Как найти общий знаменатель с неизвестными

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

  1. Приведя дроби к общему знаменателю

  2. Используя основное свойство пропорции

Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

1 способ. Приведение дробей к общему знаменателю.

Пример 1

$frac{2x+3}{2x-1}=frac{x-5}{x+3}$

Решение:

1.Перенесем дробь из правой части уравнения в левую

[frac{2x+3}{2x-1}-frac{x-5}{x+3}=0]

Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

[frac{(2x+3)(х+3)}{(2x-1)(х+3)}-frac{(x-5)(2х-1)}{(x+3)(2х-1)}=0]

Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним , что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

[left(2x+3right)left(х+3right)=2хcdot х+2хcdot 3+3cdot х+3cdot 3={2х}^2+6х+3х+9]

Приведем подобные слагаемые в полученном выражении

[left(2x+3right)left(х+3right)=2хcdot х+2хcdot 3+3cdot х+3cdot 3={2х}^2+6х+3х+9=] [{=2х}^2+9х+9]

Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

$left(x-5right)left(2х-1right)=хcdot 2х-хcdot 1-5cdot 2х+5cdot 1={2х}^2-х-10х+5={2х}^2-11х+5$

Тогда уравнение примет вид:

[frac{{2х}^2+9х+9}{(2x-1)(х+3)}-frac{{2х}^2-11х+5}{(x+3)(2х-1)}=0]

Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

[frac{{2х}^2+9х+9-({2х}^2-11х+5)}{(2x-1)(х+3)}=0]

Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми , стоящими в скобках на противоположные

[{2х}^2+9х+9-left({2х}^2-11х+5right)={2х}^2+9х+9-{2х}^2+11х-5]

Приведем подобные слагаемые

${2х}^2+9х+9-left({2х}^2-11х+5right)={2х}^2+9х+9-{2х}^2+11х-5=20х+4$

Тогда дробь примет вид

[frac{{rm 20х+4}}{(2x-1)(х+3)}=0]

3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

[{rm 20х+4=0}]

Решим линейное уравнение:

$20x=-4$

$X=-0,2$

4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

Поставим условие, что знаменатели не равны $0$

[2x-1ne 0 x+3ne 0]

х$ne 0,5$ х$ne -3$

Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и ,конечно, не был бы включен в ответ.

Ответ:$-0,2.$

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

Алгоритм решения уравнения, которое содержит переменную в знаменателе

  1. Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

  2. Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

  3. Приравнять числитель к $0$ и найти корни получившегося уравнения.

  4. Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

2 способ. Используем основное свойство пропорции

Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

Пример 2

Используем данное свойство для решения этого задания

[frac{2x+3}{2x-1}=frac{x-5}{x+3}]

1.Найдем и приравняем произведение крайних и средних членов пропорции.

$left(2x+3right)cdot( x+3)=left(x-5right)cdot(2x-1)$

[{2х}^2+3х+6х+9={2х}^2-10х-х+5]

$9x+11x=5-9$

$20x=-4$

$X=-0,2$

Решив полученное уравнение, мы найдем корни исходного

2.Найдем допустимые значения переменной .

Из предыдущего решения (1 способ) мы уже нашли , что допустимы любые значения, кроме $-3$ и $0,5$.

Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

Ответ:$-0,2.$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Наименьший общий знаменатель (НОЗ) алгебраических дробей, его нахождение

Большинство действий с алгебраическими дробями, такие, например, как сложение и вычитание, требуют предварительного приведения этих дробей к одинаковым знаменателям. Такие знаменатели также часто обозначаются словосочетанием «общий знаменатель». В данной теме мы рассмотрим определение понятий «общий знаменатель алгебраических дробей» и «наименьший общий знаменатель алгебраических дробей (НОЗ)», рассмотрим по пунктам алгоритм нахождения общего знаменателя и решим несколько задач по теме.

Общий знаменатель алгебраических дробей

Если говорить про обыкновенные дроби, то общим знаменателем является такое число, которое делится на любой из знаменателей исходных дробей. Для обыкновенных дробей 1 2 и 5 9 число 36 может быть общим знаменателем, так как без остатка делится на 2 и на 9 .

Общий знаменатель алгебраических дробей определяется похожим образом, только вместо чисел используются многочлены, так как именно они стоят в числителях и знаменателях алгебраической дроби.

Общий знаменатель алгебраической дроби – это многочлен, который делится на знаменатель любой из дробей.

В связи с особенностями алгебраических дробей, речь о которых пойдет ниже, мы чаще будем иметь дело с общими знаменателями, представленными в виде произведения, а не в виде стандартного многочлена.

Многочлену, записанному в виде произведения 3 · x 2 · ( x + 1 ) , соответствует многочлен стандартного вида 3 · x 3 + 3 · x 2 . Этот многочлен может быть общим знаменателем алгебраических дробей 2 x , — 3 · x · y x 2 и y + 3 x + 1 , в связи с тем, что он делится на x , на x 2 и на x + 1 . Информация о делимости многочленов есть в соответствующей теме нашего ресурса.

Наименьший общий знаменатель (НОЗ)

Для заданных алгебраических дробей количество общих знаменателей может быть бесконечное множество.

Возьмем для примера дроби 1 2 · x и x + 1 x 2 + 3 . Их общим знаменателем является 2 · x · ( x 2 + 3 ) , как и − 2 · x · ( x 2 + 3 ) , как и x · ( x 2 + 3 ) , как и 6 , 4 · x · ( x 2 + 3 ) · ( y + y 4 ) , как и − 31 · x 5 · ( x 2 + 3 ) 3 , и т.п.

