Как найти площадь если есть первообразная



Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями .

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая  определяет ось , прямые  параллельны оси  и парабола  симметрична относительно оси , для неё находим несколько опорных точек:

Искомую фигуру желательно штриховать:

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке   график функции  расположен над осью , поэтому искомая площадь:

Ответ:

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями  и осью

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :

Пример 12
Вычислить площадь фигуры, ограниченной линиями ,  и координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:

и выполним чертёж, получая фигуру площадью около двух клеток:

Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:

Ответ:  – ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы  и прямой , поскольку здесь будут находиться пределы интегрирования.  Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:

таким образом:

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой  всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
 – именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:

Выполним чертеж:

А теперь рабочая формула: если на отрезке  некоторая непрерывная функция  больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке  парабола располагается выше прямой, а поэтому из  нужно вычесть

Завершение решения может выглядеть так:

На отрезке : , по соответствующей формуле:

Ответ:

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось  задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу  либо

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) , .

б) , ,

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями

Решение: выполним бесхитростный чертёж,

хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую  можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке  над осью  расположен график прямой ;
2) на отрезке  над осью  расположен график гиперболы .

Совершенно понятно, что площади можно (и нужно) сложить:

Ответ:

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями , ,  и координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс  зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой  и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:

и находим его корни:
 – нижний предел интегрирования,  – верхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция  (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

1.9. Объём тела вращения

1.7. Геометрический смысл определённого интеграла

| Оглавление |



Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

1.8. Как вычислить площадь с помощью определённого интеграла?

Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями .

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая определяет ось , прямые параллельны оси и парабола симметрична относительно оси , для неё находим несколько опорных точек:

Искомую фигуру желательно штриховать:

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке график функции расположен над осью , поэтому искомая площадь:

Ответ:

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями и осью

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :

Пример 12
Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:

и выполним чертёж, получая фигуру площадью около двух клеток:

Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:

Ответ: – ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы и прямой , поскольку здесь будут находиться пределы интегрирования. Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:

таким образом:

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
– именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:

Выполним чертеж:

А теперь рабочая формула: если на отрезке некоторая непрерывная функция больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из нужно вычесть

Завершение решения может выглядеть так:

На отрезке : , по соответствующей формуле:

Ответ:

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу либо

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) , .

б) , ,

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями

Решение: выполним бесхитростный чертёж,

хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке над осью расположен график прямой ;
2) на отрезке над осью расположен график гиперболы .

Совершенно понятно, что площади можно (и нужно) сложить:

Ответ:

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями , , и координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:

и находим его корни:
нижний предел интегрирования, – верхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

Полную и свежую версию данного курса в pdf-формате ,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S ( G ) = ∫ a b f ( x ) d x для непрерывной и неотрицательной функции y = f ( x ) на отрезке [ a ; b ] ,

S ( G ) = – ∫ a b f ( x ) d x для непрерывной и неположительной функции y = f ( x ) на отрезке [ a ; b ] .

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f ( x ) или x = g ( y ) .

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Пусть функции y = f 1 ( x ) и y = f 2 ( x ) определены и непрерывны на отрезке [ a ; b ] , причем f 1 ( x ) ≤ f 2 ( x ) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 ( x ) и y = f 2 ( x ) будет иметь вид S ( G ) = ∫ a b f 2 ( x ) – f 1 ( x ) d x .

Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 ( y ) и x = g 2 ( y ) : S ( G ) = ∫ c d ( g 2 ( y ) – g 1 ( y ) d y .

Разберем три случая, для которых формула будет справедлива.

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что

Поэтому, S ( G ) = S ( G 2 ) – S ( G 1 ) = ∫ a b f 2 ( x ) d x – ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) – f 1 ( x ) ) d x .

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S ( G ) = S ( G 2 ) + S ( G 1 ) = ∫ a b f 2 ( x ) d x + – ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) – f 1 ( x ) ) d x

Графическая иллюстрация будет иметь вид:

Если обе функции неположительные, получаем: S ( G ) = S ( G 2 ) – S ( G 1 ) = – ∫ a b f 2 ( x ) d x – – ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) – f 1 ( x ) ) d x . Графическая иллюстрация будет иметь вид:

Перейдем к рассмотрению общего случая, когда y = f 1 ( x ) и y = f 2 ( x ) пересекают ось O x .

Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n – 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i – 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 x 1 x 2 . . . x n – 1 x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S ( G i ) = ∫ x i – 1 x i ( f 2 ( x ) – f 1 ( x ) ) d x , i = 1 , 2 , . . . , n

S ( G ) = ∑ i = 1 n S ( G i ) = ∑ i = 1 n ∫ x i x i f 2 ( x ) – f 1 ( x ) ) d x = = ∫ x 0 x n ( f 2 ( x ) – f ( x ) ) d x = ∫ a b f 2 ( x ) – f 1 ( x ) d x

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Формулу S ( G ) = ∫ a b f 2 ( x ) – f 1 ( x ) d x можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f ( x ) и x = g ( y ) .

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Необходимо определить площадь фигуры, которая ограничена параболой y = – x 2 + 6 x – 5 и прямыми линиями y = – 1 3 x – 1 2 , x = 1 , x = 4 .

Решение

Изобразим линии на графике в декартовой системе координат.

На отрезке [ 1 ; 4 ] график параболы y = – x 2 + 6 x – 5 расположен выше прямой y = – 1 3 x – 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:

S ( G ) = ∫ 1 4 – x 2 + 6 x – 5 – – 1 3 x – 1 2 d x = = ∫ 1 4 – x 2 + 19 3 x – 9 2 d x = – 1 3 x 3 + 19 6 x 2 – 9 2 x 1 4 = = – 1 3 · 4 3 + 19 6 · 4 2 – 9 2 · 4 – – 1 3 · 1 3 + 19 6 · 1 2 – 9 2 · 1 = = – 64 3 + 152 3 – 18 + 1 3 – 19 6 + 9 2 = 13

Ответ: S ( G ) = 13

Рассмотрим более сложный пример.

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:

y = x + 2 О Д З : x ≥ – 2 x 2 = x + 2 2 x 2 – x – 2 = 0 D = ( – 1 ) 2 – 4 · 1 · ( – 2 ) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 – 9 2 = – 1 ∉ О Д З

Получается, что абсциссой точки пересечения является x = 2 .

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке ( 2 ; 2 ) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:

S ( G ) = ∫ 2 7 ( x – x + 2 ) d x = x 2 2 – 2 3 · ( x + 2 ) 3 2 2 7 = = 7 2 2 – 2 3 · ( 7 + 2 ) 3 2 – 2 2 2 – 2 3 · 2 + 2 3 2 = = 49 2 – 18 – 2 + 16 3 = 59 6

Ответ: S ( G ) = 59 6

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = – x 2 + 4 x – 2 .

Решение

Нанесем линии на график.

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и – x 2 + 4 x – 2 . При условии, что x не равно нулю, равенство 1 x = – x 2 + 4 x – 2 становится эквивалентным уравнению третьей степени – x 3 + 4 x 2 – 2 x – 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х = 1 : – 1 3 + 4 · 1 2 – 2 · 1 – 1 = 0 .

Разделив выражение – x 3 + 4 x 2 – 2 x – 1 на двучлен x – 1 , получаем: – x 3 + 4 x 2 – 2 x – 1 ⇔ – ( x – 1 ) ( x 2 – 3 x – 1 ) = 0

Оставшиеся корни мы можем найти из уравнения x 2 – 3 x – 1 = 0 :

x 2 – 3 x – 1 = 0 D = ( – 3 ) 2 – 4 · 1 · ( – 1 ) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 – 13 2 ≈ – 0 . 3

Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S ( G ) = ∫ 1 3 + 13 2 – x 2 + 4 x – 2 – 1 x d x = – x 3 3 + 2 x 2 – 2 x – ln x 1 3 + 13 2 = = – 3 + 13 2 3 3 + 2 · 3 + 13 2 2 – 2 · 3 + 13 2 – ln 3 + 13 2 – – – 1 3 3 + 2 · 1 2 – 2 · 1 – ln 1 = 7 + 13 3 – ln 3 + 13 2

Ответ: S ( G ) = 7 + 13 3 – ln 3 + 13 2

Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = – log 2 x + 1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y = – log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке ( 0 ; 0 ) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .

x = 2 является единственным корнем уравнения – log 2 x + 1 = 0 , поэтому графики функций y = – log 2 x + 1 и y = 0 пересекаются в точке ( 2 ; 0 ) .

x = 1 является единственным корнем уравнения x 3 = – log 2 x + 1 . В связи с этим графики функций y = x 3 и y = – log 2 x + 1 пересекаются в точке ( 1 ; 1 ) . Последнее утверждение может быть неочевидным, но уравнение x 3 = – log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = – log 2 x + 1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S ( G ) = ∫ 0 1 x 3 d x + ∫ 1 2 ( – log 2 x + 1 ) d x .

