Как по изображению найти дифференциальное уравнение

Примеры решений задач по операционному исчислению (преобразованию Лапласа)

Операционное (символическое) исчисление – это один из методов математического анализа, позволяющий в некоторых случаях свести исследование и решение дифференциальных, псевдодифференциальных, интегральных уравнений, к более простым алгебраическим задачам.

Изучая преобразование Лапласа, мы вводим оригинал функции $f(t)$ и ее изображение $F(p)$, находимое по формуле:

$$F(p) = int_0^infty f(t) e^<-pt>dt$$

Для быстроты и удобства решения задач составлена таблица изображений и оригиналов, которая, наряду с теоремами (линейности, подобия, смещения, запаздывания), свойствами и правилами дифференцирования и интегрирования изображения/оригинала, постоянно используется в решении примеров.

В этом разделе вы найдете готовые задания разного типа: восстановление оригинала или изображения функции, нахождение свертки функций, решение ДУ, систем ДУ или интегральных уравнений с помощью преобразования Лапласа и т.д.

Как найти изображение функции

Задача 1. Найти изображение данного оригинала, или оригинала, удовлетворяющего данному уравнению

Задача 2. Пользуясь определением, найти изображение функции $f(t)=3^t$.

Задача 3. Найти изображение функции: $int_0^t cos tau cdot e^<-3tau>dtau. $

Задача 4. Найти изображение оригинала $f(x)$ двумя способами:
1) Вычислив интеграл $F(p) = int_0^infty f(x) e^<-px>dx$;
2) Воспользовавшись таблице изображений и свойствами преобразования Лапласа.
Оригинал задается формулой (курсочно-линейная функция, см. файл).

Как найти оригинал функции

Задача 5. Найти оригинал изображения $F(p)$, где

Задача 6. Найти оригинал изображения

Задача 7. Найти оригинал для функции с помощью вычетов

Как решить ДУ (систему ДУ) операционным методом

Задача 8. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом

Задача 9. Найти решение задачи Коши методами операционного исчисления

Задача 10. Методом операционного исчисления найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям.

Задача 11. Методом операционного исчисления найти решение задачи Коши для ДУ 3-го порядка

Задача 12. Решите задачу Коши для системы дифференциальных уравнений с помощью преобразования Лапласа.

Задача 13. C помощью формулы Дюамеля найти решение уравнения

Задача 14. Решить систему ДУ с помощью преобразования Лапласа

Как решить интегральное уравнение

Задача 15. Методом операционного исчисления найти решение интегрального уравнения

$$ y(t)=cos t +int_0^t (t-tau)^2 y(tau)d tau. $$

Задача 16. Решить интегральное уравнение

$$ int_0^t ch (tau) x(t-tau)d tau = t. $$

Как найти свертку функций

Задача 17. Найти свертку функций $f(t)=1$ и $phi(t)=sin 5t$.

Помощь с решением заданий

Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Примеры решения дифференциальных уравнений с ответами

Простое объяснение принципов решения дифференциальных уравнений и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения дифференциальных уравнений

Дифференциальные уравнения не так сильно отличаются от привычных уравнений, где необходимо найти переменную x , как кажется на первый взгляд. Всё различие лишь в том, что в дифференциальных уравнениях мы ищем не переменную, а функцию у(х) , с помощью которой можно обратить уравнение в равенство.

Дифференциальное уравнение – это уравнение, содержащее саму функцию (y=y(x)), производные функции или дифференциалы (y′, y″) и независимые переменные (наиболее распространённая – х). Обыкновенным дифференциальным уравнением называют уравнение, в котором содержится неизвестная функция под знаком производной или под знаком дифференциала.

Чтобы решить ДУ, необходимо найти множество всех функций, которые удовлетворяют данному уравнению. Это множество в большинстве случаев выглядит следующим образом:y=f(x; С), где С – произвольная постоянная.

Проверить решённое ДУ можно, подставив найденную функцию в изначальное уравнение и убедившись, что уравнение обращается в тождество (равенство).

Примеры решения дифференциальных уравнений

Задание

Решить дифференциальное уравнение xy’=y.

Решение

В первую очередь, необходимо переписать уравнение в другой вид. Пользуясь

переписываем дифференциальное уравнение, получаем

Дальше смотрим, насколько реально разделить переменные, то есть путем обычных манипуляций (перенос слагаемых из части в часть, вынесение за скобки и пр.) получить выражение, где «иксы» с одной стороны, а «игреки» с другой. В данном уравнении разделить переменные вполне реально, и после переноса множителей по правилу пропорции получаем

Далее интегрируем полученное уравнение:

В данном случае интегралы берём из таблицы:

После того, как взяты интегралы, дифференциальное уравнение считается решённым. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения.

– это общий интеграл. Также для удобства и красоты, его можно переписать в другом виде: y=Cx, где С=Const

Ответ

Задание

Найти частное решение дифференциального уравнения

Решение

Действуем по тому же алгоритму, что и в предыдущем решении.

Переписываем производную в нужном виде, разделяем переменные и интегрируем полученное уравнение:

Получили общий интеграл.Далее, воспользуемся свойством степеней, выразим у в «общем» виде и перепишем функцию:

Если – это константа, то

0]” title=”Rendered by QuickLaTeX.com” />

– тоже некоторая константа, заменим её буквой С:

– убираем модуль и теперь константа может принимать и положительные, и отрицательные значения.