При решении задач можно облегчить себе работу, используя общий знаменатель, который среди всего множества знаменателей имеет самый простой вид. Такой знаменатель часто обозначается как наименьший общий знаменатель.

Наименьший общий знаменатель алгебраических дробей – это общий знаменатель алгебраических дробей, который имеет самый простой вид.

К слову, термин «наименьший общий знаменатель» не является общепризнанным, потому лучше ограничиваться термином «общий знаменатель». И вот почему.

Ранее мы сфокусировали ваше внимание на фразе «знаменатель самого простого вида». Основной смысл этой фразы следующий: на знаменатель самого простого вида должен без остатка делиться любой другой общий знаменатель данных в условии задачи алгебраических дробей. При этом в произведении, которое является общим знаменателем дробей, можно использовать различные числовые коэффициенты.

Возьмем дроби 1 2 · x и x + 1 x 2 + 3 . Мы уже выяснили, что проще всего работать нам будет с общим знаменателем вида 2 · x · ( x 2 + 3 ) . Также общим знаменателем для этих двух дробей может быть x · ( x 2 + 3 ) , который не содержит числового коэффициента. Вопрос в том, какой из этих двух общих знаменателей считать наименьшим общим знаменателем дробей. Однозначного ответа нет, потому правильнее говорить просто об общем знаменателе, а в работу брать тот вариант, с которым работать будет удобнее всего. Так, мы можем использовать и такие общие знаменатели как x 2 · ( x 2 + 3 ) · ( y + y 4 ) или − 15 · x 5 · ( x 2 + 3 ) 3 , которые имеют более сложный вид, но проводить с ними действия может быть сложнее.

Нахождение общего знаменателя алгебраических дробей: алгоритм действий

Предположим, что у нас имеется несколько алгебраических дробей, для которых нам необходимо отыскать общий знаменатель. Для решения этой задачи мы можем использовать следующий алгоритм действий. Сначала нам необходимо разложить на множители знаменатели исходных дробей. Затем мы составляем произведение, в которое последовательно включаем:

  • все множители из знаменателя первой дроби вместе со степенями;
  • все множители, присутствующие в знаменателе второй дроби, но которых нет в записанном произведении или их степень недостаточно;
  • все недостающие множители из знаменателя третьей дроби, и так далее.

Полученное произведение и будет общим знаменателем алгебраических дробей.

В качестве множителей произведения мы можем взять все знаменатели дробей, данных в условии задачи. Однако множитель, который мы получим в итоге, по смыслу будет далек от НОЗ и использование его будет иррациональным.

Определите общий знаменатель дробей 1 x 2 · y , 5 x + 1 и y — 3 x 5 · y .

Решение

В данном случае у нас нет необходимости раскладывать знаменатели исходных дробей на множители. Потому начнем применять алгоритм с составления произведения.

Из знаменателя первой дроби возьмем множитель x 2 · y , из знаменателя второй дроби множитель x + 1 . Получаем произведение x 2 · y · ( x + 1 ) .

Знаменатель третьей дроби может дать нам множитель x 5 · y , однако в составленном нами ранее произведении уже есть множители x 2 и y . Следовательно, добавляем еще x 5 − 2 = x 3 . Получаем произведение x 2 · y · ( x + 1 ) · x 3 , которое можно привести к виду x 5 · y · ( x + 1 ) . Это и будет наш НОЗ алгебраических дробей.

Ответ: x 5 · y · ( x + 1 ) .

Теперь рассмотрим примеры задач, когда в знаменателях алгебраических дробей есть целые числовые множители. В таких случаях мы также действуем по алгоритму, предварительно разложив целые числовые множители на простые множители.

Найдите общий знаменатель дробей 1 12 · x и 1 90 · x 2 .

Решение

Разложив числа в знаменателях дробей на простые множители, получаем 1 2 2 · 3 · x и 1 2 · 3 2 · 5 · x 2 . Теперь мы можем перейти к составлению общего знаменателя. Для этого из знаменателя первой дроби возьмем произведение 2 2 · 3 · x и добавим к нему множители 3 , 5 и x из знаменателя второй дроби. Получаем 2 2 · 3 · x · 3 · 5 · x = 180 · x 2 . Это и есть наш общий знаменатель.

Ответ: 180 · x 2 .

Если внимательно посмотреть на результаты двух разобранных примеров, то можно заметить, что общие знаменатели дробей содержат все множители, присутствующие в разложениях знаменателей, причем если некоторый множитель имеется в нескольких знаменателях, то он берется с наибольшим из имеющихся показателей степени. А если в знаменателях имеются целые коэффициенты, то в общем знаменателе присутствует числовой множитель, равный наименьшему общему кратному этих числовых коэффициентов.

В знаменателях обеих алгебраических дробей 1 12 · x и 1 90 · x 2 есть множитель x . Во втором случае множитель x возведен в квадрат. Для составления общего знаменателя это множитель нам необходимо взять в наибольшей степени, т.е. x 2 . Других множителей с переменными нет. Целые числовые коэффициенты исходных дробей 12 и 90 , а их наименьшее общее кратное равно 180 . Получается, что искомый общий знаменатель имеет вид 180 · x 2 .

Теперь мы можем записать еще один алгоритм нахождения общего множителя алгебраических дробей. Для этого мы:

  • раскладываем знаменатели всех дробей на множители;
  • составляем произведение всех буквенных множителей (при наличии множителя в нескольких разложениях, берем вариант с наибольшим показателем степени);
  • добавляем НОК числовых коэффициентов разложений к полученному произведению.