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:

S ( G ) = ∫ 0 2 x 3 d x – ∫ 1 2 x 3 – ( – log 2 x + 1 ) d x

В этом случае для нахождения площади придется использовать формулу вида S ( G ) = ∫ c d ( g 2 ( y ) – g 1 ( y ) ) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .

Разрешим уравнения y = x 3 и – log 2 x + 1 относительно x :

y = x 3 ⇒ x = y 3 y = – log 2 x + 1 ⇒ log 2 x = 1 – y ⇒ x = 2 1 – y

Получим искомую площадь:

S ( G ) = ∫ 0 1 ( 2 1 – y – y 3 ) d y = – 2 1 – y ln 2 – y 4 4 0 1 = = – 2 1 – 1 ln 2 – 1 4 4 – – 2 1 – 0 ln 2 – 0 4 4 = – 1 ln 2 – 1 4 + 2 ln 2 = 1 ln 2 – 1 4

Ответ: S ( G ) = 1 ln 2 – 1 4

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x – 3 , y = – 1 2 x + 4 .

Решение

Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = – 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x – 3 .

Отметим точки пересечения.

Найдем точки пересечения графиков функций y = x и y = – 1 2 x + 4 :

x = – 1 2 x + 4 О Д З : x ≥ 0 x = – 1 2 x + 4 2 ⇒ x = 1 4 x 2 – 4 x + 16 ⇔ x 2 – 20 x + 64 = 0 D = ( – 20 ) 2 – 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 – 144 2 = 4 П р о в е р к а : x 1 = 16 = 4 , – 1 2 x 1 + 4 = – 1 2 · 16 + 4 = – 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , – 1 2 x 2 + 4 = – 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ ( 4 ; 2 ) т о ч к а п е р е с е ч е н и я y = x и y = – 1 2 x + 4

Найдем точку пересечения графиков функций y = x и y = 2 3 x – 3 :

x = 2 3 x – 3 О Д З : x ≥ 0 x = 2 3 x – 3 2 ⇔ x = 4 9 x 2 – 4 x + 9 ⇔ 4 x 2 – 45 x + 81 = 0 D = ( – 45 ) 2 – 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 – 729 8 = 9 4 П р о в е р к а : x 1 = 9 = 3 , 2 3 x 1 – 3 = 2 3 · 9 – 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ ( 9 ; 3 ) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x – 3 x 2 = 9 4 = 3 2 , 2 3 x 1 – 3 = 2 3 · 9 4 – 3 = – 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я

Найдем точку пересечения линий y = – 1 2 x + 4 и y = 2 3 x – 3 :

– 1 2 x + 4 = 2 3 x – 3 ⇔ – 3 x + 24 = 4 x – 18 ⇔ 7 x = 42 ⇔ x = 6 – 1 2 · 6 + 4 = 2 3 · 6 – 3 = 1 ⇒ ( 6 ; 1 ) т о ч к а п е р е с е ч е н и я y = – 1 2 x + 4 и y = 2 3 x – 3

Дальше мы можем продолжить вычисления двумя способами.

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Тогда площадь фигуры равна:

S ( G ) = ∫ 4 6 x – – 1 2 x + 4 d x + ∫ 6 9 x – 2 3 x – 3 d x = = 2 3 x 3 2 + x 2 4 – 4 x 4 6 + 2 3 x 3 2 – x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 – 4 · 6 – 2 3 · 4 3 2 + 4 2 4 – 4 · 4 + + 2 3 · 9 3 2 – 9 2 3 + 3 · 9 – 2 3 · 6 3 2 – 6 2 3 + 3 · 6 = = – 25 3 + 4 6 + – 4 6 + 12 = 11 3

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.

y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x – 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = – 1 2 x + 4 ⇒ x = – 2 y + 8 с и н я я л и н и я

Таким образом, площадь равна:

S ( G ) = ∫ 1 2 3 2 y + 9 2 – – 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 – y 2 d y = = ∫ 1 2 7 2 y – 7 2 d y + ∫ 2 3 3 2 y + 9 2 – y 2 d y = = 7 4 y 2 – 7 4 y 1 2 + – y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 – 7 4 · 2 – 7 4 · 1 2 – 7 4 · 1 + + – 3 3 3 + 3 · 3 2 4 + 9 2 · 3 – – 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Как видите, значения совпадают.

Ответ: S ( G ) = 11 3

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Методы вычисления площади фигуры, ограниченной линиями

Существует тип задач из области высшей математики, в которых нужно вычислить площадь фигуры, ограниченной линиями. В этом случае необходимо использовать интегралы. Однако в интернете слишком много неправильных методов решения. Это может существенно замедлить обучение, поэтому следует запомнить алгоритм нахождения площади.

