2.2.5. Нормальный вектор прямой
Или вектор нормали.
Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), но нам хватит одного:
Если прямая задана общим уравнением в декартовой системе координат, то вектор является вектором нормали данной прямой.
Обратите внимание, что это утверждение справедливо лишь для «школьной» системы координат; все предыдущие выкладки п. 2.2 работают и в общем аффинном случае.
Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения:
И тут всё ещё проще: если координаты направляющего вектора приходилось аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».
Приведу примеры с теми же уравнениями, что и для направляющего вектора:
Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Нутром чувствуется, можно. Ведь вектор нормали ортогонален направляющему вектору и образует с ним «жесткую конструкцию».
Нормальный вектор прямой, координаты нормального вектора прямой
Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.
Нормальный вектор прямой – определение, примеры, иллюстрации
Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.
Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.
Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.
Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а 1 параллельные, а n → считается нормальным вектором прямой a , также считается нормальным вектором для прямой a 1 . Когда прямая а имеет прямой вектор, тогда вектор t · n → является ненулевым при любом значении параметра t , причем также является нормальным для прямой a .
Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.
Если задана плоскость О х у , то множеством векторов для О х является координатный вектор j → . Он считается ненулевым и принадлежащим координатной оси О у , перпендикулярной О х . Все множество нормальных векторов относительно О х можно записать, как t · j → , t ∈ R , t ≠ 0 .
Прямоугольная система O x y z имеет нормальный вектор i → , относящийся к прямой О z . Вектор j → также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный О z , считается нормальным для O z .
Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой
При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.
Задана прямая вида 2 x + 7 y – 4 = 0 _, найти координаты нормального вектора.
По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты , которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2 , 7 .
Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.
Указать нормальный вектор для заданной прямой y – 3 = 0 .
По условию нам дано общее уравнение прямой, значит запишем его таким образом 0 · x + 1 · y – 3 = 0 . Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0 , 1 .
Если дано уравнение в отрезках вида x a + y b = 1 или уравнение с угловым коэффициентом y = k · x + b , тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.
Найти координаты нормального вектора, если дано уравнение прямой x 1 3 – y = 1 .
Для начала необходимо перейти от уравнения в отрезках x 1 3 – y = 1 к уравнению общего вида. Тогда получим, что x 1 3 – y = 1 ⇔ 3 · x – 1 · y – 1 = 0 .
Отсюда видно, что координаты нормального вектора имеют значение 3 , – 1 .
Ответ: 3 , – 1 .
Если прямая определена каноническим уравнением прямой на плоскости x – x 1 a x = y – y 1 a y или параметрическим x = x 1 + a x · λ y = y 1 + a y · λ , тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a → = ( a x , a y ) . Возможность нахождения координат нормального вектора n → возможно, благодаря условию перпендикулярности векторов n → и a → .
Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:
x – x 1 a x = y – y 1 a y ⇔ a y · ( x – x 1 ) = a x · ( y – y 1 ) ⇔ a y · x – a x · y + a x · y 1 – a y · x 1 x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x – x 1 a x = y – y 1 a y ⇔ a y · x – a x · y + a x · y 1 – a y · x 1 = 0
Для решения можно выбирать любой удобный способ.
Найти нормальный вектор заданной прямой x – 2 7 = y + 3 – 2 .
Из прямой x – 2 7 = y + 3 – 2 понятно, что направляющий вектор будет иметь координаты a → = ( 7 , – 2 ) . Нормальный вектор n → = ( n x , n y ) заданной прямой является перпендикулярным a → = ( 7 , – 2 ) .
Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a → = ( 7 , – 2 ) и n → = ( n x , n y ) запишем a → , n → = 7 · n x – 2 · n y = 0 .
Значение n x – произвольное , следует найти n y . Если n x = 1 , отсюда получаем, что 7 · 1 – 2 · n y = 0 ⇔ n y = 7 2 .
Значит, нормальный вектор имеет координаты 1 , 7 2 .
Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем
x – 2 7 = y + 3 – 2 ⇔ 7 · ( y + 3 ) = – 2 · ( x – 2 ) ⇔ 2 x + 7 y – 4 + 7 3 = 0
Полученный результат координат нормального вектора равен 2 , 7 .
Ответ: 2 , 7 или 1 , 7 2 .
Указать координаты нормального вектора прямой x = 1 y = 2 – 3 · λ .
Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:
x = 1 y = 2 – 3 · λ ⇔ x = 1 + 0 · λ y = 2 – 3 · λ ⇔ λ = x – 1 0 λ = y – 2 – 3 ⇔ x – 1 0 = y – 2 – 3 ⇔ ⇔ – 3 · ( x – 1 ) = 0 · ( y – 2 ) ⇔ – 3 · x + 0 · y + 3 = 0
Отсюда видно, что координаты нормального вектора равны – 3 , 0 .
Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат О х у z .
Когда прямая задается при помощи уравнений пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда нормальный вектор плоскости относится к A 2 x + B 2 y + C 2 z + D 2 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда получаем запись векторов в виде n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) .
Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x – x 1 a x = y – y 1 a y = z – z 1 a z или параметрического, имеющего вид x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , отсюда a x , a y и a z считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a → = ( a x , a y , a z ) . Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a → = ( a x , a y , a z ) .
Уравнение плоскости по трем точкам
Содержание:
Вектором нормали к плоскости называется вектор, перпендикулярный к этой плоскости. Обозначать его будем буквой а буквами А, В, С будем обозначать координаты этого вектора (рис. 17). Составим уравнение плоскости, проходящей через известную точку с заданным нормальным вектором Пусть — текущая точка плоскости.
Т. к. вектор
Это уравнение плоскости по точке и нормальному вектору.
Если в (2.9) менять параметры А, В, С, т. е. менять координаты вектора нормали плоскости, то каждый раз будем получать уравнение другой плоскости, содержащей точку Множество всех таких плоскостей называется связкой плоскостей, проходящих через точку
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Пример 1:
Составить уравнение плоскости, проходящей через точку перпендикулярно к прямой Решение:
Т. к. плоскость должна быть перпендикулярна заданной прямой, то в качестве вектора нормали плоскости можно взять направляющий вектор прямой и тогда уравнение плоскости будет таким: или
Общее уравнение плоскости и его исследование
Рассмотрим уравнение плоскости по точке и нормальному вектору
и преобразуем его, собрав в одно слагаемое все постоянные
и, обозначив выражение в скобках одной буквой D, получим:
Возможно вам будут полезны данные страницы:
Это общее уравнение плоскости.
Равенство нулю отдельных коэффициентов этого уравнения вносит особенности в расположение плоскости.
1. D = 0. Уравнение принимает вид:
откуда ясно, что точка лежит на плоскости. Другими словами, плоскость проходит через начало координат.
2. А = 0. В таком случае Получилось, что направляющий вектор оси (вектор ) ортогонален вектору, т. е. плоскость параллельна оси Ох (рис. 18).
плоскость параллельна оси
плоскость парал- х лельна оси .
3. Плоскость параллельна и оси , и оси значит, она параллельна плоскости
– плоскость параллельна плоскости ;
– плоскость параллельна плоскости .
4. Первое условие означает, что плоскость параллельна оси , второе — что она проходит через начало координат. Значит, плоскость проходит через ось . — плоскость проходит через ось ;
— плоскость проходит через ось .
5. — координатные плоскости.
Пример 2:
Решение:
Т. к. в уравнении отсутствует перемещенная то плоскость параллельна оси .
Для построения этой плоскости сначала изобразим ее
«след» на плоскости Это — прямая, проходящая через две точки (5; 0; 0) и (0; 3; 0). Затем через полученную прямую проведем плоскость, параллельную оси (рис. 19).
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
[spoiler title=”источники:”]
http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/normalnyj-vektor-prjamoj-koordinaty-normalnogo-vek/
http://natalibrilenova.ru/uravnenie-ploskosti-po-trem-tochkam/
[/spoiler]
Векторы в пространстве и метод координат
Существует два способа решения задач по стереометрии
Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.
Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.
Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.
Система координат в пространстве
Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.
Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.
Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:
Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.
Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора:
Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:
Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма
Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .
Сумма векторов:
Разность векторов:
Произведение вектора на число:
Скалярное произведение векторов:
Косинус угла между векторами:
Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.
1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.
Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:
Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.
Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.
Запишем координаты векторов:
и найдем косинус угла между векторами и :
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.
Координаты точек A, B и C найти легко:
Из прямоугольного треугольника AOS найдем
Координаты вершины пирамиды:
Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.
Найдем координаты векторов и :
и угол между ними:
Покажем теперь, как вписать систему координат в треугольную призму.
3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1
Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.
Запишем координаты точек:
Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.
Найдем координаты векторов и , а затем угол между ними:
Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.
Плоскость в пространстве задается уравнением:
Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.
Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.
Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Покажем, как это делается.
Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).
Уравнение плоскости выглядит так:
Подставим в него по очереди координаты точек M, N и K.
Для точки M:
То есть A + C + D = 0.
Для точки N:
Аналогично для точки K:
Получили систему из трех уравнений:
.
В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.
Пусть, например, D = −2. Тогда:
;
.
Выразим C и B через A и подставим в третье уравнение:
.
Решив систему, получим:
Уравнение плоскости MNK имеет вид:
Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:
Вектор — это нормаль к плоскости MNK.
Уравнение плоскости, проходящей через заданную точку имеет вид:
Угол между плоскостями равен углу между нормалями к этим плоскостям:
Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.
Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.
Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.
4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.
Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.
Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.
Итак, первый вектор нормали у нас уже есть:
Напишем уравнение плоскости AEF.
Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.
Упростим систему:
.
Пусть С = -1. Тогда A = B = 2.
Уравнение плоскости AEF:
Нормаль к плоскости AEF:
Найдем угол между плоскостями:
5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.
Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂
Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.
Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?
«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.
Итак, AA1 = √3
Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .
Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:
Координаты вектора — тоже:
Находим угол между плоскостями, равный углу между нормалями к ним:
Зная косинус угла, находим его тангенс по формуле
Получим:
Ответ:
Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.
Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.
Находим синус угла между прямой m и плоскостью α по формуле:
6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.
Как всегда, рисуем чертеж и выбираем систему координат
Находим координаты вектора .
Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .
Найдем угол между прямой и плоскостью:
Ответ:
Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:
7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.
Построим чертеж и выпишем координаты точек:
Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D
Решим эту систему. Выберем
Тогда
Уравнение плоскости A1DB имеет вид:
Дальше все просто. Находим расстояние от точки A до плоскости A1DB:
В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Векторы в пространстве и метод координат» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023
Общее уравнение плоскости : описание, примеры, решение задач
В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.
Общее уравнение плоскости: основные сведения
Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве. Пусть нам дана прямоугольная система координат O x y z в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x , y , и z , которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек. Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.
Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.
Любую плоскость, заданную в прямоугольной системе координат O x y z трехмерного пространства, можно определить уравнением A x + B y + C z + D = 0 . В свою очередь, любое уравнение A x + B y + C z + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A , B , C , D – некоторые действительные числа, и числа A , B , C не равны одновременно нулю.
Теорема состоит из двух частей. Разберем доказательство каждой из них.
- Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида A x + B y + C z + D = 0 . Допустим, задана некоторая плоскость и точка M 0 ( x 0 , y 0 , z 0 ) , через которую эта плоскость проходит. Нормальным вектором этой плоскости является n → = ( A , B , C ) . Приведем доказательство, что указанную плоскость в прямоугольной системе координат O x y z задает уравнение A x + B y + C z + D = 0 .
Возьмем произвольную точку заданной плоскости M ( x , y , z ) .В таком случае векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:
n → , M 0 M → = A x — x 0 + B ( y — y 0 ) + C ( z — z 0 ) = A x + B y + C z — ( A x 0 + B y 0 + C z 0 )
Примем D = — ( A x 0 + B y 0 + C z 0 ) , тогда уравнение преобразуется в следующий вид: A x + B y + C z + D = 0 . Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.
- Во второй части теоремы утверждается, что любое уравнение вида A x + B y + C z + D = 0 задает некоторую плоскость в прямоугольной системе координат O x y z трехмерного пространства. Докажем это.
В теореме также указано, что действительные числа А , B , C одновременно не являются равными нулю. Тогда существует некоторая точка M 0 ( x 0 , y 0 , z 0 ) , координаты которой отвечают уравнению A x + B y + C z + D = 0 , т.е. верным будет равенство A x 0 + B y 0 + C z 0 + D = 0 . Отнимем левую и правую части этого равенства от левой и правой частей уравнения A x + B y + C z + D = 0 . Получим уравнение вида
A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 , и оно эквивалентно уравнению A x + B y + C z + D = 0 . Докажем, что уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает некоторую плоскость.
Уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n → = ( A , B , C ) и M 0 M → = x — x 0 , y — y 0 , z — z 0 . Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 множество точек M ( x , y , z ) задает плоскость, у которой нормальный вектор n → = ( A , B , C ) . При этом плоскость проходит через точку M ( x 0 , y 0 , z 0 ) . Иначе говоря, уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает в прямоугольной системе координат O x y z трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение A x + B y + C z + D = 0 также определяет эту плоскость. Теорема доказана полностью.
Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.
Допустим, задано некоторое общее уравнение плоскости λ · A x + λ · B y + λ · C z + λ · D = 0 , где λ – некое действительное число, не равное нулю. Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением A x + B y + C z + D = 0 , поскольку описывает то же самое множество точек трехмерного пространства. Например, уравнения x — 2 · y + 3 · z — 7 = 0 и — 2 · x + 4 · y — 2 3 · z + 14 = 0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства.
Раскроем чуть шире смысл теорем.
В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида A x + B y + C z + D = 0 ( при конкретных значениях чисел A , B , C , D ). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.
Укажем пример как иллюстрацию этих утверждений.
Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства. Заданной плоскости отвечает общее уравнение вида 4 x + 5 y – 5 z + 20 = 0 , и ему соответствуют координаты любой точки этой плоскости. В свою очередь, уравнение 4 x + 5 y – 5 z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.
Общее уравнение плоскости, проходящей через точку
Повторимся: точка M 0 ( x 0 , y 0 , z 0 ) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением A x + B y + C z + D = 0 в том случае, когда подставив координаты точки M 0 ( x 0 , y 0 , z 0 ) в уравнение A x + B y + C z + D = 0 , мы получим тождество.
Заданы точки M 0 ( 1 , — 1 , — 3 ) и N 0 ( 0 , 2 , — 8 ) и плоскость, определяемая уравнением 2 x + 3 y — z — 2 = 0 . Необходимо проверить, принадлежат ли заданные точки заданной плоскости.
Решение
Подставим координаты точки М 0 в исходной уравнение плоскости:
2 · 1 + 3 · ( — 1 ) — ( — 3 ) — 2 = 0 ⇔ 0 = 0
Мы видим, что получено верное равенство, значит точка M 0 ( 1 , — 1 , — 3 ) принадлежит заданной плоскости.
Аналогично проверим точку N 0 . Подставим ее координаты в исходное уравнение:
2 · 0 + 3 · 2 — ( — 8 ) — 2 = 0 ⇔ 12 = 0
Равенство неверно. Таким, образом, точка N 0 ( 0 , 2 , — 8 ) не принадлежит заданной плоскости.
Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.
Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n → = ( A , B , C ) — нормальный вектор для плоскости, определяемой уравнением A x + B y + C z + D = 0 . Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.
В прямоугольной системе координат задана плоскость 2 x + 3 y — z + 5 = 0 . Необходимо записать координаты всех нормальных векторов заданной плоскости.
Решение
Мы знаем, что заданные общим уравнением коэффициенты при переменных x , y , z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n → исходной плоскости имеет координаты 2 , 3 , — 1 . В свою очередь, множество нормальных векторов запишем так:
λ · n → = λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0
Ответ: λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0
Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.
Очевидным фактом является то, что нормальный вектор n → = ( A , B , C ) является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M 0 ( x 0 , y 0 , z 0 ) , принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.
Общее уравнение плоскости с нормальным вектором n → = ( A , B , C ) будет выглядеть так: A x + B y + C z + D = 0 . По условию задачи точка M 0 ( x 0 , y 0 , z 0 ) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство: A x 0 + B y 0 + C z 0 + D = 0
Вычитая соответственно правые и левые части исходного уравнения и уравнения A x 0 + B y 0 + C z 0 + D = 0 , получим уравнение вида A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 . Оно и будет уравнением плоскости, проходящей через точку M 0 ( x 0 , y 0 , z 0 ) и имеющей нормальный вектор n → = ( A , B , C ) .
Возможно получить это уравнение другим способом.
Очевидным фактом является то, что все точки М ( x , y , z ) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:
n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0
Задана точка М 0 ( — 1 , 2 , — 3 ) , через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n → = ( 3 , 7 , — 5 ) . Необходимо записать уравнение заданной плоскости.
Решение
Рассмотрим два способа решения.
- Исходные условия позволяют получить следующие данные:
x 0 = — 1 , y 0 = 2 , z 0 = — 3 , A = 3 , B = 7 , C = — 5
Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0
3 ( x — ( — 1 ) ) + 7 ( y — 2 ) — 5 ( z — ( — 3 ) ) = 0 ⇔ 3 x + 7 y — 5 z — 26 = 0
- Допустим, М ( x , y , z ) – некоторая точки заданной плоскости. Определим координаты вектора M 0 M → по координатам точек начала и конца:
M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) = ( x + 1 , y — 2 , z + 3 )
Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:
n → , M 0 M → = 0 ⇔ 3 ( x + 1 ) + 7 ( y — 2 ) — 5 ( z + 3 ) = 0 ⇔ ⇔ 3 x + 7 y — 5 z — 26 = 0
Ответ: 3 x + 7 y — 5 z — 26 = 0
Неполное общее уравнение плоскости
Выше мы говорили о том, что, когда все числа А , B , C , D отличны от нуля, общее уравнение плоскости A x + B y + C z + D = 0 называют полным. В ином случае общее уравнение плоскости является неполным.
Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.
- В случае, когда D = 0 , мы получаем общее неполное уравнение плоскости: A x + B y + C z + D = 0 ⇔ A x + B y + C z = 0
Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О ( 0 , 0 , 0 ) , то придем к тождеству:
A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0
- Если А = 0 , В ≠ 0 , С ≠ 0 , или А ≠ 0 , В = 0 , С ≠ 0 , или А ≠ 0 , В ≠ 0 , С = 0 , то общие уравнения плоскостей имеют вид соответственно: B y + C z + D = 0 , или A x + C z + D = 0 , или A x + B y + D = 0 . Такие плоскости параллельны координатным осям О x , O y , O z соответственно. Когда D = 0 , плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей B y + C z + D = 0 , A x + C z + D = 0 и A x + B y + D = 0 задают плоскости, которые перпендикулярны плоскостям O y z , O x z , O z y соответственно.
- При А = 0 , В = 0 , С ≠ 0 , или А = 0 , В ≠ 0 , С = 0 , или А ≠ 0 , В = 0 , С = 0 получим общие неполные уравнения плоскостей: C z + D = 0 ⇔ z + D C = 0 ⇔ z = — D C ⇔ z = λ , λ ∈ R или B y + D = 0 ⇔ y + D B = 0 ⇔ y = — D B ⇔ y = λ , λ ∈ R или A x + D = 0 ⇔ x + D A = 0 ⇔ x = — D A ⇔ x = λ , λ ∈ R соответственно.
Эти уравнения определяют плоскости, которые параллельны координатным плоскостям O x y , O x z , O y z соответственно и проходят через точки 0 , 0 , — D C , 0 , — D B , 0 и — D A , 0 , 0 соответственно. При D = 0 уравнения самих координатных плоскостей O x y , O x z , O y z выглядят так: z = 0 , y = 0 , x = 0
Задана плоскость, параллельная координатной плоскости O y z и проходящая через точку М 0 ( 7 , — 2 , 3 ) . Необходимо составить общее уравнение заданной плоскости.
Решение
Условием задачи определено, что заданная плоскость параллельна координатной плоскости O y z , а, следовательно, может быть задана общим неполным уравнением плоскости A x + D = 0 , A ≠ 0 ⇔ x + D A = 0 . Поскольку точка M 0 ( 7 , — 2 , 3 ) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости x + D A = 0 , иначе говоря, должно быть верным равенство 7 + D A = 0 . Преобразуем: D A = — 7 , тогда требуемое уравнение имеет вид: x — 7 = 0 .
Задачу возможно решить еще одним способом.
Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости O y z . Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости O y z : i → = ( 1 , 0 , 0 ) . Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:
A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 ⇔ ⇔ 1 · ( x — 7 ) + 0 · ( y + 2 ) + 0 · ( z — 3 ) = 0 ⇔ ⇔ x — 7 = 0
Ответ: x — 7 = 0
Задана плоскость, перпендикулярная плоскости O x y и проходящая через начало координат и точку М 0 ( — 3 , 1 , 2 ) .
Решение
Плоскость, которая перпендикулярна координатной плоскости O x y определяется общим неполным уравнением плоскости A x + B y + D = 0 ( А ≠ 0 , В ≠ 0 ) . Условием задачи дано, что плоскость проходит через начало координат, тогда D = 0 и уравнение плоскости принимает вид A x + B y = 0 ⇔ x + B A y = 0 .
Найдем значение B A . В исходных данных фигурирует точка М 0 ( — 3 , 1 , 2 ) , координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: — 3 + B A · 1 = 0 , откуда определяем B A = 3 .
Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x + 3 y = 0 .
Уравнение плоскости.
Общее уравнение плоскости
Любую плоскость можно задать уравнением плоскости первой степени вида
A x + B y + C z + D = 0
где A, B и C не могут быть одновременно равны нулю.
Уравнение плоскости в отрезках
Если плоскость пересекает оси OX, OY и OZ в точках с координатами ( a , 0, 0), (0, b , 0) и (0, 0, с ), то она может быть найдена, используя формулу уравнения плоскости в отрезках
x | + | y | + | z | = 1 |
a | b | c |
Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
Чтобы составить уравнение плоскости, зная координаты точки плоскости M( x 0, y 0, z 0) и вектора нормали плоскости n = < A; B; C >можно использовать следующую формулу.
Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно найти по следующей формуле
x — x 1 | y — y 1 | z — z 1 | = 0 |
x 2 — x 1 | y 2 — y 1 | z 2 — z 1 | |
x 3 — x 1 | y 3 — y 1 | z 3 — z 1 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Уравнения плоскости: общее, через три точки, нормальное
Плоскость, общее уравнение плоскости
Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.
Пусть в пространстве есть три уже известные нам оси координат — Ox, Oy и Oz. Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.
Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.
Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:
Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости, имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x, y, z. Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1). Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть
.
Вектор задан по условию. Координаты вектора найдём по формуле :
.
Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме:
. (1)
Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P. Для точки N, не лежащей на заданной плоскости, , т.е. равенство (1) нарушается.
Перед решением задач может пригодиться урок о декартовой системе координат. Также хорошо бы владеть материалом о скалярном произведении векторов.
Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору .
Решение. Используем формулу (1), еще раз посмотрим на неё:
.
В этой формуле числа A , B и C координаты вектора , а числа x 0 , y 0 и z 0 — координаты точки .
Вычисления очень простые: подставляем эти числа в формулу и получаем
.
Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:
.
Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.
Итак, уравнение вида
(2)
называется общим уравнением плоскости.
Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением .
Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.
Как найти эти точки? Чтобы найти точку пересечения с осью Oz , нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0 . Поэтому получаем z = 6 . Таким образом, заданная плоскость пересекает ось Oz в точке A(0; 0; 6) .
Точно так же находим точку пересечения плоскости с осью Oy . При x = z = 0 получаем y = −3 , то есть точку B(0; −3; 0) .
И, наконец, находим точку пересечения нашей плоскости с осью Ox . При y = z = 0 получим x = 2 , то есть точку C(2; 0; 0) . По трём полученным в нашем решении точкам A(0; 0; 6) , B(0; −3; 0) и C(2; 0; 0) строим заданную плоскость.
Рассмотрим теперь частные случаи общего уравнения плоскости. Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.
1. При D = 0 уравнение определяет плоскость, проходящую через начало координат, так как координаты точки 0(0; 0; 0) удовлетворяют этому уравнению.
2. При A = 0 уравнение определяет плоскость, параллельную оси Ox, поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость параллельная оси Oy, а при C = 0 плоскость параллельна оси Oz.
3. При A = D = 0 уравнение определяет плоскость, проходящую через ось Ox, поскольку она параллельна оси Ox (A = 0) и проходит через начало координат (D = 0). Аналогично, плоскость проходит через ось Oy, а плоскость через ось Oz.
4. При A = B = 0 уравнение определяет плоскость, параллельную координатной плоскости xOy, поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость параллельна плоскости yOz, а плоскость — плоскости xOz.
5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOy, так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz, а уравнение x = 0 — координатную плоскость yOz.
Пример 3. Составить уравнение плоскости P , проходящей через ось Oy и точку .
Решение. Итак, плоскость проходит через ось Oy . Поэтому в её уравнении y = 0 и это уравнение имеет вид . Для определения коэффициентов A и C воспользуемся тем, что точка принадлежит плоскости P .
Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (). Смотрим ещё раз на координаты точки:
Среди них x = 2 , z = 3 . Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:
Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем
Подставив найденное значение A в уравнение , получим
или .
Это и есть уравнение, требуемое в условии примера.
Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение
Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением .
Уравнение плоскости, проходящей через три точки
Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.
Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.
Используя выражение смешанного произведения в координатах, получим уравнение плоскости
(3)
После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.
Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:
, ,
и определить частный случай общего уравнения прямой, если такой имеет место.
Решение. По формуле (3) имеем:
Получили общее уравнение плоскости
или после деления на -2:
.
Это уравнение, в котором A = 0, т.е. оно определяет плоскость, параллельную оси Ox.
Нормальное уравнение плоскости. Расстояние от точки до плоскости
Нормальным уравнением плоскости называется её уравнение, записанное в виде
,
где — направляющие косинусы нормали плоскости, — расстояние от начала координат до плоскости.
Нормалью к плоскости называется вектор, направление которого совпадает с направлением прямой, проведённой через начало координат перпендикулярно данной плоскости. (Есть полная аналогия с нормалью к прямой на плоскости, с той лишь разницей, что нормальное уравнение прямой существует в двух измерениях, а нормальное уравнение плоскости — в трёх).
Пусть M — какая угодно точка пространства. Для нахождения отклонения точки M от плоскости следует в левую часть нормального уравнения плоскости подставить на место x, y и z подставить координаты этой точки.
Это правило позволяет найти и расстояние от точки M до плоскости: расстояние равно модулю отклонения, т.е.
,
так как расстояние не может быть отрицательным числом.
Общее уравнение плоскости
приводится к нормальному виду почленным умножением на нормирующий множитель, определяемый формулой
.
Знак нормирующего множителя берётся противоположным знаку свободного члена в общем уравнении плоскости.
Пример 6. Привести уравнение плоскости к нормальному виду.
Решение. Вычислим нормирующий множитель:
.
Знак нормирующего множителя положительный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим требуемое в условии примера нормальное уравнение плоскости:
.
Пример 7. Вычислить величину отклонения и расстояния от точки до прямой, если точка задана координатами (-2; -4; 3) , а плоскость задана общим уравнением .
Решение. Сначала приведём уравнение плоскости к нормальному виду. Вычислим нормирующий множитель:
.
Знак нормирующего множителя отрицательный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим нормальное уравнение плоскости:
.
Вычислим отклонение точки от плоскости:
Найдём теперь расстояние от точки до плоскости как модуль отклонения:
источники:
http://ru.onlinemschool.com/math/library/analytic_geometry/plane/
http://function-x.ru/equations_of_plane.html
Содержание:
Система координат на плоскости позволяет установить взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел (рис. 331). Координаты вы широко использовали для графического представления зависимостей, при решении систем уравнений, а также в геометрии, чтобы геометрическую задачу свести к задаче алгебраической.
Декартова система координат в пространстве
Чтобы ввести декартову систему координат в пространстве, выберем точку
Б) Вы знаете, что по координатам концов и отрезка на плоскости можно определить его длину:
Аналогичная формула выражает длину отрезка в пространстве через координаты его концов и
Чтобы доказать эту формулу, рассмотрим плоскости, которые проходят через точки и перпендикулярно координатным осям. Получаем, что отрезок по сути является диагональю прямоугольного параллелепипеда, рёбра которого параллельны координатным осям и имеют длины
и (рис. 334) (если же какие-либо из проведённых плоскостей совпадут, то параллелепипед превратится в прямоугольник или отрезок).
Ранее вы доказывали, что координаты середины отрезка равны средним арифметическим соответствующих координат его концов. Это утверждение остаётся истинным и в случае пространства (см. пример 2 в § 6): если и точка — середина отрезка то
Пример:
На оси ординат найдём точку, равноудалённую от точек и
Решение:
Пусть — искомая точка. Тогда и, поскольку то
или Отсюда
Ответ:
Пример:
Найдём условие, задающее геометрическое место точек, равноудалённых от начала координат и от точки
Решение:
Согласно геометрическим соображениям искомое множество состоит из всех тех точек, размещённых на серединных перпендикулярах к отрезку Такие точки заполняют плоскость, проходящую через середину отрезка перпендикулярно ему. Найдём условие, которому удовлетворяют координаты произвольной точки этой плоскости. Условие означает, что
Ответ: Искомое геометрическое место точек есть плоскость, которая задаётся уравнением
Пример:
Найдём условие, которому удовлетворяют координаты точек плоскости проходящей через точку перпендикулярно прямой где
Решение:
Пусть — произвольная точка плоскости Тогда из прямоугольного треугольника по теореме Пифагора имеем:
Поскольку
то
или
Ответ:
Вектор. Действия над векторами
А) С векторами вы встречались в курсе физики девятого класса, когда знакомились с векторными величинами. Физическая величина является векторной, если она характеризуется не только числовым значением, но и направлением. Такие величины, как сила, скорость и другие, обозначают направленными отрезками. Длина направленного отрезка (стрелки) характеризует числовое значение векторной величины (её модуль).
Особенностью понятия вектор является то, что все основные определения и свойства, связанные с этим понятием, формулируются почти одинаково как в планиметрии, так и в стереометрии.
Вектор в геометрии представляется направленным отрезком (рис. 336), начало которого считается началом вектора, а конец — концом вектора.
Расстояние между началом направленного отрезка и его концом считается длиной вектора.
Направленные отрезки и представляют один вектор, если они одинаково направлены и имеют одинаковую длину (рис. 337). В таком случае говорят, что векторы и равны, и пишут Векторы и равны тогда и только тогда, когда совпадают середины отрезков и (рис. 338).
Это напоминает ситуацию с дробями: определённое число может представляться разными дробями, например, дроби представляют одно и то же число. Дроби и равны тогда и только тогда, когда
Если вектор изображается направленным отрезком то говорят, что этот вектор отложен от точки Вектор можно, и при этом однозначно, отложить от любой точки.
Вектор, представленный направленным отрезком называют нулевым: Векторы, представленные направленными отрезками и называют противоположными и пишут
Если ненулевые векторы и отложены от одной точки: то угол называется углом между векторами и .
Ненулевые векторы и называют коллинеарными, если прямые и параллельны или совпадают. Нулевой вектор считают кол-линеарным с любым вектором.
Векторы можно складывать и умножать на число. Чтобы сложить векторы и можно один из них заменить таким равным ему вектором, чтобы конец первого направленного отрезка совпадал с началом второго:
и тогда сумма векторов представляется направленным отрезком (рис. 339).
Сложение векторов имеет переместительное свойство, т. е. сочетательное свойство, т. е. кроме того, уравнение всегда имеет единственное решение, которое называют разностью векторов и (рис. 340).
Произведением вектора на число является такой вектор что, во-первых, векторы и одинаково направлены при и противоположно направлены при и, во-вторых, длины векторов и связаны равенством (рис. 341). Векторы и являются коллинеарными. При этом верно равенство Если то произведением является нулевой вектор.
С действием умножения вектора на число связываются два распределительных свойства— и
Б) Если векторы и коллинеарны, то один из них можно выразить через другой: либо либо при определённых числах и
Для любых двух векторов существует плоскость, которой они параллельны. Векторы, параллельные одной плоскости, называют компланарными. Если векторы и неколлинеарны, то любой вектор компланарный с ними, можно однозначно выразить через векторы и : (рис. 342).
Истинно и обратное утверждение: если векторы и связаны равенством то они компланарны.
Действительно, если векторы и представить направленными отрезками с общим началом (рис. 343), то поэтому точки и находятся в плоскости
Теорема 1. Если векторы и некомпланарны, то для любого вектора существует такая единственная упорядоченная тройка действительных чисел что
Доказательство: Сначала докажем существование нужных чисел. Представим векторы и направленными отрезками с общим началом Через точку проведём прямую параллельно и пусть — точка пересечения прямой с плоскостью (рис. 344). Тогда Поскольку вектор ненулевой и векторы и коллинеарны, то существует такое число что А поскольку векторы и компланарны, а векторы и неколлинеарны, то существуют такие числа и что
Поэтому
Теперь докажем единственность представления. Допустим, что существуют две разные упорядоченные тройки чисел и при которых и Тогда и
Поскольку тройки чисел и различны, то числа на соответствующих местах не могут все совпадать. Пусть, например, В этом случае из последнего равенства можно выразить вектор Последнее равенство означает, что векторы и компланарны. Полученное противоречие с условием означает, что сделанное допущение о существовании двух разных троек чисел неверно.