Приведенные алгоритмы равноценны, так что использовать в решении задач можно любой из них. Важно уделять внимание деталям.

Встречаются случаи, когда общие множители в знаменателях дробей могут быть незаметны за числовыми коэффициентами. Здесь целесообразно сначала вынести числовые коэффициенты при старших степенях переменных за скобки в каждом из множителей, имеющихся в знаменателе.

Какой общий знаменатель имеют дроби 3 5 — x и 5 — x · y 2 2 · x — 10 .

Решение

В первом случае за скобки необходимо вынести минус единицу. Получаем 3 — x — 5 . Умножаем числитель и знаменатель на — 1 для того, чтобы избавиться от минуса в знаменателе: — 3 x — 5 .

Во втором случае за скобку выносим двойку. Это позволяет нам получить дробь 5 — x · y 2 2 · x — 5 .

Очевидно, что общий знаменатель данных алгебраических дробей — 3 x — 5 и 5 — x · y 2 2 · x — 5 это 2 · ( x − 5 ) .

Ответ: 2 · ( x − 5 ) .

Данные в условии задачи дроби могут иметь дробные коэффициенты. В этих случаях необходимо сначала избавиться от дробных коэффициентов путем умножения числителя и знаменателя на некоторое число.

Упростите алгебраические дроби 1 2 · x + 1 1 14 · x 2 + 1 7 и — 2 2 3 · x 2 + 1 1 3 , после чего определите их общий знаменатель.

Решение

Избавимся от дробных коэффициентов, умножив числитель и знаменатель в первом случае на 14 , во втором случае на 3 . Получаем:

1 2 · x + 1 1 14 · x 2 + 1 7 = 14 · 1 2 · x + 1 14 · 1 14 · x 2 + 1 7 = 7 · x + 14 x 2 + 2 и — 2 2 3 · x 2 + 1 1 3 = 3 · — 2 3 · 2 3 · x 2 + 4 3 = — 6 2 · x 2 + 4 = — 6 2 · x 2 + 2 .

После проведенных преобразований становится понятно, что общий знаменатель – это 2 · ( x 2 + 2 ) .

Ответ: 2 · ( x 2 + 2 ) .

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Дробно-рациональные уравнения

    Что такое дробно-рациональные уравнения

    Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

    при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

    Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

    9 x 2 — 1 3 x = 0

    1 2 x + x x + 1 = 1 2

    6 x + 1 = x 2 — 5 x x + 1

    Уравнения, которые не являются дробно-рациональными:

    Как решаются дробно-рациональные уравнения

    В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

    Алгоритм действий при стандартном способе решения:

    1. Выписать и определить ОДЗ.
    2. Найти общий знаменатель для дробей.
    3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
    4. Записать уравнение со скобками.
    5. Раскрыть скобки для приведения подобных слагаемых.
    6. Найти корни полученного уравнения.
    7. Выполним проверку корней в соответствии с ОДЗ.
    8. Записать ответ.

    Пример 1

    Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    Начать следует с области допустимых значений:

    x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

    Воспользуемся правилом сокращенного умножения:

    x 2 — 4 = ( x — 2 ) ( x + 2 )

    В результате общим знаменателем дробей является:

    Выполним умножение каждого из членов выражения на общий знаменатель:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

    После сокращения избавимся от скобок и приведем подобные слагаемые:

    x ( x + 2 ) — 7 ( x — 2 ) = 8

    x 2 + 2 x — 7 x + 14 = 8

    Осталось решить квадратное уравнение:

    Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

    Примеры задач с ответами для 9 класса

    Требуется решить дробно-рациональное уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    Определим область допустимых значений:

    О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

    x 2 + 7 x + 10 ≠ 0

    D = 49 — 4 · 10 = 9

    x 1 ≠ — 7 + 3 2 = — 2

    x 2 ≠ — 7 — 3 2 = — 5

    Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

    a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

    x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

    — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

    x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

    x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

    2 x 2 + 9 x — 5 = 0

    Потребуется решить квадратное уравнение:

    2 x 2 + 9 x — 5 = 0

    Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

    Дано дробно-рациональное уравнение, корни которого требуется найти:

    4 x — 2 — 3 x + 4 = 1

    В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

    4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0

    4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

    4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

    x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

    Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

    — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

    Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

    ( x — 2 ) ( x + 4 ) ≠ 0

    Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

    — x 2 — x + 30 = 0 _ _ _ · ( — 1 )

    Получилось квадратное уравнение, которое можно решить:

    Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

    Нужно решить дробно-рациональное уравнение:

    x + 2 x 2 — 2 x — x x — 2 = 3 x

    На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

    x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0

    x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

    x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

    — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

    Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

    — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

    Корни квадратного уравнения:

    x 1 = — 4 ; x 2 = 2

    Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

    Найти корни уравнения:

    x 2 — x — 6 x — 3 = x + 2

    Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

    x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0

    x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

    x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

    0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

    Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

    Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

    Ответ: х — любое число, за исключением 3.

    Требуется вычислить корни дробно-рационального уравнения:

    5 x — 2 — 3 x + 2 = 20 x 2 — 4

    На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

    5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0

    5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

    5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

    2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

    ( x — 2 ) ( x + 2 ) ≠ 0

    Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

    Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

    Ответ: корни отсутствуют

    Нужно найти корни уравнения:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

    Начнем с определения ОДЗ:

    — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

    При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

    ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

    ( x — 3 ) x + x = x + 5

    Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

    x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

    Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

    x 1 · x 2 = — 10 x 1 + x 2 = 3

    В этом случае подходящими являются числа: -2 и 5.