Получаем общее решение:

Ответ

Задание

Решить дифференциальное уравнение

Решение

В первую очередь необходимо переписать производную в необходимом виде:

Второй шаг – разделение переменных и перенос со сменой знака второго слагаемого в правую часть:

После разделения переменных, интегрируем уравнение, как в примерах выше.

Чтобы решить интегралы из левой части, применим метод подведения функции под знак дифференциала:

В ответе мы получили одни логарифмы и константу, их тоже определяем под логарифм.

Далее упрощаем общий интеграл:

Приводим полученный общий интеграл к виду: F(x,y)=C:

Чтобы ответ смотрелся красивее, обе части необходимо возвести в квадрат.

Ответ

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(0)=ln2.

Решение

Первый шаг – нахождение общего решения. То, что в исходном уравнении уже находятся готовые дифференциалы dy и dx значительно упрощает нам решение.

Начинаем разделять переменные и интегрировать уравнение:

Мы получили общий интеграл и следующий шаг – выразить общее решение. Для этого необходимо прологарифмировать обе части. Знак модуля не ставим, т.к. обе части уравнения положительные.

Получаем общее решение:

Далее необходимо найти частное решение, которое соответствует заданному начальному условию y(0)=ln2.

В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Задание

Решить дифференциальное уравнение

Решение

При внимательном разборе данного уравнения видно, что можно разделить переменные, что и делаем, после интегрируем:

В данном случае константу C считается не обязательным определять под логарифм.

Ответ

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(1)=e. Выполнить проверку.

Решение

Как и в предыдущих примерах первым шагом будет нахождение общего решения. Для этого начинаем разделять переменные:

Общий интеграл получен, осталось упростить его. Упаковываем логарифмы и избавляемся от них:

можно выразить функцию в явном виде.

Осталось найти частное решение, удовлетворяющее начальному условию y(1)=e.

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Проверка

Необходимо проверить, выполняется ли начальное условие:

Из равенства выше видно, что начальное условие y(1)=e выполнено.

Далее проводим следующую проверку: удовлетворяет ли вообще частное решение

дифференциальному уравнению. Для этого находим производную:

Подставим полученное частное решение

и найденную производную в исходное уравнение

Получено верное равенство, значит, решение найдено правильно.

Задание

Найти общий интеграл уравнения

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Ответ

Задание

Найти частное решение ДУ.

Решение

Данное ДУ допускает разделение переменных. Разделяем переменные:

Найдем частное решение (частный интеграл), соответствующий заданному начальному условию

Подставляем в общее решение

Ответ

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Левую часть интегрируем по частям:

В интеграле правой части проведем замену:

(здесь дробь раскладывается методом неопределенных коэффициентов)

Ответ

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных.

Разделяем переменные и интегрируем:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Применение преобразования Лапласа к решению
линейных дифференциальных уравнений и систем

1°. Общие сведения о преобразовании Лапласа: оригинал и изображение

Функцией-оригиналом называется комплекснозначная функция действительного переменного , удовлетворяющая следующим условиям:

2) функция интегрируема на любом конечном интервале оси ;

3) с возрастанием модуль функции растет не быстрее некоторой показательной функции, т. е. существуют числа 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAQBAMAAAC1onFLAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAgUHAYqEh5RGR0VIxELEI83NdAAABBklEQVQY02NgIAAcBRWA5EVBMVRhDjUwdfq/AZCc/kUBVXa6sC2IYjNfwMDANN8AVZKxguExiGYR/sDAwOcvAGK7XIDJsgcw7D8ApFlVfzAwCM0HG8yysAEqe16AQR+kgZ3xEwNbwHqIIMvKBAgDaJY+yLJklt8MfB2foXpYTCHS8gIM+SBZR6aPDFu4P8IsZDI9AJXtB8kGsX3leMD5Ce5aJuMDEFmwyQUMnzkTuD4gZIORZNkMGJYrQkyBmgx2PdDB+hOAzhBgsDdg2C8AleSGuqp9AsP+DQwMXQIMQL/GQ8ORZSnUR5y1DOFA3/7/zyDJsB5IooYG7yvXGoz4aoAzeYQYGADRdjuTYajQpgAAAABJRU5ErkJggg==” /> и такие, что для всех имеем

Изображением функции-оригинала по Лапласу называется функция комплексного переменного , определяемая равенством

при s_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAFIAAAATBAMAAADxBkdhAAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAQcCBEFor0KCR6LBxSK9m8wAAAVlJREFUKM9jYCAaJBsbGx8jSqVj71LRWVuIUiqrwMB6iViVDHcT0AQNcaoUQBN0LsVh+3UGBlYlVSAnqUVaFarUASrPuKkFprJQ8JQKA0NUQmwAA0vBpZZciPnOxVClUQmzYSoXW1xyYGC7ycBewMB65DYD7waIOCtUaTHDDQY2EajtQMR8WVD6AgNj6lUGXgWoEawVYKWrpiYw9AglQFSyX2PgvGFsbMDAwHmFQXYDTKUGWOXZuwVsC1gVICqZ7jAw3wHLAl1gGwBVWAkOOja38IvMCowXoCpvMrDdYGAAKvGdwLAKotAV6szYCYzXgCovglQWMHBcZ1OYlcDWABRX4FmG6vVTCcwKTGCVsnfvKrDUWgQwX9oElJvb0ZSAGvJOmzUcOCFmgkP3IBCDDClngxjVipSEGBig7kQGLDexJg2g3zegCfFcxZ6KZoSjJ6FJShOwGwqMIwCRZlRL/vuSSQAAAABJRU5ErkJggg==” style=”vertical-align: middle;” />. Условие 3 обеспечивает существование интеграла (2).