Следствие 1. Из четырёх любых векторов пространства один может быть выражен через три других.
Действительно, если среди данных четырёх векторов пространства есть три некомпланарных, то четвёртый вектор можно через эти три выразить. Далее, если среди данных четырёх векторов пространства любые три компланарны, то может найтись среди них два неколлинеарных, или любых два вектора коллинеарны. В первом случае через эти два неколлинеарных вектора можно выразить третий и к полученному выражению прибавить четвёртый, умноженный на ноль. Во втором случае один из векторов можно выразить через другой и потом прибавить к этому выражению два оставшихся вектора, умноженных на ноль.
Таким образом, теперь вы знаете, что из двух коллинеарных векторов один может быть выражен через другой, из трёх компланарных векторов один может быть выражен через два других, а из четырёх любых векторов один может быть выражен через три других.
Пример №1
На кронштейне, состоящем из подкоса и растяжки подвешен груз. Кронштейн прикреплён к вертикальной стене растяжка занимает горизонтальное положение (рис. 345). Найдём силы, действующие на подкос и растяжку, если угол между ними равен a масса груза равна
Решение:
Сила тяжести выражается вектором направленным вниз по вертикали. Выразим его суммой векторов, которые коллинеарны векторам и Для этого построим параллелограмм с диагональю стороны которого расположены на прямых и (рис. 346).
Поскольку углы и являются внутренними накрест лежащими при параллельных прямых и и секущей то в прямоугольном треугольнике угол равен и катет равен Поэтому
и
Ответ. Под воздействием груза подкос сжимается с силой а растяжка растягивается с силой
Пример №2
В правильной четырёхугольной пирамиде точки и — середины рёбер и соответственно. Плоскость, проходящая через точки и параллельно прямой пересекает прямую в точке (рис. 347). Найдём отношение
Решение:
Поскольку то векторы и полностью определяют пирамиду. Поскольку векторы и коллинеарны, то вектор можно выразить через при определённом числе Вектор можно выразить через векторы и используя то, что точка находится в плоскости, проходящей через точки и параллельно прямой Вектор компланарен с векторами и поэтому при определённых множителях и Выразим векторы и через векторы и
Имеем:
Поэтому
Учтём теперь то, что через некомпланарные векторы и каждый вектор пространства, в том числе и вектор выражается единственным образом. Поэтому должны одновременно выполняться условия: Отсюда получаем, что А поскольку то
В) Пусть в пространстве выбрана декартова система координат С каждой точкой пространства можно связать вектор Это соответствие между точками пространства и векторами является взаимно однозначным: различным точкам соответствуют различные векторы с началом и концами в этих точках, и различным векторам соответствуют различные точки пространства.
Будем говорить, что вектор имеет координаты в декартовой системе координат если и точка имеет координаты Это будем записывать:
Теорема 2. Если то
Доказательство: Пусть задана декартова система координат и Пусть также и Нужно доказать, что и
Поскольку то середины отрезков и совпадают.
Середина отрезка имеет координаты а середина отрезка — координаты Получаем:
Отсюда:
и
Теорема 3. Если то
Доказательство: Пусть задана декартова система координат и (рис. 348). Поскольку
то По теореме 2 получаем:
и
Поэтому
и
Значит, вектор имеет координаты
Докажем второе утверждение теоремы 3. Пусть сначала и Сравним одноимённые, например первые, координаты векторов и Для этого через точки и проведём плоскости, параллельные плоскости (рис. 349), которые пересекают ось в точках и Из подобия треугольников и следует, что Аналогично получается, что и
Если же то аналогичные рассуждения проводятся для рисунка 350. Векторы называют единичными координатными векторами.
Следствие 2. Если то
Пример №3
Дан параллелепипед Точки и — середины отрезков и соответственно (рис. 351). Выразим:
а) векторы и через векторы и
б) векторы и через векторы и
Решение:
а) Имеем:
б) Будем рассматривать полученные равенства –
как систему условий, из которой нужно найти и Из первого условия выразим
и исключим из двух других:
Теперь из последнего равенства выразим и исключим из предыдущего:
Далее можно последовательно выразить и через векторы
и
Пример №4
Через диагональ грани треугольной призмы проведена плоскость так, что она пересекает диагонали и граней в точках и соответственно (рис. 352). Найдём отношение учитывая, что
Решение:
Векторы и некомпланарны, поэтому через них можно выразить векторы и
Учтём, что и коллинеарны. Значит, существует такое число что
Аналогично, существует такое число что Кроме того,
и
Значит,
Из условия следует, что векторы и коллинеарны. Поэтому при определённом
Поскольку и учитывая однозначность разложения вектора по трём некомпланарным векторам, получаем, что Отсюда находим
Ответ:
Скалярное произведение векторов
А) Скалярным произведением векторов и называется число , равное произведению длин этих векторов на косинус угла между ними:
Скалярное произведение векторов имеет переместительное свойство распределительное свойство кроме того, множитель можно выносить за знак скалярного произведения С помощью скалярного произведения можно находить длины векторов и косинусы углов между ними:
У нулевого вектора направление не определено, поэтому удобно считать, что нулевой вектор перпендикулярен любому другому вектору.
С учётом этого получается следующее полезное утверждение: два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.
Теорема 1. Скалярное произведение векторов и выражается через их координаты в декартовой системе
равенством
Доказательство: Поскольку то
Находим далее:
Аналогично,
Поэтому
Пример №5
Найдём длину вектора
Имеем: Поэтому
Пример №6
Найдём угол между векторами и
Имеем:
Поэтому:
Пример №7
Найдём длину вектора равного учитывая, что векторы и перпендикулярны вектору а между собой образуют угол 60° и
Имеем:
Поскольку
Поэтому
Б) Вы знаете, что плоскость в пространстве можно задать тремя точками, не лежащими на одной прямой. Поскольку существует единственная плоскость, проходящая через данную точку перпендикулярно данной прямой, то плоскость можно задавать указанием одной из её точек и вектора, ей перпендикулярного.
Теорема 2. Если плоскость проходит через точку перпендикулярно ненулевому вектору то координаты любой точки этой плоскости удовлетворяют уравнению
Доказательство: Если — произвольная точка плоскости,
проходящей через точку перпендикулярно вектору
то векторы и перпендикулярны, а потому их скалярное произведение равно нулю:
Истинно и обратное утверждение.
Теорема 3. Уравнению в котором коэффициенты не равны нулю одновременно, удовлетворяет любая точка некоторой плоскости. Этой плоскости перпендикулярен вектор
Доказательство: Если есть уравнение и числа не равны нулю одновременно, то можно найти упорядоченную тройку чисел удовлетворяющую этому уравнению. Например, если то можно, взяв и найти значение переменной так, чтобы тройка чисел удовлетворяла уравнению
Поскольку то условия и равносильны. Получили, что исходное уравнение равносильно уравнению которому удовлетворяют координаты любой точки расположенной на прямой, проходящей через точку перпендикулярно вектору т. е. любой точки плоскости, проходящей через точку перпендикулярно вектору
Пример №8
Найдём уравнение плоскости, проходящей через точки А(2; 1; 3), В(4; 1, 2) и С(5; 2; 1).
Решение:
Найдём координаты векторов и Поскольку координаты (2; 0; -1) и (3; 1; -2) этих векторов не пропорциональны, то сами векторы не коллинеарны, и, значит, точки и не лежат на одной прямой, они задают единственную плоскость.
Чтобы записать уравнение плоскости используя теорему 2, найдём вектор перпендикулярный этой плоскости. Поскольку и то и Из этих условий получаем: Таким образом, в качестве искомого вектора можно взять вектор с координатами (1; 1; 2).
Теперь можно записать уравнение плоскости, которая проходит через точку перпендикулярно найденному вектору
или
В) Теорема 4. Если плоскость имеет уравнение то расстояние до неё от точки равно
Доказательство: Пусть из точки на данную плоскость опущен перпендикуляр основание которого — точка — имеет координаты
Тогда вектор коллинеарен с
вектором Поскольку угол между этими векторами равен 0°
или 180°, то откуда
Находим
поскольку координаты точки удовлетворяют уравнению плоскости. Далее: А поскольку искомое расстояние равно длине вектора то требуемое утверждение обосновано.
Пример №9
Найдём расстояние от точки до плоскости, заданной уравнением
Решение:
Используя теорему 4, получаем:
Ответ: 5.
Применение векторов и координат
А) В ряде задач условие содержит сведения о параллельности некоторых прямых или об их точках пересечения, об отношениях длин параллельных отрезков. Для решения таких задач может быть полезным применение векторов, как это было при решении примера 3 из параграфа 12. При решении таких задач достаточно использовать действия сложения векторов и умножения вектора на число. Рассмотрим ещё один пример.
Пример №10
Пусть и — параллелограммы в пространстве, — середины отрезков соответственно. Докажем, что середины отрезков и совпадают.
Решение. Выберем в пространстве точку Тогда положение каждой точки полностью характеризуется соответствующим вектором. Из условия
следует, что и Точки определяются
векторами
Чтобы доказать, что середины отрезков и совпадают, докажем, что
Находим:
А поскольку
и
то выражения в двух последних скобках принимают одинаковые значения. Требуемое утверждение доказано.
Б) При решении других задач целесообразно пользоваться скалярным умножением векторов. Такими являются задачи, в которых нужно использовать или определять некоторые расстояния или углы.
Пример №11
Найдём угол между скрещивающимися диагоналями соседних боковых граней правильной шестиугольной призмы, у которой боковые грани — квадраты.
Решение:
Пусть нужно найти угол между прямыми и (рис. 370). Искомый угол может совпадать с углом между векторами, параллельными данным прямым, или дополнять его до 180°. Поэтому косинус искомого угла совпадает с модулем косинуса угла между векторами и
Выразим векторы и через некомпланарные векторы и Примем длину ребра призмы за а и найдём скалярное произведение векторов:
А поскольку
то
Ответ:
Скалярное произведение векторов можно использовать и для нахождения угла между плоскостями. Как и при определении угла между прямыми, так и при определении угла между плоскостями можно использовать векторы и только перпендикулярные рассматриваемым плоскостям:
Пример №12
У правильной шестиугольной призмы все рёбра имеют длину 1 (рис. 371). Найдём угол между плоскостями и
Решение:
Для получения ответа нужно определить векторы и перпендикулярные плоскостям и соответственно. Они должны удовлетворять условиям и
Используем прямоугольную декартову систему координат, начало которой находится в центре основания и точки и имеют координаты и соответственно. Тогда точки и будут иметь координаты и соответственно. Найдём координаты векторов и по координатам их концевых точек:
Поскольку то координаты вектора
удовлетворяют условиям и Этим условиям удовлетворяют числа Поэтому в качестве вектора, перпендикулярного плоскости можно взять вектор
Для нахождения вектора действовать будем аналогично. Координаты вектора перпендикулярного плоскости удовлетворяют условиям и удовлетворяют числа Поэтому
Используем равенство Поскольку угол между векторами и или совпадает с углом между плоскостями и
или дополняет его до 180°, то
Находим:
Ответ:
Для нахождения угла между прямой и плоскостью также можно использовать векторы, из которых один параллелен прямой, а другой перпендикулярен плоскости. Угол между этими векторами связан с углом между прямой и плоскостью равенством (рис. 372).