    Второе значение не соответствует области допустимых значений.

    источники:

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    http://wika.tutoronline.ru/algebra/class/9/drobnoraczionalnye-uravneniya

    Решение уравнений с переменной в знаменателе дроби

    Вы будете перенаправлены на Автор24

    Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

    Приведя дроби к общему знаменателю

    Используя основное свойство пропорции

    Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

    1 способ. Приведение дробей к общему знаменателю.

    Решение:

    1.Перенесем дробь из правой части уравнения в левую

    Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

    2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

    Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

    Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним , что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

    [left(2x+3right)left(х+3right)=2хcdot х+2хcdot 3+3cdot х+3cdot 3=<2х>^2+6х+3х+9]

    Приведем подобные слагаемые в полученном выражении

    [left(2x+3right)left(х+3right)=2хcdot х+2хcdot 3+3cdot х+3cdot 3=<2х>^2+6х+3х+9=] [<=2х>^2+9х+9]

    Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

    $left(x-5right)left(2х-1right)=хcdot 2х-хcdot 1-5cdot 2х+5cdot 1=<2х>^2-х-10х+5=<2х>^2-11х+5$

    Тогда уравнение примет вид:

    Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

    Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми , стоящими в скобках на противоположные

    Приведем подобные слагаемые

    Тогда дробь примет вид

    3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

    Решим линейное уравнение:

    4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

    Поставим условие, что знаменатели не равны $0$

    Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

    Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и ,конечно, не был бы включен в ответ.

    Ответ:$-0,2.$

    Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

    Алгоритм решения уравнения, которое содержит переменную в знаменателе

    Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

    Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

    Приравнять числитель к $0$ и найти корни получившегося уравнения.

    Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

    2 способ. Используем основное свойство пропорции

    Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

    Используем данное свойство для решения этого задания

    1.Найдем и приравняем произведение крайних и средних членов пропорции.

    Решив полученное уравнение, мы найдем корни исходного

    2.Найдем допустимые значения переменной .

    Из предыдущего решения (1 способ) мы уже нашли , что допустимы любые значения, кроме $-3$ и $0,5$.

    Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

    Ответ:$-0,2.$

    Получи деньги за свои студенческие работы

    Курсовые, рефераты или другие работы

    Автор этой статьи Дата последнего обновления статьи: 12 05 2021

    Дробно-рациональные уравнения

    Что такое дробно-рациональные уравнения

    Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

    при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

    Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

    9 x 2 – 1 3 x = 0

    1 2 x + x x + 1 = 1 2

    6 x + 1 = x 2 – 5 x x + 1

    Уравнения, которые не являются дробно-рациональными:

    СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).

    Как решаются дробно-рациональные уравнения

    В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

    Алгоритм действий при стандартном способе решения:

    1. Выписать и определить ОДЗ.
    2. Найти общий знаменатель для дробей.
    3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
    4. Записать уравнение со скобками.
    5. Раскрыть скобки для приведения подобных слагаемых.
    6. Найти корни полученного уравнения.
    7. Выполним проверку корней в соответствии с ОДЗ.
    8. Записать ответ.

    Пример 1

    Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

    x x – 2 – 7 x + 2 = 8 x 2 – 4

    Начать следует с области допустимых значений:

    x 2 – 4 ≠ 0 ⇔ x ≠ ± 2

    Воспользуемся правилом сокращенного умножения:

    x 2 – 4 = ( x – 2 ) ( x + 2 )

    В результате общим знаменателем дробей является:

    Выполним умножение каждого из членов выражения на общий знаменатель:

    x x – 2 – 7 x + 2 = 8 x 2 – 4

    x ( x – 2 ) ( x + 2 ) x – 2 – 7 ( x – 2 ) ( x + 2 ) x + 2 = 8 ( x – 2 ) ( x + 2 ) ( x – 2 ) ( x + 2 )

    После сокращения избавимся от скобок и приведем подобные слагаемые:

    x ( x + 2 ) – 7 ( x – 2 ) = 8

    x 2 + 2 x – 7 x + 14 = 8

    Осталось решить квадратное уравнение:

    Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

    Примеры задач с ответами для 9 класса

    Требуется решить дробно-рациональное уравнение:

    x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0

    x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0

    Определим область допустимых значений:

    О Д З : x + 2 ≠ 0 ⇔ x ≠ – 2

    x 2 + 7 x + 10 ≠ 0

    D = 49 – 4 · 10 = 9

    x 1 ≠ – 7 + 3 2 = – 2

    x 2 ≠ – 7 – 3 2 = – 5

    Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

    a x 2 + b x + c = a ( x – x 1 ) ( x – x 2 )

    x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0

    Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

    x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0

    Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

    x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 –

    – ( 7 – x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

    x ( x + 5 ) + ( x + 1 ) ( x + 2 ) – 7 + x = 0

    x 2 + 5 x + x 2 + 3 x + 2 – 7 + x = 0

    2 x 2 + 9 x – 5 = 0

    Потребуется решить квадратное уравнение:

    2 x 2 + 9 x – 5 = 0

    Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

    Дано дробно-рациональное уравнение, корни которого требуется найти:

    4 x – 2 – 3 x + 4 = 1

    В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

    4 ( x + 4 ) x – 2 – 3 ( x – 2 ) x + 4 – 1 ( x – 2 ) ( x + 4 ) = 0

    4 ( x + 4 ) – 3 ( x – 2 ) – ( x – 2 ) ( x + 4 ) ( x – 2 ) ( x + 4 ) = 0

    4 x + 16 – 3 x + 6 – ( x 2 + 4 x – 2 x – 8 ) ( x – 2 ) ( x + 4 ) = 0

    x + 22 – x 2 – 4 x + 2 x + 8 ( x – 2 ) ( x + 4 ) = 0

    Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

    – x 2 – x + 30 ( x – 2 ) ( x + 4 ) = 0 ⇔ – x 2 – x + 30 = 0 ( x – 2 ) ( x + 4 ) ≠ 0

    Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

    ( x – 2 ) ( x + 4 ) ≠ 0

    Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

    – x 2 – x + 30 = 0 _ _ _ · ( – 1 )

    Получилось квадратное уравнение, которое можно решить:

    Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

    Нужно решить дробно-рациональное уравнение:

    x + 2 x 2 – 2 x – x x – 2 = 3 x

    На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

    x + 2 1 x ( x – 2 ) – x x x – 2 – 3 ( x – 2 ) x = 0

    x + 2 – x 2 – 3 ( x – 2 ) x ( x – 2 ) = 0

    x + 2 – x 2 – 3 x + 6 x ( x – 2 ) = 0

    – x 2 – 2 x + 8 x ( x – 2 ) = 0 ⇔ – x 2 – 2 x + 8 = 0 x ( x – 2 ) ≠ 0

    Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

    – x 2 – 2 x + 8 = 0 _ _ _ · ( – 1 )

    Корни квадратного уравнения:

    x 1 = – 4 ; x 2 = 2

    Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

    Найти корни уравнения:

    x 2 – x – 6 x – 3 = x + 2

    Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

    x 2 – x – 6 1 x – 3 – x ( x – 3 ) – 2 ( x – 3 ) = 0

    x 2 – x – 6 – x ( x – 3 ) – 2 ( x – 3 ) x – 3 = 0

    x 2 – x – 6 – x 2 + 3 x – 2 x + 6 x – 3 = 0

    0 x x – 3 = 0 ⇔ 0 x = 0 x – 3 ≠ 0

    Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

    Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

    Ответ: х — любое число, за исключением 3.

    Требуется вычислить корни дробно-рационального уравнения:

    5 x – 2 – 3 x + 2 = 20 x 2 – 4

    На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

    5 ( x + 2 ) x – 2 – 3 ( x – 2 ) x + 2 – 20 1 ( x – 2 ) ( x + 2 ) = 0

    5 ( x + 2 ) – 3 ( x – 2 ) – 20 ( x – 2 ) ( x + 2 ) = 0

    5 x + 10 – 3 x + 6 – 20 ( x – 2 ) ( x + 2 ) = 0

    2 x – 4 ( x – 2 ) ( x + 2 ) = 0 ⇔ 2 x – 4 = 0 ( x – 2 ) ( x + 2 ) ≠ 0

    ( x – 2 ) ( x + 2 ) ≠ 0

    Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

    Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

    Ответ: корни отсутствуют

    Нужно найти корни уравнения:

    x – 3 x – 5 + 1 x = x + 5 x ( x – 5 )

    Начнем с определения ОДЗ:

    – 5 ≠ 0 x ≠ 0 x ( x – 5 ) ≠ 0 x ≠ 5 x ≠ 0

    При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

    x – 3 x – 5 + 1 x = x + 5 x ( x – 5 ) · x ( x – 5 )

    ( x – 3 ) x ( x – 5 ) x – 5 + x ( x – 5 ) x = ( x + 5 ) x ( x – 5 ) x ( x – 5 )

    ( x – 3 ) x + x = x + 5

    Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

    x 2 – 3 x + x – 5 = x + 5 → x 2 – 2 x – 5 – x – 5 = 0 → x 2 – 3 x – 10 = 0

    Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

    x 1 · x 2 = – 10 x 1 + x 2 = 3

    В этом случае подходящими являются числа: -2 и 5.

    Второе значение не соответствует области допустимых значений.

    Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил. Но если вдруг что-то еще непонятно – попробуй онлайн-занятие с репетитором (подробности тут + 🎁).

    Решение уравнений с дробями

    О чем эта статья:

    5 класс, 6 класс, 7 класс

    Понятие дроби

    Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

    Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

    • обыкновенный вид — ½ или a/b,
    • десятичный вид — 0,5.

    Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

    Дроби бывают двух видов:

    1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
    2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

    Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

    Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

    Основные свойства дробей

    Дробь не имеет значения, если делитель равен нулю.

    Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

    Дроби a/b и c/d называют равными, если a × d = b × c.

    Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

    Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

    Понятие уравнения

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

    • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
    • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Решить уравнение значит найти все его корни или убедиться, что корней нет.

    Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

    Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

    Что поможет в решении:

    • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
    • если а равно нулю, а b не равно нулю — у уравнения нет корней;
    • если а и b равны нулю, то корень уравнения — любое число.
    Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Понятие дробного уравнения

    Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

    Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

    Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

    На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

    Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

    Как решать уравнения с дробями

    1. Метод пропорции

    Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

    Итак, у нас есть линейное уравнение с дробями:

    В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

    После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

    2. Метод избавления от дробей

    Возьмем то же самое уравнение, но попробуем решить его по-другому.

    В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

    • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
    • умножить на это число каждый член уравнения.

    Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

    Вот так просто мы получили тот же ответ, что и в прошлый раз.

    Что еще важно учитывать при решении

    • если значение переменной обращает знаменатель в 0, значит это неверное значение;
    • делить и умножать уравнение на 0 нельзя.