Общие сведения

Вычислить площадь фигуры на плоскости считается довольно простой операцией. Для ее выполнения необходимо знать только формулу. Существенно усложняет задачу фигура, ограниченная прямыми.

Одной из них считается криволинейная трапеция. Ее площадь можно определить только при нахождении значений определенного интеграла.

Операция интегрирования считается довольно сложной, поскольку необходимо знать основные правила. Перед нахождением площади криволинейной трапеции специалисты рекомендуют внимательно изучить и освоить правила интегрирования основных функций.

Разбирается неопределенный интеграл, а затем осуществляется переход к более сложным операциям.

Информация об интегралах

С понятием интеграла связано много направлений научных отраслей. Обозначается он символом «∫». С помощью интеграла открываются большие возможности по быстрому и эффективному нахождению значений следующих величин: площади криволинейной трапеции, объема тела вращения, поверхности, пути при неравномерном движении, массы неоднородного физического тела и так далее.

Упрощенный вариант представления и определения интеграла — сумма бесконечно малых слагаемых. Интеграл бывает нескольких типов: одинарный, двойной, тройной, криволинейный и так далее. Для любого элемента он может быть двух типов:

Операция нахождения первого типа значительно проще второго. Это объясняется тем, что во втором случае следует не только найти первообразную, но и выполнить правильную подстановку значений.

Неопределенным интегралом функции вида f(х) называется такая первообразная функция F(х), производная которой равна подинтегральному выражению. Записывается это таким образом: ∫(f(x)) = F(х) + С.

Последняя величина является константой, поскольку при выполнении операции нахождения производной константа равна 0.

Для нахождения первообразной используется специальная таблица интегралов:

Рисунок 1. Таблица интегралов и их первообразные.

В таблице приведены простые функции. Для нахождения площади фигуры, которая ограничена линиями, достаточно значений первообразных на рисунке 1. Вычисление определенного интеграла заключается в получении первообразной и подстановке начального и конечного значений. Следует отметить, что константа при этом не берется. Существует способ, чтобы найти определенный интеграл. Формула Ньютона-Лейбница позволяет быстро и эффективно вычислить площадь фигуры. Для этого нужно подставить значения ее границ (a и b) в первообразные: F(x)|(a;b) = F(b) — F(a).

Криволинейные фигуры

Криволинейная фигура (трапеция) — класс плоских фигур, которые ограничены графиком неотрицательной и непрерывной функции, а также осью ОУ и прямыми (х = а, х = b). Она изображена на рисунке 2. Для нахождения ее площади следует использовать определенный интеграл.

Рисунок 2. Фигуры с криволинейными сторонами.

Интегрирование разбивает фигуру на прямоугольные части. Длина каждой из них равна ординате y = f(х) через промежутки, которые очень малы, по оси декартовой системы координат (есть еще и полярная) ОХ на отрезке [a;b]. Ширина является бесконечно малым значением. При интегрировании находятся площади прямоугольников и складываются. Для того чтобы не путаться в графиках, геометрическую фигуру следует заштриховать.

Криволинейная трапеция — геометрическая фигура с неровными сторонами, которые образовались в результате пересечения графика непрерывной функции с осями абсцисс и ординат.

Применение обыкновенных методов нахождения площади этой фигуры невозможно, поскольку она обладает одной или несколькими неровными сторонами (кривыми линиями).

Способы вычисления и рекомендации

Для расчетов площади криволинейной трапеции используется несколько методов. Их условно можно разделить на следующие: автоматизированные и ручные. Первый из них выполняется при помощи специализированного программного обеспечения (ПО). Примером является онлайн-калькулятор, который не только находит площадь заданной фигуры, но и изображает ее в декартовой системе координат.

Существует и другое ПО, которое является более «мощным». К нему можно отнести наиболее популярные среды: Maple и Matlab. Однако существует множество программ, написанных на языке программирования Python. Программы нужны также при освоении темы интегрирования. Если необходимо рассчитать множество интегралов и площадей криволинейных фигур, то без них не обойтись.

Новичку для автоматизированных вычислений рекомендуется применять различные онлайн-калькуляторы. Однако следует выделить неплохую программу, которая обладает довольно неплохими функциональными возможностями.

Она называется Integral calculator и представляет собой очень удобное приложение для Android-устройств. Кроме того, можно скачать подобное ПО для Linux, Mac и Windows.