Пример №13
На рёбрах и куба отмечены точки и так, что (рис. 373). Найдём угол между прямой и плоскостью
Решение:
Примем точку за начало системы координат, координатные оси направим по рёбрам куба, взяв рёбра за единичные отрезки. Тогда определятся координаты нужных точек:
и
По теореме 3 из параграфа 13 уравнение плоскости имеет вид а поскольку координаты точек и удовлетворяют уравнению то это уравнение и есть уравнение плоскости а вектор этой плоскости перпендикулярен.
Прямой параллелен вектор Находим:
и
Ответ:
В) В предыдущем параграфе обсуждалось использование координат для вычисления расстояния от точки до прямой. Рассмотрим решение ещё двух задач на нахождение расстояний: от точки до прямой и расстояния между скрещивающимися прямыми.
Пример №14
В правильной шестиугольной пирамиде все рёбра основания имеют длину 3, они вдвое короче боковых рёбер. На рёбрах и отмечены точки и так, что Найдём расстояние от точки до прямой
Решение:
Пусть — центр основания Поскольку и то из прямоугольного треугольника находим:
Используем прямоугольную декартову систему координат, начало которой находится в центре основания оси абсцисс и аппликат проходят через точки и соответственно и точка имеет неотрицательные координаты (рис. 374). Точки и имеют координаты и . Тогда точки и будут иметь координаты
и соответственно. Найдем координаты векторов и по координатам их концевых точек:
Искомое расстояние есть длина перпендикуляра, опущенного из точки на прямую и равна высоте треугольника проведённой из точки Для её нахождения можно использовать формулу Поскольку
и
то
Теперь находим:
Ответ:
Пример №15
Измерения и прямоугольного параллелепипеда равны соответственно 5, 4 и 4. Точки и на рёбрах и выбраны так, что (рис. 375). Найдём расстояние между прямыми и
Решение:
Расстояние между скрещивающимися прямыми и можно найти как расстояние от какой-либо точки прямой до плоскости проходящей через прямую параллельно
Примем точку за начало системы координат, координатные оси направим по рёбрам параллелепипеда так, чтобы точки и имели координаты соответственно. Тогда Чтобы записать уравнение плоскости найдём координаты вектора перпендикулярного как вектору так и вектору Поскольку то координаты вектора должны удовлетворять равенствам и например
Теперь запишем уравнение плоскости используя координаты точки Для нахождения расстояния используем теорему 4 из параграфа 13:
Ответ:
Векторы в пространстве
Это интересно!
Основоположниками аналитической геометрии являются знаменитые ученые Декарт и Ферма. Однако Декарт свои исследования опубликовал первым. А исследования Ферма увидели свет намного позже, после его смерти. Интересно, что подойдя к проблеме с разных сторон, они пришли к одинаковым выводам. Декарт искал уравнение исследуемой кривой, а Ферма для заданного уравнения искал соответствующую кривую.
Применение правил алгебры к геометрии привело к возникновению аналитической геометрии. В последствии аналитическая геометрия была усовершенствована основателем математического анализа Исааком Ньютоном, который писал ” … я смог пойти дальше Декарта, только потому, что стоял на плечах гигантов”
Прямоугольная система координат в пространстве
Пусть мяч ударился о пол и отскочил вертикально вверх. Координаты мяча в точке на полу можно определить относительно длины и ширины комнаты двумя значениями. Однако когда мяч отскочил от пола, то его положение уже невозможно определить двумя координатами. Если положение мяча на полу определяется как то после поднятия на высоту 2,5 м его положение в пространстве задается уже гремя координатами
Прямоугольная система координат в пространстве. В пространстве возьмем произвольную точку и проведем через нее три попарно перпендикулярные прямые линии. Примем точку за начало координат и, выбрав на этих прямых положительное направление и единичный отрезок, назовем эти прямые координатными осями Начало координат делит каждую ось на две полуоси (положительную и отрицательную). Пересекаясь попарно, три координатные оси образуют координатные плоскости. Плоскость берется но горизонтали, положительное направление оси проводится по направлению вверх. Трехмерная система координат, образованная по данному правилу, называется еще системой правой руки. Если согнуть пальцы правой руки от положительного направления оси вдоль положительного направления оси то большой палец будет направлен вдоль положительного направления оси
- начало координат
- координатные оси
- координатные плоскости
Координатные плоскости обозначаются как и
Каждая координатная плоскость делит пространство на два полупространства и, таким образом, три координатные плоскости вместе делят пространство на восемь частей, каждая из которых называется октантом:
Пусть точка произвольная точка в пространстве. Параллельно плоскостям и через точку проведем плоскости, которые пересекают соответствующие координатные оси в точках и Получим три плоскости:
Координаты точки в пространстве
1) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
2) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
3) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
Значит, каждой точке пространства соответствует упорядоченная тройка и наоборот:
Упорядоченная тройка в прямоугольной системе координат называется координатами точки и декартовыми координатами. Расстояние от точки до плоскостей и соответствует абсолютным значениям координат Числа соответственно называются абсциссой, ординатой и аппликатой точки и это записывается так:
1) Начало координат:
2) Точка, расположенная на оси
Точка, расположенная на оси
Точка, расположенная на оси
3) Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка в пространстве расположена в I октанте, точка расположена на отрицательной полуоси точка расположена на плоскости точка расположена в III октанте.
Знаки координат точки
Знак координаты точки зависит от того, в каком октанте расположена точка. В следующей таблице показаны знаки координат точек в различных октантах.
В первом октанте все знаки координат положительны, в седьмом октанте все знаки отрицательны.
Пример №16
В прямоугольной системе координат в пространстве постройте точки:
Решение: а) для построения точки от начала координат но оси в положительном направлении на расстоянии 2-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 4-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 3-х единичных отрезков отметим точку
b) для построения точки от начала координат по оси в отрицательном направлении на расстоянии 2-х единичных отрезков отметим точку от точки вдоль отрицательного направления оси и параллельно этой оси, на расстоянии 2-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 3-х единичных отрезков отметим точку
Пример №17
От точки к осям координат проведены перпендикуляры. Запишите координаты оснований перпендикуляров, соответствующих точкам и
Решение: для точки основания перпендикуляра, проведенного из точки на ось координаты и равны нулю. Значит, координаты точки – Аналогично, координаты остальных точек – и
Пример №18
От точки к плоскостям и проведены перпендикуляры. Запишите координаты точек и которые являются основаниями перпендикуляров.
Решение: координата точки основания перпендикуляра, опущенного от точки на плоскость равна нулю. Значит, точка имеет координаты Аналогично находят координаты других точек: и
Расстояние между двумя точками в пространстве
Расстояние между точками и вычисляется но формуле
Доказательство. Пусть диагональ параллелепипеда с ребрами и которые параллельны координатным осям Из прямоугольного треугольника прямой) имеем: Из прямоугольного треугольника прямой) имеем:
Учитывая, что
получаем,
Расстояние от начала координат
В прямоугольной системе координат в пространстве расстояние от точки начала координат до любой точки вычисляется по формуле:
Пример №19
Точки, расположенные на одной прямой, называются коллинеарными точками.
Докажите, что точки и являются коллинеарными точками, используя формулу нахождения расстояния между двумя точками.
Решение:
Так как то точки и расположены на одной прямой, т. е. они коллинеарны.
Пример №20
Найдите координаты точки, расположенной на оси абсцисс и равноудаленной от точек и
Решение: если точка расположена на оси абсцисс, значит ее координаты- Так как точка равноудалена от точек и то или По формуле расстояния между двумя точками имеем:
Значит, точка расположена на оси абсцисс и равноудалена от точек и
Координаты точки, делящей отрезок в некотором отношении
Координаты точки делящей отрезок с концами в точках
и в отношении находятся как:
Доказательство: пусть точка делит отрезок в заданном отношении. Через точки и к плоскости проведем перпендикуляры и и через точки перпендикуляры и к оси По рисунку видно, что и
На основе теоремы о пропорциональных отрезках имеем:
Аналогично, используя перпендикуляры к осям и можно определить координаты и
Координаты середины отрезка
Координаты середины отрезка, соединяющих точки и находятся следующим образом:
Координаты центра тяжести треугольника
Координаты центра тяжести треугольника (точка пересечения медиан) с вершинами в точках и находятся следующим образом:
(проверьте сами)
Пример №21
Даны точки и Найдите
координаты точки которая делит отрезок как
Решение: пусть точка имеет координаты Эта точка делит отрезок в отношении По формуле нахождения координаты
точки, делящей отрезок в заданном отношении, получаем:
Пример №22
Даны координаты двух вершин треугольника и Найдите координаты третьей вершины, если центр тяжести треугольника совпадает с началом координат.
Решение: так как центр тяжести находится в начале координат, то:
Отсюда,
Значит, третьей вершиной треугольника является точка
Векторы в пространстве
Векторной величиной или вектором называется величина, которая определяется не только значением, но и направлением. Изображается вектор направленным отрезком. Длина отрезка, образующего вектор, называется длиной вектора или его модулем.
Вектор можно изобразить в одномерной, двухмерной и трехмерной системе координат.
Вектор, у которого начальная и конечная точки совпадают, называется нулевым вектором. Направление нулевого вектора не определено. Местоположение любой точки (объекта) в пространстве изображается вектором, начало которого совпадает с началом координат, а конец – с данной точкой. Например, на рисунке изображен вектор, показывающий положение мяча в пространстве, который брошен на высоту 3 м на игровой площадке, длина которой равна 4 м, а ширина 2 м.
В пространстве вектор, который определяет место (положение, позицию) точки и соединяет начальную и заданную точку, называется позиционным вектором или радиус – вектором. Каждой точке пространства соответствует единственный позиционный вектор. Положение точки в пространственной системе координат определяет вектор – вектор, заданный компонентами.
Два вектора называются равными если они имеют равные модули и одинаково направлены. Равные векторы, при помощи параллельного переноса, можно расположить друг на друге. Например, на рисунке векторы и равны. Для позиционного вектора можно провести бесконечно много равных по модулю и направлению векторов. В пространстве вектор с началом в точке и концом в точке записывается компонентами как Соответствующие компоненты равных векторов равны и наоборот. Векторы, которые равны по модулю, но имеют противоположные направления, называются противоположными векторами.
В пространстве, как и на плоскости, можно геометрически построить сумму и разность векторов, и произведение вектора на число.
Найти компоненты и длину вектора, а также выполнить действия над векторами в пространственной Декартовой системе координат можно но правилам, аналогичным для прямоугольной системы координат на плоскости.