    Универсальный алгоритм решения

    Определить область допустимых значений.

    Найти общий знаменатель.

    Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

    Раскрыть скобки, если нужно и привести подобные слагаемые.

    Решить полученное уравнение.

    Сравнить полученные корни с областью допустимых значений.

    Записать ответ, который прошел проверку.

    Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

    Примеры решения дробных уравнений

    Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

    Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

    1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
    2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
    3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Решим обычное уравнение.

    Пример 2. Найти корень уравнения

    1. Область допустимых значений: х ≠ −2.
    2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
    3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Переведем новый множитель в числитель..

    Сократим левую часть на (х+2), а правую на 2.

    Пример 3. Решить дробное уравнение:

      Найти общий знаменатель:

    Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

    Выполним возможные преобразования. Получилось квадратное уравнение:

    Решим полученное квадратное уравнение:

    Получили два возможных корня:

    Если x = −3, то знаменатель равен нулю:

    Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • [spoiler title=”источники:”]

    http://wika.tutoronline.ru/algebra/class/9/drobnoraczionalnye-uravneniya

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    [/spoiler]

    При нахождении наименьшего общего знаменателя при сложении (вычитании) обыкновенных дробей учащиеся часто поступают нерационально, принимая в качестве общего знаменателя произведение знаменателей исходных дробей.

    Можно использовать следующий прием, использующий навык сокращения дробей

    Удобный способ нахождения общего знаменателя

    Пример 1. Найти сумму дробей с разными знаменателями

    Удобный способ нахождения общего знаменателя

    Составили дробь из знаменателей дробей слагаемых и после ее сокращения на 7 получили дополнительные множители к дробям слагаемым:
    2 – дополнительный множитель к дроби со знаменателем 21,
    3 – дополнительный множитель к дроби со знаменателем 14
    Т.е. дополнительные множители соответствуют исходным знаменателям “крест-накрест”

    Пример 2. Найти разность дробей с разными знаменателями

    Удобный способ нахождения общего знаменателя

    Составили дробь из знаменателей, сократили ее и получили дополнительные множители, которые соответствуют исходным знаменателям “крест-накрест”, как в пропорции

    Способ можно применять для нахождения наименьшего общего кратного двух чисел (это очевидно, т.к. наименьший общий знаменатель является наименьшим общим кратным исходных знаменателей)

    Пример 3. Найти наименьшее общее кратное

    Удобный способ нахождения общего знаменателя

    Составили дробь из чисел, для которых надо найти наименьшее общее кратное, сократили ее последовательно (сначала на 2, потом на 7, потом на 3) – получили несократимую дробь.
    Числитель составленной дроби умножаем на знаменатель дроби после сокращения (84 умножаем на 3).
    Знаменатель составленной дроби умножаем на числитель дроби после сокращения (126 умножаем на 2).
    В обоих случаях получаем наименьшее общее кратное при условии, что получена именно
    несократимая дробь.

    Алгоритм усложняется, если надо найти общий знаменатель трех и более дробей. В этом случае надо найти общий знаменатель первых двух дробей, потом найти общий знаменатель результата и следующей дроби и т.д.
    Алгоритм можно применять также при сложении (вычитании) алгебраических дробей.

    Удобный способ нахождения общего знаменателя

    Содержание

    1. как найти общий знаменатель
    2. Находим общий знаменатель
    3. Что такое общий знаменатель?
    4. Но что такое общий знаменатель простыми словами ?
    5. Пример общего знаменателя :
    6. В каком случае ноз двух дробей будет являться произведением знаменателей?
    7. Когда ноз двух дробей равен произведению знаменателей?
    8. Формула общего знаменателя
    9. Нахождение общего знаменателя с помощью нок.
    10. Пример нахождения общего знаменателя методом разложения на множители
    11. Пример номер 2 подбора общего знаменателя
    12. Как найти общий знаменатель дробей онлайн
    13. Переходим к нахождению общего знаменателя онлайн
    14. Что такое наименьший общий знаменатель?
    15. Но, что же такое «наименьший общий знаменатель»
    16. Определение, что же такое «наименьший общий знаменатель»
    17. Формула наименьшего общего кратного
    18. Как найти наименьший общий знаменатель на калькуляторе
    19. Как найти общий знаменатель трех дробей
    20. Задача/пример найдите общий знаменатель для трех дробей.
    21. Найдем общий знаменатель для трех дробей на калькуляторе через НОК.
    22. Как найти общий знаменатель дробей с разными знаменателями
    23. Общий знаменатель дробей онлайн
    24. Как привести дроби к общему знаменателю?
    25. Общий знаменатель трёх дробей

    как найти общий знаменатель

    Как найти общий знаменатель, что такое общий знаменатель и конечно же нахождение общего знаменателя онлайн на нашем калькуляторе. И если вам требуется наименьший общий знаменатель, то он тут.

    И! Вне зависимости от класса — общий знаменатель находят одинаково!

    Находим общий знаменатель

    Что такое общий знаменатель?

    Кроме понятия «общий знаменатель«, есть еще такое понятие как — «Наименьший общий знаменатель (НОЗ)» — это. тоже самое, что и «НОК». Поэтому, мы не будем это разбирать здесь второй раз.

    Но что такое общий знаменатель простыми словами ?

    Общий знаменатель — это любое целое число, которое делится без остатка на первый и второй знаменатель.