Преобразование (2), ставящее в соответствие оригиналу его изображение , называется преобразованием Лапласа. При этом пишут .

Свойства преобразования Лапласа

Всюду в дальнейшем считаем, что

I. Свойство линейности. Для любых комплексных постоянных и

II. Теорема подобия. Для любого постоянного 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADEAAAAQBAMAAABNQoq8AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAAcGe2BFbQSGBMfCxcU2qjNsAAADDSURBVBjTY2AgDYgvxCHB5WyyALtM9wW2HUhcDgs4006A8TGyyprjAlCWiwCjCpDNekkzACLQrA6RYnwkwKgHZK42DVFghkq5CcBlAhi4NjOwPSuGGtMJlmJ/xMCgV8DA9JSB6yXc8kg3IMEKkelTAOo2gMv4Iuypm8DA+DoArgVkGiPQbdpgGdY3DDAXQP3DAPKPiAFjkRMbiqsZ1iWwPweGkY+RafYxEL8IJsHA5jklAeSShQysIHtYEaHD2JbKwAAA/gYrl5lLD9QAAAAASUVORK5CYII=” />

III. Дифференцирование оригинала. Если есть оригинал, то

Обобщение: если раз непрерывно дифференцируема на и если есть оригинал, то

IV. Дифференцирование изображения равносильно умножению оригинала на “минус аргумент”, т.е.

V. Интегрирование оригинала сводится к делению изображения на

VI. Интегрирование изображения равносильно делению на оригинала:

(предполагаем, что интеграл сходится).

VII. Теорема запаздывания. Для любого положительного числа

VIII. Теорема смещения (умножение оригинала на показательную функцию). Для любого комплексного числа

IX. Теорема умножения (Э. Борель). Произведение двух изображений и также является изображением, причем

Интеграл в правой части (14) называется сверткой функций и и обозначается символом

Теорема XI утверждает, что умножение изображений равносильно свертыванию оригиналов , т.е.

Отыскание оригиналов дробно-рациональных изображений

Для нахождения оригинала по известному изображению , где есть правильная рациональная дробь, применяют следующие приемы.

1) Эту дробь разлагают на сумму простейших дробей и находят для каждой из них оригинал, пользуясь свойствами I–IX преобразования Лапласа.

2) Находят полюсы этой дроби и их кратности . Тогда оригиналом для будет функция

где сумма берется по всем полюсам функции .

В случае, если все полюсы функции простые, т.е. , последняя формула упрощается и принимает вид

Пример 1. Найти оригинал функции , если

Решение. Первый способ. Представим в виде суммы простейших дробей

и найдем неопределенные коэффициенты . Имеем

Полагая в последнем равенстве последовательно , получаем

Находя оригиналы для каждой из простейших дробей и пользуясь свойствам линейности, получаем

Второй способ. Найдем полюсы функции . Они совпадают с нулями знаменателя . Таким образом, изображение имеет четыре простых полюса . Пользуясь формулой (17), получаем оригинал

Пример 2. Найти оригинал , если .

Решение. Данная дробь имеет полюс кратности и полюс кратности . Пользуясь формулой (16), получаем оригинал

2°. Решение задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение дифференциального уравнения второго порядка с постоянными коэффициентами

Будем считать, что функция и решение вместе с его производньь ми до второго порядка включительно являются функциями-оригиналами. Пусть . По правилу дифференцирования оригиналов с учетом (2) имеем

Применяя к обеим частям (1) преобразование Лапласа и пользуясь свойством линейности преобразования, получаем операторное уравнение

Решая уравнение (20), найдем операторное решение

Находя оригинал для , получаем решение уравнения (18), удовлетворяющее начальным условиям (19).

Аналогично можно решить любое уравнение n-го порядка с постоянными коэффициентами и с начальными условиями при .

Пример 3. Решить дифференциальное уравнение операторным методом

Решение. Пусть , тогда по правилу дифференцирования оригинала имеем

Известно, что поэтому, переходя отданной задачи (21)–(22) к операторному уравнению, будем иметь

Легко видеть, что функция удовлетворяет данному уравнению и начальному условию задачи.

Пример 4. Решить уравнение .

Решение. Так как и по условию , то операторное уравнение будет иметь вид

Отсюда находим операторное решение

Разлагаем правую часть на элементарные дроби:

Переходя к оригиналам, получаем искомое решение .

Пример 5. Решить уравнение .

Решение. Так как и по условию , то операторное уравнение будет иметь вид

и, следовательно, операторное решение

Разложим правую часть на элементарные дроби:

Переходя к оригиналам, получим решение поставленной задачи

3°. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение системы двух уравнений с постоянными коэффициентами

удовлетворяющее начальным условиям

Будем предполагать, что функции , а также и являются функциями-оригиналами.

По правилу дифференцирования оригиналов с учетом (24) имеем

Применяя к обеим частям каждого из уравнений системы (23) преобразование Лапласа, получим операторную систему

Эта система является линейной алгебраической системой двух уравнений с двумя неизвестными и . Решая ее, мы найдем и , а затем, переходя к оригиналам, получим решение системы (23), удовлетворяющее начальным условиям (24). Аналогично решаются линейные системы вида

Пример 6. Найти решение системы дифференциальных уравнений операторным методом

удовлетворяющее начальному условию .