Программа — это калькулятор, который используется для нахождения интегралов и производных, а также его можно применять для решения уравнений интегрального и дифференциального типов. Integral calculator обладает такими функциональными возможностями:

  • Вычисление производных.
  • Нахождения первообразных для определенных и неопределенных интегралов.
  • Решение систем уравнений.
  • Выполнения операций над матрицами и определителями.
  • Построение графиков заданных функций в 2D и 3D.
  • Расчет точек перегиба.
  • Вычисление рядов Фурье.
  • Решение дифференциальных уравнений линейного типа первого и второго порядков.

    Однако специалисты не рекомендуют использовать приложения такого типа, поскольку нужно уметь решать подобные задачи самостоятельно. Любые математические операции развивают мышление, а злоупотребление ПО приводит к значительной деградации. Решать какие-либо задачи рекомендуется также людям, которые не имеют отношения к математической сфере.

    Основной алгоритм

    При нахождении площади криволинейной трапеции рекомендуется следовать определенному алгоритму. Он поможет избежать ошибок, поскольку задача разбивается на несколько простых подзадач, решение которых довольно просто контролировать. Алгоритм имеет следующий вид:

  • Нужно прочитать и понять условие задачи.
  • Начертить декартовую систему координат.
  • Построить график заданной функции.
  • Изобразить линии, ограничивающие фигуру.
  • После определения границ нужно аккуратно заштриховать фигуру.
  • Вычислить неопределенный интеграл функции, которая дана в условии.
  • Посчитать площадь, подставив значения ограничивающих прямых в первообразную.
  • Проверить решение задачи при помощи программы.

    Первый пункт — внимательное чтение условия задачи. Этап считается очень важным, поскольку формирует дальнейший алгоритм. Необходимо выписать все известные данные, а затем подумать над дальнейшим решением задачи. Следует обратить особое внимание на график функции, который при возможности нужно упростить. Далее следует выписать линии, которые будут ограничивать фигуру.

    Следующий пункт считается наиболее простым, поскольку нужно начертить обыкновенную систему координат. В условии должен быть указан ее тип. Если обозначена полярная система, то следует ее начертить. Во всех остальных случаях изображается декартовая система координат.

    Третий пункт алгоритма — правильное построение графика функции. В этом случае нет необходимости составлять таблицу зависимости значения функции от аргумента. График должен быть схематичным. Например, если это парабола, то нужно ее изобразить. В этом случае необходимо ознакомиться с основными базовыми функциями и их графиками.

    Следующим шагом является правильное изображение прямых. Если ее уравнение имеет следующий вид «x = 5» или что-то подобное, то она будет проходить параллельно оси ОУ. Например, при y = 10 прямая проходит параллельно оси ОХ. В других случаях нужно составить таблицу зависимостей значений уравнения прямой от переменной. Следует брать всего два значения аргумента, поскольку их достаточно для проведения прямой.

    После всех операций образуется фигура, которая ограничена линиями. Ее необходимо заштриховать. После этого вычисляется неопределенный интеграл заданной функции. Необходимо воспользоваться табличными значениями первообразных на рисунке 2. Однако здесь есть небольшой нюанс: константу записывать нет необходимости. Она «уничтожается» при подстановке в формулу Ньютона-Лейбница.

    В полученное значение следует подставить значения границ. Кроме того, необходимо обратить особое внимание на знак формулы. При отрицательном значении границы формула принимает следующий вид: F(x)|(-a;b) = F(b) — F(-a) = F(b) + F(a). Проверка правильности решения выполняется с помощью ПО.

    Примеры решения

    Для закрепления теоретического материала специалисты рекомендуют решить несколько задач. В качестве примера можно взять криволинейные трапеции, изображенные на рисунке 2.

    Разновидность параболы

    В первом примере функция вида y = -x^2 + 2x и ось ОХ образуют фигуру. Необходимо найти ее площадь. Из функции видно, что ветви параболы направлены вниз (отрицательный знак перед квадратом). Точки пересечения находятся следующим образом:

  • Тело функции приравнивается к 0: -х^2 + 2x = 0.
  • Выносится общий множитель: -x(x-2) = 0.
  • Решаются обе части уравнения.
  • Первый корень: -х1 = 0 или х1 = 0.
  • Для нахождения второго нужно решить другую часть уравнения: х2-2 = 0. Отсюда, х2 = 2.

    Ветви параболы проходят через координаты по ОХ: 0 и 2 соответственно. Координата «х» вершины точки параболы находится с помощью подстановки в формулу: x = -b/(2*a) = -2 / -2 = 1. В этом случае координата «у» вычисляется следующим образом: y = -(1^2) + 2 * 1 = -1 + 2 = 1. Точка с координатами (1;1) является вершиной параболы. Границы интегрирования — координаты по ОХ, через которые проходят ветви параболы.