    Количество чисел, которые могут быть общим знаменателем стремится к бесконечности, но обычно общим знаменателем принимают НОЗ

    Пример общего знаменателя :

    Для того, чтобы понять, «что такое общий знаменатель» нам нужен пример двух дробей и какое-то действие(иначе смысла в этом нет), пусть это будут две дроби 1/2 и 1/3 и действие сложение — «+».

    Для таких маленьких чисел, как 2 и 3 — «нок» будет равен 6. Для этого нам никакие инструменты не понадобятся, наверняка вы это тоже смогли посчитать в уме.

    Т.е. 6 делится на 2 без остатка 6 : 2 = 3, и 6 делится на 3 без остатка 6 : 3 = 2.

    Мы получили два числа, первую дробь 1/2 надо умножить на 3, чтобы привести её к общему знаменателю 6 — 1*3/2*3 = 3/6.

    А вторую дробь нужно умножить на 2, чтобы привести и её к общему знаменатель 6, 1*2/3*2 = 2/6.

    После того, как мы нашли общий знаменатель, мы можем произвести действие, в нашем случае — «+» — 3/6 + 2/6 = (3 + 2)/6 = 5/6.

    Когда мы нашли «общий знаменатель» мы смогли выполнить необходимое действие с дробями.

    В каком случае ноз двух дробей будет являться произведением знаменателей?

    Отличный поисковый запрос — «в каком случае ноз двух дробей будет являться произведением знаменателей?«, что выше не было озвучено.

    Когда ноз двух дробей равен произведению знаменателей?

    Как минимум, когда знаменатели будут простыми числами, т.е. в качестве примера, это выше приведенные дроби со знаменателями 2 и 3. Эти числа являются простыми, т.е. делятся на себя и на 1.

    И общий знаменатель двух чисел 2 и 3 будет равен произведению 2 * 3 = 6.

    Формула общего знаменателя

    Как вы знаете. что если умножить и числитель и знаменатель на одно число, то результат дроби не изменится! Поэтому мы можем вывести формулу общего знаменателя буквами :

    Первую дробь умножаем на знаменатель второй дроби.

    А вторую дробь умножаем на знаменатель первой дроби

    Нахождение общего знаменателя с помощью нок.

    Для того чтобы найти общий знаменатель, можно воспользоваться правилом «НОК» для двух чисел, которые здесь — знаменатели.

    Если вы не сходили по ссылке, то давайте вкратце попробуем разобраться в формуле подбора общего знаменателя.

    Пример нахождения общего знаменателя методом разложения на множители

    Это тоже самое. что и выше приведенный «НОК» — только может называться по другому.

    Этот способ может называться как «нахождение общего знаменателя методом разложения на множители»

    Либо «метод нахождения наименьшего общего знаменателя» или просто «НОЗ»

    Рассмотрим два знаменателя 8 и 6, к примеру это могут быть две дроби 1/8 и 1/6 и нам нужно найти их общий знаменатель.

    Надо расположить в первую строчку наибольший знаменатель — это 8 и разложить его на множители:

    Ниже раскладываем меньший знаменатель :

    Далее нам нужно исключить все множители, которые повторяются в меньшем знаменателе. это 2 и у нас остается 3. далее эту тройку надо умножить на больший знаменатель :

    Итого получаем общий знаменатель = 24.

    Пример номер 2 подбора общего знаменателя

    Чтобы у вас не возникало сомнений, давайте разберем второй пример подбора общего знаменателя, пусть это будут 4 и 10.

    Берем больший знаменатель раскладываем его на множители :

    Раскладываем меньший знаменатель :

    Виртуально исключаем повторяющиеся множители из второго знаменателя — это 2. И во втором знаменателе остается вторая 2. Умножаем больший знаменатель на 2 :

    Итого получаем общий знаменатель 20, двух чисел 4 и 10.

    Как найти общий знаменатель дробей онлайн

    У нас есть калькулятор, который в том числе умеет находить общий знаменатель дробей онлайн!

    Прежде чем приступать к поиску общего знаменателя, давайте найдем общий знаменатель для двух знаменателей, а потом проверим данное решение на калькуляторе.

    Пусть это будут два знаменателя 20 и 6.

    Раскладываем больший знаменатель на множители :

    Раскладываем на множители второй знаменатель :

    Исключаем повторяющиеся множители во втором знаменателе и у нас остается одна двойка.

    Умножаем больший знаменатель на 2 :

    Итого получаем их общий знаменатель 40.

    Переходим к нахождению общего знаменателя онлайн

    Вводим первый знаменатель 20.

    Набираем второй знаменатель 8.

    Получаем результат нахождения общего знаменателя онлайн :

    Далее вы можете сравнить два результата нахождения общего знаменателя.

    Что такое наименьший общий знаменатель?

    Разница между «общим знаменателем«(1) и «наименьшим общим знаменателем«(2) в том, что первое может быть бесконечное количество. а второе «НОЗ», только один!

    Но, что же такое «наименьший общий знаменатель»

    НОЗ — это абсолютно тоже самое, что и «НОК».

    Определение, что же такое «наименьший общий знаменатель»

    Наименьший общий знаменатель двух знаменателей — это самое маленькое целое число, которое делится без остатка на первый и второй знаменатель.

    Формула наименьшего общего кратного

    Для нахождения «наименьшего общего знаменателя» двух знаменателей, нужно эти два знаменателя разложить на множители. Больший знаменатель записываем в первую строчку, второй знаменатель раскладываем на множители и записываем во вторую строчку.
    Сравниваем две строки и удаляем из второй все цифры, которые повторяются в первой строчке.
    То число(если больше 1, то перемножаем между собой) умножаем на большее число.