Решение. Так как и , то операторная система будет иметь вид

Решая систему, получаем

Разлагаем дроби, стоящие в правых частях, на элементарные:

Переходя к оригиналам, получим искомое решение

[spoiler title=”источники:”]

http://nauchniestati.ru/spravka/primery-resheniya-differenczialnyh-uravnenij-s-otvetami/

http://mathhelpplanet.com/static.php?p=reshenie-du-i-sistem-operatornym-metodom

[/spoiler]

Применение преобразования Лапласа к решению
линейных дифференциальных уравнений и систем

1°. Общие сведения о преобразовании Лапласа: оригинал и изображение

Функцией-оригиналом называется комплекснозначная функция f(t) действительного переменного t, удовлетворяющая следующим условиям:

1) f(t)=0, если t&lt;0;

2) функция f(t) интегрируема на любом конечном интервале оси t;

3) с возрастанием t модуль функции f(t) растет не быстрее некоторой показательной функции, т. е. существуют числа M&gt;0 и s_0geqslant0 такие, что для всех t имеем

|f(t)|leqslant Me^{s_0t}.

(1)

Изображением функции-оригинала по Лапласу называется функция F(p) комплексного переменного p=s+isigma, определяемая равенством

F(p)=intlimits_{0}^{+infty}f(t)e^{-pt},dt

(2)

при operatorname{Re}p&gt;s_0. Условие 3 обеспечивает существование интеграла (2).

Преобразование (2), ставящее в соответствие оригиналу f(t) его изображение F(p), называется преобразованием Лапласа. При этом пишут f(t)Doteq F(p).


Свойства преобразования Лапласа

Всюду в дальнейшем считаем, что

f(t)Doteq F(p),quad g(t)Doteq G(p).

(3)

I. Свойство линейности. Для любых комплексных постоянных alpha и beta

alpha f(t)+beta g(t)Doteq alpha F(p)+beta G(p).

(4)

II. Теорема подобия. Для любого постоянного alpha&gt;0

f(alpha t)Doteq frac{1}{alpha}F!left(frac{p}{alpha}right).

(5)

III. Дифференцирование оригинала. Если f'(t) есть оригинал, то

f'(t)Doteq pF(p)-f(0).

(6)

Обобщение: если f(t)~n раз непрерывно дифференцируема на (0,+infty) и если f^{(n)}(t) есть оригинал, то

f^{(n)}(t)Doteq p^nF(p)-p^{n-1}f(0)-p^{n-2}f'(0)-ldots-f^{(n-1)}(0).

(7)

IV. Дифференцирование изображения равносильно умножению оригинала на “минус аргумент”, т.е.

F'(p)Doteq-tf(t).

(8)

Обобщение:

F^{(n)}(p)Doteq (-1)^ncdot t^ncdot f(t).

(9)

V. Интегрирование оригинала сводится к делению изображения на p:

intlimits_{0}^{t}f(t),dtDoteqfrac{F(p)}{p},.

(10)

VI. Интегрирование изображения равносильно делению на t оригинала:

intlimits_{p}^{+infty}F(p),dpDoteqfrac{f(t)}{t}

(11)

(предполагаем, что интеграл сходится).

VII. Теорема запаздывания. Для любого положительного числа tau

f(t-tau)Doteq e^{-ptau}cdot F(p).

(12)

VIII. Теорема смещения (умножение оригинала на показательную функцию). Для любого комплексного числа lambda

e^{lambda t}cdot f(t)Doteq F(p-lambda).

(13)

IX. Теорема умножения (Э. Борель). Произведение двух изображений F(p) и G(p) также является изображением, причем

F(p)cdot G(p)Doteq intlimits_{0}^{t}f(tau)g(t-tau),dtau,.

(14)

Интеграл в правой части (14) называется сверткой функций f(t) и g(t) и обозначается символом

(fast g)= intlimits_{0}^{t}f(tau)g(t-tau),dtau,.

Теорема XI утверждает, что умножение изображений равносильно свертыванию оригиналов, т.е.

f(p)cdot G(p)Doteq (fast g).

(15)


Отыскание оригиналов дробно-рациональных изображений

Для нахождения оригинала f(t) по известному изображению F(p), где F(p)=frac{A(p)}{B(p)} есть правильная рациональная дробь, применяют следующие приемы.

1) Эту дробь разлагают на сумму простейших дробей и находят для каждой из них оригинал, пользуясь свойствами I–IX преобразования Лапласа.

2) Находят полюсы p_k,~k=1,2,ldots,m этой дроби и их кратности n_k. Тогда оригиналом для F(p) будет функция

f(t)Doteq sum_{k=1}^{m}frac{1}{(n_k-1)!} lim_{pto p_k}frac{d^{n_{k-1}}}{dp^{n_{k-1}}}Bigl[F(p)(p-p_k)^{n_k}e^{pt}Bigr],

(16)

где сумма берется по всем полюсам функции F(p).

В случае, если все полюсы p_k функции F(p) простые, т.е. n_k=1,~k=1,2,ldots,m, последняя формула упрощается и принимает вид

f(t)=sum_{k=1}^{m}frac{A(p_k)}{B'(p_k)},e^{p_kt}.

(17)


Пример 1. Найти оригинал функции f(t), если

F(p)=frac{p+2}{(p+1)(p-2)(p^2+4)},.