    После всех операций следует вычислить неопределенный интеграл функции, воспользовавшись таблицей на рисунке 1: ∫ (-х^2 + 2x) dx = — (x^3 / 3 + x^2) + C = x^2 — x^3 / 3 + C. После этого следует подставить начальное и конечное значения (константа убирается): S = x^2 — x^3 / 3 = (2^2 — 2^3 / 3) — (0^2 — 0^3 / 3) = 4 — 8/3 = 4 / 3 (кв. ед.). Последняя запись является единицей измерения площади. Она обозначается в условных единицах, так как в условии задачи размерность сторон фигуры не указана.

    Гипербола, степенная и прямая

    На следующем рисунке изображен график функции гиперболы (у = 1 / х). Прямые, которые ограничивают график, описываются следующими законами: у1 = -2 и у2 = -1. Для вычисления площади заданной фигуры следует взять интеграл: ∫(1/х) dx = ln (|x|) + С. Для окончательного решения необходимо подставить значения в натуральный логарифм: S = ln (2) — ln (1) = 0,6931 — 0 = 0,6931 (кв. ед.).

    Фигура, которая ограничена прямыми y1 = -1 и y2 = 1, и представлена функцией вида y = 3^x. Площадь находится следующим образом: S = ∫ (3^x) dx = 3^x / (ln(|3|)) = [3^1 / (ln(3))] — [3^(-1) / (ln(3))] = (3 / 1,0986) — ((1/3) / 1,0986) = 2,7307 — 0,3034 = 2,4273 (кв. ед.).

    Последняя фигура представлена графиком прямой y = 0,5х + 1, которую ограничивают прямые х1 = -1 и х2 = 2. Значение площади можно найти таким способом: S = ∫ (0,5х + 1) dx = (0,5 * х^2) / 2 + x = [((0,5 * 2^2) / 2) + 2] — [((0,5 * (-1)^2) / 2) + (-1)] = 3 — 0,75 = 2,25 (кв. ед.).

    Для определения значения площади криволинейной фигуры (трапеции) необходимо использовать определенные интегралы. При решении нужно внимательно следить за знаками и первообразными из таблицы на рисунке 1.

    [spoiler title=”источники:”]

    http://zaochnik.com/spravochnik/matematika/integraly-integrirovanie/nahozhdenie-ploschadi-figury-ogranichennoj-linijam/

    http://sprint-olympic.ru/uroki/matematika-uroki/92704-metody-vychisleniia-ploshadi-figyry-ogranichennoi-liniiami.html

    [/spoiler]

  • Криволинейная трапеция – именно так называется фигура на рисунке ниже. Она образована графиком некоторой неотрицательной непрерывной функции и ограничена им сверху.

    Слева и справа фигура ограничена вертикальными линиями х=а и х=b, а снизу – осью абсцисс.

    Как найти площадь такой фигуры?

    Чтобы найти площадь криволинейной трапеции придется вспомнить школу, а именно замечательную формулу Ньютона-Лейбница:

    Источник: https://image2.slideserve.com/3818359/slide7-l.jpg
    Источник: https://image2.slideserve.com/3818359/slide7-l.jpg

    В этой формуле F(b) и F(a) – значение первообразной функции f(x) в точках а и b.

    Если вдруг забыли, то первообразная от f(x) – это такая функция F(x), что верно равенство F'(x) = f(x). Надеюсь, воспоминания всколыхнет такая табличка:

    Источник: https://www.mosrepetitor.ru/pictures/Fomula_Matem/f_026.jpg
    Источник: https://www.mosrepetitor.ru/pictures/Fomula_Matem/f_026.jpg

    Давайте уже перейдем к конкретному примеру, в результате которого Вы не только вспомните школьную математику, но и поймёте физический смысл формулы Ньютона-Лейбница:

    Как найти площадь такой фигуры?

    Итак, имеем такой рисунок. Требуется найти площадь заштрихованной фигуры, которая по всем перечисленным в начале статье параметрам подходит под определение криволинейной трапеции.

    Дело за малым – вычислить определенный интеграл:

    График расположен целиком выше оси х. В обратном случае перед интегралом мы бы поставили "-".
    График расположен целиком выше оси х. В обратном случае перед интегралом мы бы поставили “-“.

    Всё сходится!

    А что же из себя представляет эта формула, почему она вообще работает?

    В данном случае снизу график ограничен прямой линией. В общем случае с помощью этой формулы находится и площадь между разнообразными кривыми.
    В данном случае снизу график ограничен прямой линией. В общем случае с помощью этой формулы находится и площадь между разнообразными кривыми.

