing each other, trapezoid is also a quadrilateral polygon with one of its parallel sides opposite to each other.

So, the two terms trapezoid and trapezium are the same but have different spellings in different countries. In American English, it is trapezium but in British English it’s a trapezium.

Question 4: Give three properties of a trapezoid.

Answer: 

  • If the trapezoid is isosceles, then its base and diagonal are equal.  
  • The intersection of the diagonals lies on the same line as the midpoint of the two opposite sides. 
  • The opposite sides of an isosceles trapezoid are the same.

Question 5: Are the diagonals of a trapezoid equal? Explain.

Answer:  

There are three types of trapezoids: isosceles, multipurpose, and straight. For an isosceles trapezoid, the diagonals are the same because the non-parallel sides or legs of a trapezoid are of the same length. For scalene and straight trapezoid, the diagonals are not equal.

Question 6: If the perimeter of the trapezoid is 60 units and the three sides are 10 units, 25 units, and 12 units, respectively, use the trapezoidal formula to find the size of the fourth side.

Solution:

  • Given perimeter of trapezoid = 60 units
  • Given length of side 1 of trapezoid =10 units 
  • Given length of side 2 of trapezoid = 25 units
  • Given length of side 3 of trapezoid = 12 units

Let d units be the length of fourth side of trapezoid,

Using trapezoid formula , Perimeter of trapezoid = Sum of all sides of trapezoid 

60 = 10 + 25 + 12 +d

60 = 47 + d

d = 13 units.

Last Updated :
10 Jun, 2022

Like Article

Save Article

Добавить комментарий