Решение. Первый способ. Представим F(p) в виде суммы простейших дробей

frac{p+2}{(p+1)(p-2)(p^2+4)}= frac{A}{p+1}+frac{B}{p-2}+frac{C_p+D}{p^2+4}

и найдем неопределенные коэффициенты A,,B,,C,,D. Имеем

p+2=A(p-2)(p^2+4)+B(p+1)(p^2+4)+(C_p+D)(p+1)(p-2).

Полагая в последнем равенстве последовательно p=-1,~p=2,~p=2i, получаем

-15A=1,quad 24B=4,quad (2Ci+D)(2i+1)(2i-2)=2+2i,,

откуда A=-frac{1}{15},~B=frac{1}{6},~C=-frac{1}{10},~D=-frac{2}{5}; значит,

F(p)=-frac{1}{15}cdotfrac{1}{p+1}+frac{1}{6}cdotfrac{1}{p-2} -frac{1}{10}cdotfrac{p+4}{p^2+4},.

Находя оригиналы для каждой из простейших дробей и пользуясь свойствам линейности, получаем

f(t)= -frac{1}{15},e^{-t}+frac{1}{6},e^{2t}-frac{1}{10},cos2t-frac{1}{5},sin2t,.

Второй способ. Найдем полюсы p_k функции F(p). Они совпадают с нулями знаменателя B(p)=(p+1)(p-2)(p^2+4). Таким образом, изображение F(p) имеет четыре простых полюса p_1=-1, p_2=2, p_{3,4}=pm2i. Пользуясь формулой (17), получаем оригинал

begin{aligned}f(t)&=sum_{k=1}^{4}frac{A(p_k)}{B'(p_k)},e^{p_kt}= sum_{k=1}^{4}frac{p_k+2}{4p_k^3-3p_k^2+4p_k-4},e^{p_kt}=\ &=-frac{1}{15},e^{-t}+frac{1}{6},e^{2t}+frac{-1+2i}{20},e^{2it}+frac{-1-2i}{20},e^{-2it},.=\ &=frac{1}{6},e^{2t}-frac{1}{15},e^{-t}-frac{1}{10},cos2t-frac{1}{5},sin2t,.end{aligned}


Пример 2. Найти оригинал f(t), если F(p)=frac{p+2}{p^3(p-1)^2}.

Решение. Данная дробь F(p) имеет полюс p_1=0 кратности n_1=3 и полюс p_2=1 кратности n_2=2. Пользуясь формулой (16), получаем оригинал

begin{aligned}f(t)&= frac{1}{2} lim_{pto0}frac{d^2}{dp^2}!left[frac{p+2}{p^3(p-1)^2},p^3e^{pt}right]+ lim_{pto1}frac{d}{dp}!left[frac{p+2}{p^3(p-1)^2},(p-1)^2e^{pt}right]=\[3pt] &=frac{1}{2} lim_{pto0}frac{d^2}{dp^2}!left[frac{p+2}{(p-1)^2},e^{pt}right]+ lim_{pto1}frac{d}{dp}!left(frac{p+2}{p^3},e^{pt}right)=\[3pt]&=frac{1}{2} lim_{pto0}!left[frac{2p+16}{(p-1)^4}- frac{2t(p+5)}{(p-1)^3}+ frac{t^2(p+2)}{(p-1)^2}right]!e^{pt}+ lim_{pto1}!left[frac{t(p+2)}{p^3}- frac{3p^2+5p}{p^4}right]!e^{pt}=\[3pt] &=8+5t+t^2+(3t-8)e^t.end{aligned}


2°. Решение задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение дифференциального уравнения второго порядка с постоянными коэффициентами

x''(t)+a_1x'(t)+a_2x(t)=f(t),

(18)

удовлетворяющее начальным условиям

x(0)=x_0,quad x'(0)=x_1.

(19)

Будем считать, что функция f(t) и решение x(t) вместе с его производньь ми до второго порядка включительно являются функциями-оригиналами. Пусть x(t)Doteq X(p), f(t)Doteq F(p). По правилу дифференцирования оригиналов с учетом (2) имеем

x'(t)Doteq pX(p)-x_0,quad x''(t)Doteq p^2X(p)-px_0-x_1,

Применяя к обеим частям (1) преобразование Лапласа и пользуясь свойством линейности преобразования, получаем операторное уравнение

(p^2+a_1p+a_2)X(p)=F(p)+x_0(p+a_1)+x_1,

(20)

Решая уравнение (20), найдем операторное решение

X(p)=frac{F(p)+x_0(p+a_1)+x_1}{p^2+a_1p+a_2},.

Находя оригинал для X(p), получаем решение уравнения (18), удовлетворяющее начальным условиям (19).

Аналогично можно решить любое уравнение n-го порядка с постоянными коэффициентами и с начальными условиями при t=0.


Пример 3. Решить дифференциальное уравнение операторным методом

x'(t)+x(t)=1,

(21)

x(0)=1.

(22)

Решение. Пусть x(t)Doteq X(p), тогда по правилу дифференцирования оригинала имеем

x'(t)Doteq pX(p)-x(0)=pX(p)-1.

Известно, что 1Doteq1/p поэтому, переходя отданной задачи (21)–(22) к операторному уравнению, будем иметь

pX(p)-1+X(p)=frac{1}{P},, откуда X(p)=frac{1}{p},, следовательно, x(t)equiv1,.

Легко видеть, что функция x(t)equiv1 удовлетворяет данному уравнению и начальному условию задачи.


Пример 4. Решить уравнение x''-5x'+4x=4,~x(0)=0,~x'(0)=2.