    Дело в том, что мы находим площадь, разбивая криволинейную трапецию на бесконечно малые прямоугольники, площадь которых легко вычислить. (см.рис).

    Затем складываем эти прямоугольники, а интегрирование суть непрерывное сложение.

    Вуаля! Результат, ставший одним из самых важных достижений математики в истории. обоснован “на пальцах”.

    Однако, стоит сказать, что первое применение такого метода разбиений принадлежит еще древним грекам.

    Да-да, именно Архимед может считаться отцом интегрального счисления – читайте мой материал про одну и его менее знаменитых теорем.

    Читайте также:

    Алгебра и начала математического анализа, 11 класс

    Урок №24. Вычисление площадей с помощью интегралов.

    Перечень вопросов, рассматриваемых в теме

    1) Нахождение площади фигуры, ограниченной графиками функций с помощью определенного интеграла.

    2) Нахождение площади криволинейной трапеции с помощью формулы Ньютона – Лейбница

    3) Решение задач, с помощью формулы Ньютона – Лейбница

    Формула Ньютона – Лейбница

    Основная литература:

    Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

    Дополнительная литература:

    Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

    Теоретический материал для самостоятельного изучения

    Криволинейной трапецией называется фигура, ограниченная графиком непрерывной и не меняющей на отрезке [а;b] знака функции f(х), прямыми х=а, x=b и отрезком [а;b].

    Отрезок [a;b] называют основанием этой криволинейной трапеции

    формула Ньютона – Лейбница

    Если в задаче требуется вычислить площадь криволинейной трапеции, то ответ всегда будет положительный. Если требуется, используя чертеж, вычислить интеграл, то его значение может быть любым. ( зависит от расположения криволинейной трапеции)

    Примеры и разбор решения заданий тренировочного модуля

    №1 Вычислите площадь фигуры, ограниченной линиями y= x, y = 5 – x, x = 1, x = 2, используя определенный интеграл.

    Решение. Воспользуемся формулой Ньютона-Лейбница.

    Сначала находим первообразную функцию  F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b).

    Затем подставляем значение нижнего предела в первообразную функцию: F(а) .

    Рассчитываем разность F(b)  – F(а)    , это и будет ответ

    №2. Найти площадь фигуры, ограниченной линиями у=4-х2,у=3х, у=0 и находящейся в 1-й четверти.

    Решение: Воспользуемся формулой Ньютона-Лейбница.

    Сначала находим первообразную функцию  F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b)  .

    Затем подставляем значение нижнего предела в первообразную функцию: F(а) .

    Рассчитываем разность F(b)  – F(а)    , это и будет ответ.

    Решение. S=SOAB +SABC

    №3. Найти площадь криволинейной трапеции (х-1)2, ограниченной линиями х=2 и х=1, осью 0х

    Решение:

    Воспользуемся формулой Ньютона-Лейбница.

    Сначала находим первообразную функцию  F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b)  .

    Затем подставляем значение нижнего предела в первообразную функцию: F(а) .

    Рассчитываем разность F(b)  – F(а), это и будет ответ.


    СДАМ ГИА:

    РЕШУ ЕГЭ

    Образовательный портал для подготовки к экзаменам

    Математика профильного уровня

    Математика профильного уровня

    ≡ Математика

    Базовый уровень

    Профильный уровень

    Информатика

    Русский язык

    Английский язык

    Немецкий язык

    Французский язык

    Испанский язык

    Физика

    Химия

    Биология

    География

    Обществознание

    Литература

    История

    Сайты, меню, вход, новости

    СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

    Об экзамене

    Каталог заданий

    Варианты

    Ученику

    Учителю

    Школа

    Эксперту

    Справочник

    Карточки

    Теория

    Сказать спасибо

    Вопрос — ответ

    Чужой компьютер

    Зарегистрироваться

    Восстановить пароль

    Войти через ВКонтакте

    Играть в ЕГЭ-игрушку

    Новости

    1 мая

    Новый сервис: можно исправить ошибки!

    29 апреля

    Разместили актуальные шкалы ЕГЭ  — 2023

    24 апреля

    Учителю: обновленный классный журнал

    7 апреля

    Новый сервис: ссылка, чтобы записаться к учителю

    30 марта

    Решения досрочных ЕГЭ по математике

    31 октября

    Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

    НАШИ БОТЫ

    Все новости

    ЧУЖОЕ НЕ БРАТЬ!

    Экзамер из Таганрога

    10 апреля

    Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

    Наша группа

    Поиск

    ?