Длина вектора
Модуль вектора можно найти, используя формулу нахождения расстояния между двумя точками.
Теорема. Если начало вектора расположено в точке а конец в точке то длина вектора вычисляется по формуле:
Следствие. Длина радиус-вектора равна (находится по формуле нахождения расстояния от начала координат до точки).
Сложение и вычитание векторов
Сложение и вычитание векторов: суммой (разностью) векторов и является вектор, компоненты которого равны сумме (разности) соответствующих компонент векторов, т. е. сумма (разность) векторов и равна вектору:
Пример №23
Найдите сумму и разность векторов и
Решение:
Умножение вектора на число
Умножение вектора на число: произведение вектора на действительное число к определяется как вектор Для произведения вектора на действительное число справедливы следующие правила:
Пример №24
Для вектора и запишите компонентами вектор
Решение:
Коллинеарные векторы
Если направленные отрезки, которыми изображены векторы, параллельны или лежат на одной прямой, то вектора называются коллинеарными. Если векторы и коллинеарны, тогда существует единственное число которое удовлетворяет условию При векторы сонаправленные, при они направлены в противоположные стороны. Соответствующие координаты коллинеарных векторов пропорциональны:
При это условие запишется как:
Пример №25
Определите, являются ли расположенные в пространстве векторы и коллинеарными.
Решение: так как вектор и коллинеарны и сонаправлены.
Пример №26
Постройте радиус-вектор, равный вектору
Решение: в _соответствии с правилом треугольника Точкам и соответствуют радиус-векторы и
По правилу сложения векторов на плоскости Отсюда,
Пример №27
В трехмерной системе координат задан вектор с началом в точке и концом в точке а) Найдите длину вектора б) Запишите компонентами радиус-вектор, равный вектору
Решение: а)
b) Обозначим вектор, равный вектору через Тогда точке
соответствует радиус-вектор точке соответствует
радиус-вектор
Так как то
Пример №28
Установите справедливость равенства для точек и
Решение:
Из равенства соответствующих компонентов следует
Векторы, расположенные на одной плоскости или на параллельных плоскостях, называются компланарными векторами. Например, векторы, расположенные на противолежащих гранях куба, компланарны, а векторы, направленные по трем ребрам выходящим из одной вершины, некомпланарны.
Единичный вектор – вектор, длина которого равна единице.
Для любого, отличного от нуля вектора вектор вида является единичным вектором. 1 1
Пример №29
Для вектора а) найдите единичный сонаправленный вектор b) запишите компонентами вектор сонанравленный вектору длина которого равна 10 единицам.
Решение: обозначим единичный вектор через
Проверим, действительно ли длина этого вектора равна единице:
b) чтобы определить вектор, сонаправленный с вектором длиной 10 единиц, надо компоненты единичного вектора, найденного в пункте а, увеличить в 10 раз.
В прямоугольной системе координат в пространстве векторы, направленные вдоль положительных направлений координатных осей и определенные как и при
называются орт векторами. Понятно, что векторы
– некомпланарны.
Любой позиционный вектор и на плоскости, и в пространстве, можно выразить через орт вектора. На плоскости точке соответствует позиционный вектор в пространстве точке соответствует вектор Данное выражение называется записью вектора компонентами. Здесь числа координаты точки
Теорема. Любой вектор можно разложить но орт векторам единственным образом, при этом справедливо равенство
Пример №30
Вектор началом которого на плоскости является точка а концом точка выразите через орт вектора.
Решение: зная, что получим
Пример №31
Запишите разложение вектора в пространстве по орт векторам.
Решение: по теореме разложения вектора по орт векторам имеем:
Пример №32
а) Запишите в виде позиционный вектор, соответствующий точке
b) Запишите вектор компонентами в виде
Решение: а) начало позиционного вектора совпадает с началом координат Таким образом вектор имеет вид
Пример №33
Найдите сумму и разность векторов.
Решение:
Скалярное произведение двух векторов
Тележка переместилась на расстояние по прямой под действием силы направленной под углом наклона Вычислите совершаемую работу: если значение силы равно то На горизонтальном пути работа вертикальной компоненты силы равна нулю. Тогда работа, совершаемая горизонтальной компонентой силы на расстоянии будет:
Работа, совершаемая при перемещении груза на расстояние равна произведению длины вектора перемещения и значения компонента вектора силы направленной вдоль перемещения.
Работа является скалярной величиной, однако ее значение зависит от угла между силой, действующей на тело, и вектором перемещения.
Скалярное произведение двух векторов
Углом между любыми двумя ненулевыми векторами и называется угол между равными им векторами с общим началом. Ясно, что
Скалярное произведение двух ненулевых векторов и равно произведению модулей этих векторов и косинуса угла между ними.
Скалярное произведение записывается как:
Значит,
Свойство скалярного произведения
• Для любого вектора справедливо равенство то есть скалярный квадрат вектора равен квадрату его длины.
Переместительное свойство скалярного произведения.
Для любых векторов и справедливо равенство
Свойство группировки скалярного произведения. Для любых векторов и и действительного числа справедливо равенство
Распределительное свойство скалярного произведения:
1) Для любых векторов, и действительного числа справедливо следующее равенство 2) Для любых векторов справедливо равенство
В частном случае, для скалярного произведения орт векторов получим:
Пример №34
По данным на рисунке найдите скалярное произведение векторов и
Решение:
Пример №35
Упростите выражение используя свойство скалярного произведения векторов.
Решение:
Скалярное произведение двух векторов на координатной плоскости можно найти при помощи координат.
Пусть даны векторы и По определению скалярного произведения имеем
Из получаем
По теореме косинусов получаем
а это значит, что
Таким образом, скалярное произведение двух векторов и равно сумме произведений соответствующих компонент.
Аналогичным образом, скалярное произведение двух векторов и в трехмерной, Декартовой системе координат находится как: .
Пример №36
Зная, что найдите скалярное произведение
Решение:
Угол между двумя векторами
Угол между двумя ненулевыми векторами находится из соотношения , здесь
Пример №37
Найдите косинус угла между векторами и
Решение:
Вывод: два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю:
Пример №38
При каком значении вектора и взаимно перпендикулярны?
Решение: при имеем
Общее уравнение прямой
В системе координат на плоскости уравнение прямой имеет вид Это уравнение называется общим уравнением прямой. Вектор, перпендикулярный прямой, называется нормальным вектором к данной прямой или нормалью. Покажем, что общее уравнение прямой с нормалью имеет вид Пусть заданная точка на прямой, а точка произвольная точка на прямой, отличная от точки а вектор – нормаль к прямой.
Так как векторы и перпендикулярны, то
Если ввести обозначение то получим уравнение в виде Здесь
Частные случаи:
• уравнение прямой, параллельной оси абсцисс
• уравнение прямой, параллельной оси ординат
• уравнение прямой, проходящей через начало координат
Пример №39
Запишите уравнение прямой проходящей через точку нормаль к которой равна
Решение: на координатной плоскости построим вектор и изобразим графическое решение задания, проведя через точку прямую перпендикулярную нормали. Теперь запишем требуемое уравнение.
Способ 1.
Пусть точка является точкой, расположенной на прямой и отличной от точки Тогда вектор коллинеарен прямой и Так как вектора и перпендикулярны, то Тогда получим:
Таким образом,
Способ 2.
Зная нормаль уравнение можно записать следующим образом: Так как точка должна находится на прямой, то и уравнение будет
Пример №40
Найдите угол между прямыми, заданными уравнениями и
Решение: угол между прямыми можно найти как угол между их нормалями.
Для угла между нормальных векторов и имеем:
Отсюда
Пример №41
Найдите расстояние от точки до прямой
Решение: пусть точка является основанием перпендикуляра, проведенного к прямой от точки
Так как векторы и коллинеарны, го существует такое число что или Из равенства соответствующих компонент получим Координаты и точки должны удовлетворять уравнению
Отсюда Тогда
Уравнение плоскости
Исследование. Какому множеству точек соответствует одно и тоже уравнение, например в одномерной, двухмерной и трехмерной системах координат?
1. В одномерной системе координат, т.е. на числовой оси, уравнению соответствует одна точка.
2. В двухмерной системе координат уравнению или удовлетворяют все точки с координатами Множеством таких точек является прямая, параллельная оси
3. В трехмерной системе координат уравнению или удовлетворяет множество точек Множеством таких точек является плоскость, параллельная плоскости Аналогично, уравнениям и соответствуют плоскости, параллельные плоскостям и
4. В трехмерной системе координат представьте множество точек, удовлетворяющих уравнениям и
5. Сопоставьте координаты точек, данных на плоскости, с уравнениями и Представьте плоскости.
Уравнение прямой в двухмерной системе координат имеет вид
Например, уравнение определяет прямую, проходящую через точки и
В трехмерной системе координат мы можем написать это уравнение в виде: Так как коэффициент равен нулю, то аппликата может получать любые значения. Т. е. в трехмерной системе координат для любого координаты точек и удовлетворяет уравнению Если отметить все такие точки в трехмерной системе координат, то получим плоскость, параллельную оси В общем, уравнение плоскости в трехмерной системе координат имеет вид
Плоскость может быть определена различными способами.
- тремя неколлинеарными точками
- прямой и точкой, не принадлежащей этой прямой
- двумя пересекающимися прямыми
- двумя параллельными прямыми
- точкой и перпендикуляром в этой точке в заданном направлении
Используя последний способ, которым можно задать плоскость, покажем, что уравнение плоскости имеет вид Вектор, перпендикулярный к плоскости называется ее нормалью. Пусть, дана плоскость точка расположенная на этой плоскости и нормаль к этой плоскости. Выберем на этой плоскости какую-либо другую точку и соединим точки и Прямая, перпендикулярная плоскости, перпендикулярна каждой прямой, лежащей в данной плоскости. Значит
А это значит, что Учитывая, что и имеем:
Обозначим тогда уравнение плоскости будет иметь вид:
Внимание! Три коэффициента при переменных в уравнении плоскости являются компонентами нормали и
Пример №42
Плоскость с нормалью проходит через точку Запишите уравнение этой плоскости.
Решение: задание можно выполнить двумя способами.
1-ый способ. Возьмем произвольную точку на плоскости и запишем компонентами вектор с началом в точке и концом в точке Вектор будет иметь вид Так как нормальный вектор имеет вид то или справедливо следующее:
Отсюда
Умножим обе части уравнения на Тогда уравнение данной плоскости будет иметь вид
2-ой способ. Известно, что уравнение плоскости имеет вид а нормаль к плоскости имеет вид Значит, коэффициенты известны. Из вектора нормали имеем: Записав координаты точки принадлежащей плоскости, в уравнение найдем переменную
и уравнение плоскости будет иметь вид: или
Пример №43
Дано уравнение плоскости
a) Определите, принадлежат ли точки плоскости.
b) Определите координаты точки пересечения плоскости с осями
c) Запишите координаты какой-либо другой точки, принадлежащей данной плоскости.