Решение. Так как 4Doteq4/p и по условию x_0=x(0)=0,~x_1=x'(0)=2, то операторное уравнение будет иметь вид

(p^2-5p+4)X(p)=frac{4}{p}+2,.

Отсюда находим операторное решение

X(p)=frac{2p+4}{p(p^2-5p+4)},.

Разлагаем правую часть на элементарные дроби:

X(p)=frac{1}{p}-frac{2}{p-1}+frac{1}{p-4},.

Переходя к оригиналам, получаем искомое решение x(t)=1-2e^t+e^{4t}.


Пример 5. Решить уравнение x''+4x'+4x=8e^{-2t},~x(0)=x'(0)=1.

Решение. Так как 8e^{-2t}Doteqfrac{8}{p+2} и по условию x_0=x_1=1, то операторное уравнение будет иметь вид

(p^2+4p+4)X(p)=frac{8}{p+2}+p+4+1,,

и, следовательно, операторное решение

X(p)=frac{p^2+7p+18}{(p+2)^3},.

Разложим правую часть на элементарные дроби:

X(p)=frac{8}{(p+2)^3}+frac{3}{(p+2)^2}+frac{1}{p+2},.

Переходя к оригиналам, получим решение поставленной задачи

x(t)=4t^2,e^{-2t}+3t,e^{-2t}+e^{-2t},.


3°. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение системы двух уравнений с постоянными коэффициентами

begin{cases}dfrac{dx}{dt}=a_1x+b_1y+f_1(t),\[9pt] dfrac{dy}{dt}=a_2x+b_2y+f_2(t).end{cases}

(23)

удовлетворяющее начальным условиям

x(0)=x_0,quad y(0)=y_0.

(24)

Будем предполагать, что функции f_1(t),f_2(t),x(t),y(t), а также x'(t) и y'(t) являются функциями-оригиналами.

Пусть

x(t)Doteq X(p),quad y(t)Doteq Y(p),quad f_1(t)Doteq F_1(p),quad f_2(t)Doteq F_2(p).

По правилу дифференцирования оригиналов с учетом (24) имеем

x'(t)Doteq pX(p)-x_0,quad y'(t)Doteq pY(p)-y_0.

Применяя к обеим частям каждого из уравнений системы (23) преобразование Лапласа, получим операторную систему

begin{cases}pX(p)=a_1X(p)+b_1Y(p)+F_1(p)+x_0,\[3pt] pY(p)=a_2X(p)+b_2Y(p)+F_2(p)+y_0.end{cases}

Эта система является линейной алгебраической системой двух уравнений с двумя неизвестными X(p) и Y(p). Решая ее, мы найдем X(p) и Y(p), а затем, переходя к оригиналам, получим решение x(t), y(t) системы (23), удовлетворяющее начальным условиям (24). Аналогично решаются линейные системы вида

frac{dx_k}{dt}=sum_{l=1}^{n}a_{kl}x_l+f_k(t),quad a_{kl}=text{const},quad x_k(0)=x_k^0,quad k=1,2,ldots,n,.


Пример 6. Найти решение системы дифференциальных уравнений операторным методом

begin{cases}dfrac{dx}{dt}=-7x+y+5,\[9pt] dfrac{dy}{dt}=-2x-5y-37t.end{cases}

удовлетворяющее начальному условию x(0)=y(0)=0.

Решение. Так как 5Doteqfrac{5}{p},,-37tDoteq-frac{37}{p^2} и x_0=y_0=0, то операторная система будет иметь вид

begin{cases}pX(p)=-7X(p)+Y(p)+5/p,,\ pY(p)=-2X(p)-5Y(p)+37/p^2,.end{cases}

Решая систему, получаем

X(p)=frac{5p^2+25p-37}{p^2(p^2+12p+37)},,quad Y(p)=frac{-47p-259}{p^2(p^2+12p+37)},.

Разлагаем дроби, стоящие в правых частях, на элементарные:

X(p)=frac{1}{p}-frac{1}{p^2}-frac{p+6}{(p+6)^2+1},,quad Y(p)= frac{1}{p}-frac{7}{p^2}-frac{p+6}{(p+6)^2+1}+frac{1}{(p+6)^2+1},.

Переходя к оригиналам, получим искомое решение

begin{cases}x(t)=1-t-e^{-6t}cos{t},,\ y(t)=1-7t+ e^{-6t}cos{t}+ e^{-6t}sin{t},.end{cases}

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

На практике
поступают следующим образом:

1) По таблице
оригиналов и изображений попытаться
отыскать для заданного изображения
F(p)соответствующий ему оригинал.

2) Функцию
представить в виде суммы простейших
рациональных дробей , а затем пользуясь
свойством линейности и таблицей найти
оригинал.

Пример :

1)

По таблице (формула
4)
. Умножим и разделим исходное изображение
на 2 :. Получили оригинал.

2)

Выделим
полный квадрат в знаменателе и применим
формулу 9:

Получили
оригинал

3)

Для нахождения
оригинала используем формулу 13 и свойство
линейности:

Искомый
оригинал

4)

Представим дробь
в виде суммы простейших дробей

Приравниваем
числители дробей и находим коэффициенты
А и В

Далее
используем свойство линейности и формулы
1, 2:


Искомый оригинал
.

6.4 Операционный метод решения линейных дифференциальных уравнений и их систем

Рассмотрим
операционный метод решения дифференциальных
уравнений на примере уравнения третьего
порядка.