    было в ЕГЭ

    в условии
    в решении
    в тексте к заданию
    в атрибутах

    Категория

    Атрибут

    Всего: 9    1–9

    Добавить в вариант

    Тип 7 № 323079

    i

    На рисунке изображён график функции y = f(x). Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 302x минус дробь: числитель: 15, знаменатель: 8 конец дроби   — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323079: 323283 323373 323375 … Все

    Решение

    ·

    Видеокурс

    ·

    Помощь


    Тип 7 № 323080

    i

    На рисунке изображён график некоторой функции y = f(x). Функция F левая круглая скобка x правая круглая скобка = минус x в кубе минус 27x в квадрате минус 240x минус 8  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323080: 323383 323475 323477 … Все

    Решение

    ·

    3 комментария

    ·

    Видеокурс

    ·

    Помощь


    Тип 7 № 323283

    i

    На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка . Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 305x минус дробь: числитель: 7, знаменатель: 5 конец дроби   — одна из первообразных функции f левая круглая скобка x правая круглая скобка . Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323079: 323283 323373 323375 … Все

    Решение

    ·

    Прототип задания

    ·

    Видеокурс

    ·

    Помощь


    Тип 7 № 323373

    i

    На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка . Функция F левая круглая скобка x правая круглая скобка =2x в кубе минус 54x в квадрате плюс 488x минус дробь: числитель: 3, знаменатель: 4 конец дроби   — одна из первообразных функции f левая круглая скобка x правая круглая скобка . Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323079: 323283 323373 323375 … Все

    Решение

    ·

    Прототип задания

    ·

    Видеокурс

    ·

    Помощь


    Тип 7 № 323375

    i

    На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка . Функция F левая круглая скобка x правая круглая скобка =x в кубе минус 30x в квадрате плюс 301x минус дробь: числитель: 1, знаменатель: 9 конец дроби   — одна из первообразных функции f левая круглая скобка x правая круглая скобка . Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323079: 323283 323373 323375 … Все

    Решение

    ·

    Прототип задания

    ·

    Видеокурс

    ·

    Помощь


    Тип 7 № 323379

    i

    На рисунке изображён график функции y=f левая круглая скобка x правая круглая скобка . Функция F левая круглая скобка x правая круглая скобка =2x в кубе минус 60x в квадрате плюс 601x минус дробь: числитель: 12, знаменатель: 7 конец дроби   — одна из первообразных функции f левая круглая скобка x правая круглая скобка . Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323079: 323283 323373 323375 … Все

    Решение

    ·

    Прототип задания

    ·

    Видеокурс

    ·

    Помощь


    Тип 7 № 323383

    i

    На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка . Функция F левая круглая скобка x правая круглая скобка = минус дробь: числитель: 4, знаменатель: 9 конец дроби x в кубе минус дробь: числитель: 34, знаменатель: 3 конец дроби x в квадрате минус дробь: числитель: 280, знаменатель: 3 конец дроби x минус дробь: числитель: 18, знаменатель: 5 конец дроби   — одна из первообразных функции f левая круглая скобка x правая круглая скобка . Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323080: 323383 323475 323477 … Все

    Решение

    ·

    Прототип задания

    ·

    Видеокурс

    ·

    Помощь


    Тип 7 № 323475

    i

    На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка . Функция F левая круглая скобка x правая круглая скобка = минус дробь: числитель: 1, знаменатель: 2 конец дроби x в кубе плюс дробь: числитель: 51, знаменатель: 4 конец дроби x в квадрате минус 105x минус 3   — одна из первообразных функции f левая круглая скобка x правая круглая скобка . Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323080: 323383 323475 323477 … Все

    Решение

    ·

    Прототип задания

    ·

    Видеокурс

    ·

    Помощь


    Тип 7 № 323477

    i

    На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка . Функция F левая круглая скобка x правая круглая скобка = минус дробь: числитель: 1, знаменатель: 5 конец дроби x в кубе плюс дробь: числитель: 51, знаменатель: 10 конец дроби x в квадрате минус 42x минус дробь: числитель: 7, знаменатель: 11 конец дроби   — одна из первообразных функции f левая круглая скобка x правая круглая скобка . Найдите площадь закрашенной фигуры.

    Аналоги к заданию № 323080: 323383 323475 323477 … Все

    Решение

    ·

    Прототип задания

    ·

    Видеокурс

    ·

    Помощь

    Всего: 9    1–9

    О проекте · Редакция · Правовая информация · О рекламе

    © Гущин Д. Д., 2011—2023

    Добавить комментарий