    Для понимания формулы наименьшего общего кратного нам нужен пример!

    Предположим, что у нас есть два знаменателя 10 и 6 и нужно найти наименьший общий знаменатель :

    Разложим больший знаменатель на множители :

    Разложим второй знаменатель на множители :

    Теперь, нам нужно исключить повторяющеюся цифру 2 из второй строчки, остается цифра 3.

    Умножаем больший знаменатель на 3.

    Итого получаем, что наименьший общий знаменатель двух знаменателей 10 и 5 равно 30.

    Как найти наименьший общий знаменатель на калькуляторе

    Для понимания процесса получения наименьшего общего знаменателя на калькуляторе нам потребуются два знаменателя, например 18 и 12 из дробей 1/18 и 1/12

    Прежде чем приступать к нахождению «нок» двух чисел на калькуляторе, давайте найдем наименьшее общее кратное, как мы делали это выше :

    Раскладываем большее число на множители :

    Раскладываем меньшее число на множители :

    Исключаем повторяющиеся цифры — это одна 2 и 3, остается 2.

    Умножаем большее число на 2.

    Итого получаем, что наименьшее общее кратное двух чисел 18 и 12 = 36.

    Теперь проверим правильность нахождения «нок» на калькуляторе.

    Набираем первое число – пусть это будет число 12

    Нажимаем «нок» на калькуляторе – для этого есть специальная кнопка.

    После нажатия на кнопку нок – нам нужно добавить втрое число –пусть это будет 18.

    И нам отсеется нажать кнопку равно!

    И видим результат нахождения наименьшего общего кратного на калькуляторе…

    Как найти общий знаменатель трех дробей

    Для того чтобы найти общий знаменатель сразу трех дробей нужно подряд найти нок между этими тремя знаменателями!

    Для подтверждения данного тезиса — давайте решим задачку/пример.

    Задача/пример найдите общий знаменатель для трех дробей.

    У нас даны три дроби и у них у всех три разных знаменателя :

    Для такой простой задачи можно в уме посчитать. перебором. а потом подтвердим наше решение через «НОК».

    5 — не подходит — не делится на 3.

    10 — не подходит — не делится на 3.

    15 — не подходит, не делится на 2.

    20 — не подходит, не делится на 3.

    25 — не подходит, не делится на 2.

    30 — подходит , делится на все без остатка. мы нашли общий знаменатель для трех дробей, методом перебора

    Найдем общий знаменатель для трех дробей на калькуляторе через НОК.

    Набираем первый знаменатель — 2.

    Нажимаем кнопку — «НОК».

    Набираем второй знаменатель — 3.

    Далее опять нажимаем — «НОК».

    Набираем третий знаменатель — 6.

    Получаем общий знаменатель для трех дробей посчитанный онлайн на калькуляторе.

    Как найти общий знаменатель дробей с разными знаменателями

    Если говориться о том, чтобы найти общий знаменатель, то логично предположить, что у дробей изначально разные знаменатели — иначе, зачем искать общий знаменатель — ведь знаменатели одинаковые.

    Выше были рассмотрены варианты нахождения общего знаменателя дробей с разными знаменателями .

    Вариант разложения знаменателей на множители.

    Вариант нахождения общего знаменателя с помощью НОК и т.д

    Источник

    Общий знаменатель дробей онлайн

    Калькулятор приводит несколько дробей к общему знаменателю. Просто введите дроби и получите подробное решение и ответ. Можно вводить две, три дроби и более. Числители и знаменатели дробей должны быть натуральными числами.

    Как привести дроби к общему знаменателю?

    Чтобы выполнить с дробями такие операции, как сравнение, сложение и вычитание, дроби нужно привести к общему знаменателю.

    Пример. Привести к общему знаменателю дроби и

    Решение. Находим наименьшее общее кратное знаменателей дробей. НОК(12, 8) = 24. Это число и будет новым знаменателем.

    Чтобы знаменатели обеих дробей стали равны 24, числитель и знаменатель первой дроби нужно домножить на 2 = 24:12, а числитель и знаменатель второй дроби — на 3 = 24:8.

    Приводим к общему знаменателю первую дробь:

    Приводим к общему знаменателю вторую дробь:

    Общий знаменатель трёх дробей

    Если к общему знаменателю требуется привести три дроби и более, то алгоритм действий в таком случае аналогичен алгоритму для двух дробей.

    1. Находим наименьшее число , которое делится на знаменатели всех дробей (наименьшее общее кратное знаменателей всех дробей). Найденное число будет новым знаменателем.
    2. Домножаем числитель и знаменатель каждой дроби на частное

    В результате знаменатели всех дробей будут равны .

    Чтобы разобраться лучше, рассмотрим пример.

    Пример. Привести к общему знаменателю три дроби и

    Решение. Сначала найдём наименьшее общее кратное знаменателей дробей. Число 12 делится на знаменатели всех дробей, и это наименьшее такое число. Поэтому НОК(3, 4, 6) = 12. Число 12 будет новым знаменателем.

    Чтобы знаменатели дробей стали равны 12, числитель и знаменатель первой дроби нужно домножить на 4 = 12:3, числитель и знаменатель второй дроби — на 3 = 12:4, а числитель и знаменатель третьей дроби — на 2 = 12:6.

    Приводим дроби к общему знаменателю и получаем:

    Всё — дроби приведены! Пожалуй, самая большая сложность — правильно найти (или угадать) число, которое будет новым знаменателем.

    Источник

    Добавить комментарий