Пусть требуется
найти частное решение линейного
дифференциального уравнения третьего
порядка с постоянными коэффициентами

,

(6.4.1)

удовлетворяющее
начальным условиям:


,

с0,
с1,
с2
– заданные числа.

Будем считать, что
решение уравнения функция y=y(t)
и ее производные и функцияf(t)являются оригиналами.

,

Пользуясь свойством
дифференцирования оригинала, запишем:

В уравнении
(6.4.1) перейдем от оригиналов к изображениям

Полученное уравнение
называют операторным или уравнением
в изображениях. Разрешают его относительноY.

– алгебраические
многочлены от переменной р.

Равенство
называют
операторным решением дифференциального
уравнения (6.4.1).

Находя оригинал
y(t)
, соответствующий найденному изображениюполучаем частное решение дифференциального
уравнения.

Пример: методом
операционного исчисления найти частное
решение дифференциального уравнения,
удовлетворяющее заданным начальным
условиям


Перейдем от
оригиналов к изображениям

Запишем исходное
уравнение в изображениях и решим его
относительно Y

Чтобы найти
оригинал полученного изображения,
знаменатель дроби разложим на множители
и запишем полученную дробь в виде суммы
простейших дробей.

Найдем коэффициенты
А, В,иС.

Пользуясь таблицей
запишем оригинал полученного изображения


частное решение исходного уравнения.

Аналогично
применяется операционный метод для
решения систем линейных дифференциальных
уравнений с постоянными коэффициентами

Пример:

– неизвестные
функции.

Переходим к
изображениям

Получаем систему
изображающих уравнений

Решаем систему
методом Крамера. Находим определители:

Находим решение
изображающей системы
X(p),
Y(p)
,
Z(p).


Далее находим
оригиналы полученных изображений





Получили искомое
решение системы

С помощью
операционного исчисления можно находить
решения линейных дифференциальных
уравнений с переменными коэффициентами,
уравнений в частных производных;
вычислять интегралы. При этом решение
задач значительно упрощается. Применяется
при решении задач уравнений математической
физики.

Вопросы
для самоконтроля.

1.
Какая функция называется оригиналом?

2.
Какая функция называется изображением
оригинала?

3.
Функция Хевисайда и ее изображение.

4.
Получить изображение для функций
оригиналов, пользуясь определением
изображения: f(t)
=
t,.

5.
Получить изображения для функций
,
пользуясь свойствами преобразований
Лапласа.

6. Найти функции
оригиналы, пользуясь таблицей изображений:
;

7. Найти частное
решение линейного дифференциального
уравнения методами операционного
исчисления.


Литература:
[5] стр. 411-439, [6] стр. 572-594.

Примеры : [2] стр.
305-316.

ЛИТЕРАТУРА

  1. Данко
    П.Е. Высшая математика в упражнениях и
    задачах. В 2 –х ч. Ч. I: Учеб. пособие для
    втузов./П.Е. Данко, А.Г. Попов, Т.Я.
    Кожевникова – М.: Высш. шк., 1997.– 304с.

  2. Данко
    П.Е. Высшая математика в упражнениях и
    задачах. В 2 –х ч. Ч. II: Учеб. пособие для
    втузов./ П.Е. Данко, А.Г. Попов, Т.Я.
    Кожевникова – М.: Высш. шк., 1997.– 416с.

  3. Каплан
    И.А. Практические занятия по высшей
    математике. Часть 4./ И.А. Каплан –
    Издательство Харьковского
    государственного университета, 1966 г.,
    236 с.

  4. Пискунов Н.С.
    Дифференциальное и интегральное
    исчисления. В 2-х томах, том 1: учеб.
    пособие для втузов./ Н.С. Пискунов – М.:
    изд. «Наука», 1972 .– 456 с.

  5. Пискунов Н.С.
    Дифференциальное и интегральное
    исчисления для втузов. В 2-х томах, том
    2: учеб. Пособие для втузов../ Н.С. Пискунов
    –М.: изд. «Наука»,1972 .– 456 с.

  6. Письменный
    Д.Т. Конспект лекций по высшей математике:
    полный курс.–4-е изд./ Д.Т. Письменный
    –М.: Айрис-пресс, 2006.–608 с. – (Высшее
    образование).

  7. Слободская
    В.А. Краткий курс высшей математики.
    Изд. 2-е, переработ. и доп. Учеб. пособие
    для втузов./ В.А. Слободская – М.: Высш.
    шк., 1969.– 544с.

©
Ирина Александровна Драчева

Конспект
лекций Высшая математика

для
студентов направления 6.070104 «Морской
и речной транспорт»

специальности
«Эксплуатация судовых энергетических
установок»

дневной и заочной
формы обучения 2 курс

Тираж______экз.
Подписано к печати ______________

Заказ №__________.
Объем__2,78__п.л.

Изд-во «Керченский
государственный морской технологический
университет»

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Операционное исчисление играет важную роль при решении прикладных задач, особенно в современной автоматике и телемеханике.

Операционное исчисление — один из методов математического анализа, позволяющий в ряде случаев сводить исследование дифференциальных и некоторых типов интегральных операторов и решение уравнений, содержащих эти операторы, к рассмотрению более простых алгебраических задач.

Методы операционного исчисления предполагают реализацию следующей условной схемы решения задачи.

  1. От искомых функций переходят к некоторым другим функциям — их изображениям.
  2. Над изображениями производят операции, соответствующие заданным операциям над самими функциями.
  3. Получив некоторый результат при действиях над изображениями, возвращаются к самим функциям.