Решение:
а) Проверка:
Принадлежит плоскости
Принадлежит плоскости
Не принадлежит плоскости
b) Координаты точек пересечения с осями
в точке пересечения с осью координаты и равны нулю
в точке пересечения с осью координаты и равны нулю
в точке пересечения с осью координаты и равны нулю
c) Для определения координаты другой точки на заданной плоскости задайте любые значения двум переменным и найдите третью координату.
Например, при значение находят гак: Значит, точка принадлежит данной плоскости.
- Заказать решение задач по высшей математике
Пример №44
Найдите расстояние от точки до плоскости
Решение: пусть точка является основанием перпендикуляра, проведенного от точки Так как векторы и коллинеарны, то существует такое число что или Из равенства соответствующих компонент получим Координаты точки удовлетворяют уравнению:
Отсюда Тогда
Это говорит о том, что расстояние от заданной точки до плоскости равно 3 единицам.
Взаимное расположение плоскостей
Плоскости и перпендикулярны тогда и только тогда, когда перпендикулярны их нормали:
Плоскости и параллельны тогда и только тогда, когда параллельны их нормали:
Пример №45
Определение параллельности или перпендикулярности плоскостей но уравнению.
a) плоскость задана уравнением а плоскость задана уравнением Обоснуйте, что данные плоскости перпендикулярны.
b) плоскость задана уравнением а плоскость задана уравнением Обоснуйте, что данные плоскости параллельны.
Решение: для того чтобы плоскости и были перпендикулярны, скалярное произведение нормалей и плоскостей и должно равняться нулю.
Значит, плоскости и перпендикулярны:
Нормали плоскостей и равны: Если для данных плоскостей постоянная имеет различное значение, то это значит, что плоскости не лежат друг на друге, т. е. они параллельны.
Уравнение сферы
Определение. Сферой называется множество всех точек, расположенных на расстоянии от заданной точки Точка называется центром сферы, радиусом сферы.
Если точка – произвольная точка сферы, то по формуле расстояния между двумя точками имеем:
Это уравнение сферы с центром в точке и радиусом
Если центр сферы находится в начале координат, то уравнение сферы радиуса имеет вид:
Как видно из рисунка, пересечение этой сферы с координатной плоскостью является ее большой окружностью.
Пример №46
Запишите уравнение сферы, радиус которой равен г а центр расположен в точке
Решение:
Пример №47
Представьте фигуру, которая получается при пересечении сферы с плоскостью
Решение: радиус сферы Учитывая в уравнении сферы, что получим: Пересечение плоскости z = 12 и данной сферы является окружность с центром в точке (0; 0; 12) и радиусом г = 5.
Плоскость, имеющая со сферой только одну общую точку, называется плоскостью, касательной к сфере.
Например, плоскость касается сферы в точке
Плоскость, касательная к сфере, в точке касания перпендикулярна радиусу сферы.
Преобразования на плоскости и в пространстве
Ремесленники и художники создают узоры, заполняя некоторую площадь без пробела рисунком при помощи преобразований (параллельный перенос, поворот, отображение) или увеличения или уменьшения этого рисунка (гомотетия).
Это знать интересно. Великий голландский художник Эшер, объединив такие разделы математики как симметрия, комбинаторика, стереометрия и топология, создал динамические рисунки, заполняя плоскости цветовыми оттенками. Не имея специального математического образования, Эшер создавал свои произведения, опираясь на интуицию и визуальные представления. Ряду работ, построенных на параллельном переносе, он дал название “Правильное движение плоскости”.
https://en.wikipedia.org/wiki/M._C._Escher
Если каждой точке фигуры в пространстве, по определенному правилу, ставится в соответствие единственная точка то это называется преобразованием фигуры в пространстве. Преобразование, сохраняющее расстояние между точками, называется движением. Движение преобразовывает плоскость в плоскость, прямую в прямую, отрезок в отрезок, а угол – в конгруэнтный ему угол. Значит, движение преобразовывает фигуру в конгруэнтную себе фигуру. Известно, что в двухмерной системе координат за преобразование каждой точки в точку т. е. за параллельный перенос отвечает вектор Аналогичным образом, в пространстве при параллельном переносе координаты каждой точки изменяются так:
Параллельный перенос является движением. Каждому параллельному переносу соответствует один вектор. Справедливо и обратное.
Пример №48
В какую точку переходит точка при параллельном переносе на вектор
Решение: по определению при данном преобразовании, координаты точки преобразуются в координаты точки следующим образом: Т. е. при этом параллельном переносе точка преобразуется в точку
Симметрия. В пространстве симметрии относительно точки и прямой дается такое же определение как и на плоскости. В пространстве также рассматривается симметрия относительно плоскости.
Для точки пространства
- Точка, симметричная относительно начала координат:
- Точка, симметричная относительно оси
- Точка, симметричная относительно оси
- Точка, симметричная относительно оси
- Точка, симметричная относительно плоскости
- Точка, симметричная относительно плоскости
- Точка, симметричная относительно плоскости
Пример №49
Найдите точку, симметричную точке относительно плоскости
Решение: точка симметричная точке относительно плоскости расположена на прямой, перпендикулярной как плоскости так и плоскости Поэтому абсциссы и ординаты точек равны: Координаты точки можно найти из отношения Таким образом, это точка
Поворот. Поворотом фигуры в пространстве вокруг прямой на угол называется такое преобразование, при котором каждая плоскость, перпендикулярная прямой поворачивается в одном направлении на угол вокруг точек пересечения прямой с плоскостью. Прямая называется осью симметрии, угол называется углом поворота.
Ниже на рисунках представлены примеры различных изображений поворота куба вокруг оси в направлении по часовой стрелке на угол 90°, 180°, 270°.
Гомотетия
Аналогичным образом в пространстве вводится понятие преобразования подобия. Если при преобразовании фигуры расстояние между двумя точками и изменяется в раз, то такое преобразование называется преобразованием подобия. Здесь число к называется коэффициентом подобия.
Если для любой точки фигуры при преобразовании ее в точку выполняется равенство то это преобразование называется гомотетией с центром в точке и с коэффициентом Гомотетия – это преобразование подобия. В частном случае, при получаем центральную симметрию относительно при – тождественное преобразование.
Пример №50
Пусть дана сфера с центром в точке и радиусом 2. Запишите уравнение сферы, полученной гомотетией с центром в начале координат и коэффициентом
Решение: позиционный вектор, соответствующий точке равен Пусть позиционный вектор, соответствующий точке будет Тогда, по определению, или Тогда Т. е. центром данной сферы будет точка Зная, что радиус сферы равен получим уравнение сферы
Предел
Это интересно!
Предел (лимит) от латинского слова “limes”, что означает цель.
Понятие предела независимо друг от друга было введено английским математиком Исааком Ньютоном (1642-1727) и немецким математиком Готфридом Лейбницом (1646-1716). Однако ни Ни Ныотон, ни Лейбниц не смогли полностью объяснить вводимые ими понятия. Точное определение предела было дано французским математиком Коши. А работы немецкого ученого » Вейерштрасса наконец завершили создание этой серьезной теории.
Координаты и векторы в пространстве
В этом параграфе вы ознакомитесь с прямоугольной системой координат в пространстве, научитесь находить координаты точек в пространстве, длину отрезка и координаты его середины. Вы обобщите и расширите свои знания о векторах.
Декартовы координаты точки в пространстве
В предыдущих классах вы ознакомились с прямоугольной (декартовой) системой координат на плоскости — это две перпендикулярные координатные прямые с общим началом отсчета (рис. 38.1).
Систему координат можно ввести и в пространстве. Прямоугольной (декартовой) системой координат в пространстве называют три попарно перпендикулярные координатные прямые с общим началом отсчета (рис. 38.2). Точку, в которой пересекаются три координатные прямые, обозначают буквой О. Ее называют началом координат. Координатные прямые обозначают буквами их соответственно называют осью абсцисс, осью ординат и осью аппликат.
Плоскости, проходящие через пары координатных прямых и называют координатными плоскостями, их соответственно обозначают (рис. 38.3).
Пространство, в котором задана система координат, называют координатным пространством. Если оси координат обозначены буквами то координатное пространство обозначают Из курса планиметрии вы знаете, что каждой точке М координатной плоскости ставится в соответствие упорядоченная пара чисел , которые называют координатами точки М. Записыва ют:
Аналогично каждой точке М координатного пространства ставится в соответствие упорядоченная тройка чисел , определяемая следующим образом. Проведем через точку М три плоскости перпендикулярно осям соответственно. Точки пересечения этих плоскостей с координатными осями обозначим (рис. 38.4). Координату точки на оси называют абсциссой точки М и обозначают буквой Координату точки на оси у называют ординатой точки М и обозначают буквой . Координату точки , на оси называют аппликатой точки М и обозначают буквой .
Полученную упорядоченную тройку чисел называют координатами точки М в пространстве. Записывают: . Если точка М имеет координаты , то числа равны расстояниям от точки М до координатных плоскостей . Используя этот факт, можно доказать, что, например точки с координатами и лежат на прямой, перпендикулярной плоскости и равноудалены от этой плоскости (рис. 38.5). В этом случае говорят, что точки М и N симметричны относительно плоскости
Если точка принадлежит координатной плоскости или координатной оси, то некоторые ее координаты равны нулю. Например, точка принадлежит координатной плоскости , а точка — оси аппликат. Справедливы следующие утверждения.
Теорема 38.1. Расстояние между двумя точками и можно найти по формуле
Теорема 38.2. Каждая координата середины отрезка равна полусумме соответствующих координат его концов, то есть серединой отрезка с концами в точках является точка
Доказательства теорем 38.1 и 38.2 аналогичны тому, как были доказаны соответствующие теоремы в курсе планиметрии. Например, серединой отрезка с концами в точках и является начало координат — точка .
В таком случае говорят, что точки А и В симметричны относительно начала координат.
Векторы в пространстве
В курсе планиметрии вы изучали векторы на плоскости. Теперь вы начинаете изучать векторы в пространстве. Многие понятия и свойства, связанные с векторами на плоскости, можно почти дословно отнести к векторам в пространстве. Доказательства такого рода утверждений о векторах в пространстве аналогичны доказательствам соответствующих утверждений о векторах на плоскости.
Рассмотрим отрезок АВ. Если мы договоримся точку А считать началом отрезка, а точку В — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки А до точки В. Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.
Вектор с началом в точке А и концом в точке В обозначают так: (читают: «вектор АВ»). Для обозначения векторов также используют строчные буквы латинского алфавита со стрелкой сверху. На рисунке 39.1 изображены векторы
В отличие от отрезка, концы которого — различные точки, у вектора начало и конец могут совпадать.
Договорились называть вектор, начало и конец которого — одна и та же точка, нулевым вектором или нуль-вектором и обозначать . Модулем вектора называют длину отрезка АВ. Обозначают: . Модуль вектора обозначают так: . Считают, что модуль нулевого вектора равен нулю. Записывают:
Определение. Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
На рисунке 39.2 изображена четырехугольная призма . Векторы и являются коллинеарными.
Записывают:
Ненулевые коллинеарные векторы бывают сонаправленными и противоположно направленными. Например, на рисунке 39.2 векторы , сонаправлены. Записывают: . Векторы противоположно направлены. Записывают: .
Определение. Два ненулевых вектора называют равны ми, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. На рисунке 39.2
Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 39.3, изображен вектор . На рисунке 39.3, изображены векторы, равные вектору . Каждый из них также принято называть вектором .
На рисунке 39.3, изображены вектор и точка А. Построим вектор , равный вектору . В таком случае говорят, что вектор отложен от точки А (рис. 39.3, ).
Рассмотрим в координатном пространстве вектор . От начала координат отложим вектор , равный вектору (рис. 39.4). Координатами вектора называют координаты точки А . Запись означает, что вектор имеет координаты
Равные векторы имеют равные соответствующие координаты, и наоборот, если соответствующие координаты векторов равны, то равны и сами векторы.
Теорем а 39.1. Если точки и — соответственно начало и конец вектора , то числа и равны соответственно первой, второй и третьей координатам вектора . Из формулы расстояния между двумя точками следует, что если вектор имеет координаты , то
Сложение и вычитание векторов
Пусть в пространстве даны векторы . Отложим от произвольной точки А пространства вектор , равный вектору .
Далее от точки В отложим вектор , равный вектору . Век тор называют суммой векторов (рис. 40.1) и записывают: Описанный алгоритм сложения двух векторов называют правилом треугольника.
Можно показать, что сумма не зависит от выбора точки А. Заметим, что для любых трех точек А, В и С выполняется равенство Оно выражает правило треугольника.
Свойства сложения векторов аналогичны свойствам сложения чисел. Для любых векторов выполняются равенства:
Сумму трех и большего количества векторов находят так: вначале складывают первый и второй векторы, потом к полученной сумме прибавляют третий вектор и т. д. Например, Для тетраэдра DABC, изображенного на рисунке 40.2, можно записать:
Для сложения двух неколлинеарных векторов удобно пользоваться правилом параллелограмма.
Отложим от произвольной точки А вектор , равный вектору , и вектор , равный вектору (рис. 40.3). Построим параллелограмм ABCD. Тогда искомая сумма равна вектору .
Рассмотрим векторы , не лежащие в одной плоскости (рис. 40.4). Найдем сумму этих векторов.
Построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были его ребрами (рис. 40.5). Отрезок OD является диагональю этого параллелепипеда. Докажем, что Так как четырехугольник — параллелограмм, то . Имеем: . Поскольку четырехугольник — параллелограмм, то
Описанный способ сложения трех векторов, отложенных от одной точки и не лежащих в одной плоскости, называют правилом параллелепипеда.
Определение. Разностью векторов называют такой вектор , сумма которого с вектором равна вектору .
Записывают: .
Покажем, как построить вектор, равный разности векторов и . От произвольной точки О отложим векторы , соответственно равные векторам (рис. 40.6). Тогда По определению разности двух векторов , то есть , следовательно, вектор равен разности векторов .
Отметим, что для любых трех точек О, А и В выполняется равенство Оно выражает правило нахождения разности двух векторов, отложенных от одной точки.
Теорема 40.1. Если координаты векторов равны соответственно , то координаты вектора равны , а координаты вектора равны .
Умножение вектора на число
Определение. Произведением ненулевого вектора и чис ла , отличного от нуля, называют такой вектор , что:
1)
2) если если
Записывают: Если или , то считают, что На рисунке 41.1 изображен параллелепипед . Имеем: , Из определения следует, что
.
Теорема 41.1. Для любых векторов выполняется равенство
Эта теорема позволяет свести вычитание векторов к сложению: чтобы из вектора вычесть вектор , можно к вектору прибавить вектор. Произведение обозначают и называют вектором, противоположным вектору . Например, записывают:
Из определения умножения вектора на число следует, что если, то векторы коллинеарны. Следовательно, из равенства получаем, что точки О, А и В лежат на одной прямой.
Теорема 41.2. Если векторы коллинеарны и то существует такое число , что
Теорема 41.3. Если координаты вектора равны , то координаты вектора равны .
Умножение вектора на число обладает следующими свойствами.
Для любых чисел и для любых векторов выполняются равенства:
- (сочетательное свойство);
- (первое распределительное свойство);
- (второе распределительное свойство).
Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, их разность и произведение вектора на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,
Скалярное произведение векторов
Пусть — два ненулевых и несонаправленных вектора. От произвольной точки О отложим векторы равные соответственно векторам (рис. 42.1). Величину угла АОВ будем называть углом между векторами
Угол между векторами обозначают так: . Очевидно, что если , то = 180° (рис. 42.2).
Если , то считают, что . Если хотя бы один из векторов или нулевой, то также считают, что .
Векторы называют перпендикулярными, если угол между ними равен 90°. Записывают:
На рисунке 42.3 изображена треугольная призма, основанием которой является правильный треугольник, а боковое ребро перпендикулярно плоскости основания.
Имеем:
Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними.
Скалярное произведение векторов обозначают так: Имеем:
Если хотя бы один из векторов нулевой, то очевидно, что Скалярное произведение называют скалярным квадратом вектора и обозначают .
Скалярный квадрат вектора равен квадрату его модуля, то есть .
Теорема 42.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Например, для векторов, изображенных на рисунке 42.3, имеем:
Теорема 42.2. Скалярное произведение векторов и можно вычислить по формуле
Теорема 42.3. Косинус угла между ненулевыми векторами можно вычислить по формуле
Некоторые свойства скалярного произведения векторов аналогичны соответствующим свойствам произведения чисел. Например, для любых векторов и любого числа справедливы равенства:
Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, по правилам преобразования алгебраических выражений. Например,
Пример №51
Основанием призмы является равнобедренный треугольник АВС (АВ =АС). Боковое ребро образует равные углы с ребрами АВ и АС (рис. 42.4). Докажите, что .
Решение:
Пусть . С учетом условия можно записать: . Найдем скалярное произведение векторов . Имеем:
Запишем:
Поскольку , то рассматриваемое скалярное произведение равно 0. Следовательно,
Напомню:
Расстояние между точками
Расстояние между двумя точками можно найти по формуле
Координаты середины отрезка
Каждая координата середины отрезка равна полусумме соответствующих координат его концов.
Взаимное расположение двух векторов
Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
Равенство векторов
Два ненулевых вектора называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.
Координаты вектора
Если точки — соответственно начало и конец вектора , то числа равны соответственно первой, второй и третьей координатам вектора
Модуль вектора
Если вектор имеет координаты
Действия над векторами
Для любых трех точек А , В и С выполняется равенство
Разностью векторов называют такой вектор , сумма которого с вектором равна вектору .
Для любых трех точек О, А и В выполняется равенство . Произведением ненулевого вектора и числа , отличного от нуля, называют такой вектор , что: 1) 2) если если
Если векторы коллинеарны и , то существует такое число , что Произведение обозначают и называют вектором, противоположным вектору .
Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Если координаты векторов равны соответственно то:
- Множества
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.
Нормальный вектор прямой – определение, примеры, иллюстрации
Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.
Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.
Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.
Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а1 параллельные, а n→ считается нормальным вектором прямой a, также считается нормальным вектором для прямой a1. Когда прямая а имеет прямой вектор, тогда вектор t·n→ является ненулевым при любом значении параметра t, причем также является нормальным для прямой a.
Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.
Если задана плоскость Оху, то множеством векторов для Ох является координатный вектор j→. Он считается ненулевым и принадлежащим координатной оси Оу, перпендикулярной Ох. Все множество нормальных векторов относительно Ох можно записать, как t·j→, t∈R, t≠0.
Прямоугольная система Oxyz имеет нормальный вектор i→, относящийся к прямой Оz. Вектор j→ также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный Оz, считается нормальным для Oz.
Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой
При рассмотрении прямоугольной системы координат Оху выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения Ax+By+C=0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.
Задана прямая вида 2x+7y-4=0_, найти координаты нормального вектора.
Решение
По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты , которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2, 7.
Ответ: 2, 7.
Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.
Указать нормальный вектор для заданной прямой y-3=0.
Решение
По условию нам дано общее уравнение прямой, значит запишем его таким образом 0·x+1·y-3=0. Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0, 1.
Ответ: 0, 1.
Если дано уравнение в отрезках вида xa+yb=1 или уравнение с угловым коэффициентом y=k·x+b, тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.
Найти координаты нормального вектора, если дано уравнение прямой x13-y=1.
Решение
Для начала необходимо перейти от уравнения в отрезках x13-y=1 к уравнению общего вида. Тогда получим, что x13-y=1 ⇔3·x-1·y-1=0.
Отсюда видно, что координаты нормального вектора имеют значение 3, -1.
Ответ: 3, -1.
Если прямая определена каноническим уравнением прямой на плоскости x-x1ax=y-y1ay или параметрическим x=x1+ax·λy=y1+ay·λ, тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a→=(ax, ay). Возможность нахождения координат нормального вектора n→ возможно, благодаря условию перпендикулярности векторов n→ и a→.
Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:
x-x1ax=y-y1ay⇔ay·(x-x1)=ax·(y-y1)⇔ay·x-ax·y+ax·y1-ay·x1x=x1+ax·λy=y1+ay·λ⇔x-x1ax=y-y1ay⇔ay·x-ax·y+ax·y1-ay·x1=0
Для решения можно выбирать любой удобный способ.
Найти нормальный вектор заданной прямой x-27=y+3-2.
Решение
Из прямой x-27=y+3-2 понятно, что направляющий вектор будет иметь координаты a→=(7, -2). Нормальный вектор n→=(nx, ny) заданной прямой является перпендикулярным a→=(7, -2).
Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a→=(7, -2) и n→=(nx, ny) запишем a→, n→=7·nx-2·ny=0.
Значение nx – произвольное , следует найти ny. Если nx=1, отсюда получаем, что 7·1-2·ny=0⇔ny=72.
Значит, нормальный вектор имеет координаты 1, 72.
Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем
x-27=y+3-2⇔7·(y+3)=-2·(x-2)⇔2x+7y-4+73=0
Полученный результат координат нормального вектора равен 2, 7.
Ответ: 2, 7 или 1, 72.
Указать координаты нормального вектора прямой x=1y=2-3·λ.
Решение
Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:
x=1y=2-3·λ⇔x=1+0·λy=2-3·λ⇔λ=x-10λ=y-2-3⇔x-10=y-2-3⇔⇔-3·(x-1)=0·(y-2)⇔-3·x+0·y+3=0
Отсюда видно, что координаты нормального вектора равны -3, 0.
Ответ: -3, 0.
Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат Охуz.
Когда прямая задается при помощи уравнений пересекающихся плоскостей A1x+B1y+C1z+D1=0 и A2x+B2y+C2z+D2=0, тогда нормальный вектор плоскости относится к A2x+B2y+C2z+D2=0 и A2x+B2y+C2z+D2=0, тогда получаем запись векторов в виде n1→=(A1, B1, C1) и n2→=(A2, B2, C2).
Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x-x1ax=y-y1ay=z-z1az или параметрического, имеющего вид x=x1+ax·λy=y1+ay·λz=z1+az·λ, отсюда ax, ay и az считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a→=(ax, ay, az). Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a→=(ax, ay, az).