В качестве преобразования, позволяющего перейти от функции к их изображениям, будем применять так называемое преобразование Лапласа.

Преобразование Лапласа

Оригиналы и их изображения:

Основными первоначальными понятиями операционного исчисления являются понятия функции-оригинала и функции-изображения.

Пусть f(t) — действительная функция действительного переменного t (под t будем понимать время или координату).

Функция f(t) называется оригиналом, если она удовлетворяет следующим условиям:

  1. Операционное исчисление
  2. f(t) — кусочно-непрерывная при Операционное исчисление т. е. она непрерывна или имеет точки разрыва I рода, причем на каждом конечном промежутке оси t таких точек лишь конечное число.
  3. Существуют такие числа Операционное исчисление что для всех t выполняется неравенство Операционное исчисление, т. е. при возрастании t функция f(t) может возрастать не быстрее некоторой показательной функции. Число Операционное исчисление называется показателем роста f(t).

Условия 1-3 выполняются для большинства функций, описывающих различные физические процессы.

Первое условие означает, что процесс начинается с некоторого момента времени; удобнее считать, что в момент t = 0. Третьему условию удовлетворяют ограниченные функции (для них можно положить Операционное исчисление), степенные Операционное исчисление и другие (для функций вида Операционное исчисление( условие 3 не выполняется). Не является оригиналом, например, функция Операционное исчисление(не удовлетворяет второму условию).

Замечание:

Функция f(t) может быть и комплексной функцией действительно переменного, т. е. иметь вид Операционное исчисление она считается оригиналом, если действительные функции Операционное исчислениеявляются оригиналами.

Изображением оригинала f(t) называется функция F(p) комплексного переменного Операционное исчисление, определяемая интегралом

Операционное исчисление

Операцию перехода от оригинала f(t) к изображению F(p) называют преобразованием Лапласа. Соответствие между оригиналом f(t) и изображением F(p) записывается в виде Операционное исчисление или Операционное исчисление(принято оригиналы обозначать малыми буквами, а их изображения — соответствующими большими буквами).

Теорема:

Существование изображения. Для всякого оригинала f(t) изображение F(p) существует (определено) в полуплоскости Операционное исчисление— показатель роста функции f(t) , причем функция F(p) является аналитической в этой полуплоскости Операционное исчисление.

Докажем первую часть теоремы. Пусть Операционное исчисление произвольная точка полуплоскости Операционное исчисление (см. рис. 302).

Операционное исчисление

Учитывая, что Операционное исчисление находим:

Операционное исчисление

так как

Операционное исчисление

Таким образом,

Операционное исчисление

Отсюда вытекает абсолютная сходимость интеграла (78.1), т. е. изображение F(p) существует и однозначно в полуплоскости Операционное исчисление

Следствие:

Необходимый признак существования изображения. Если функция F(p) является изображением функции f(t) , то

Операционное исчисление

Это утверждение непосредственно вытекает из неравенства (78.2), когдаОперационное исчисление

Так как F(p) — аналитическая функция в полуплоскости

Операционное исчисление

по любому направлению. Отсюда, в частности, следует, что функции Операционное исчисление не могут быть изображениями.

Отметим, что из аналитичности функции F(p) следует, что все ее особые точки должны лежать левее прямой Операционное исчисление или на самой этой прямой. Функция F(p) , не удовлетворяющая этому условию, не является изображением функции f(t). Не является изображением, например, функция Операционное исчисление (ее особые точки расположены на всей оси s).

Теорема:

О единственности оригинала. Если функция F(p) служит изображением двух оригиналов Операционное исчисление, то эти оригиналы совпадают друг с другом во всех точках, в которых они непрерывны.
(Примем без доказательства.)

Пример:

Найти изображение единичной функции Хевисайда

Операционное исчисление

(см. рис. 303).

Операционное исчисление

Решение:

По формуле (78.1) при Операционное исчисление находим:

Операционное исчисление

т. e. Операционное исчисление, или, в символической записи, Операционное исчисление

Замечание:

В дальнейшем функцию-оригинал будем кратко записывать в виде f(t) , подразумевал, что

Операционное исчисление

Пример:

Найти изображение функции Операционное исчисление — любое число.

Решение:

Данная функция является оригиналом. По формуле (78.1) имеем

Операционное исчисление

если Re(p — a) > 0. Таким образом,

Операционное исчисление

Пример:

Найти изображение функции f(t) = t.

Решение:

В этом случае преобразование Лапласа имеет вид

Операционное исчисление

Операционное исчисление

Замечание:

Функция Операционное исчисление является аналитической не только в полуплоскости Rep > Re а, где интеграл (78.1) сходится, а на всей комплексной плоскости р, кроме точки р = а. Такая особенность наблюдается и для многих других изображений. Далее для нас будет более важным, как правило, само изображение функции, а не область, в которой оно выражается интегралом (78.1).

Свойства преобразования Лапласа

Находить изображения, пользуясь только определением изображения, не всегда просто и удобно. Свойства преобразования Лапласа существенно облегчают задачу нахождения изображений для большого числа разнообразных функций, а также задачу отыскания оригиналов по их изображениям.

Линейность

Линейной комбинации оригиналов соответствует такая же линейная комбинация изображений, т. е. если

Операционное исчисление

— постоянные числа, то

Операционное исчисление

Используя свойства интеграла, находим

Операционное исчисление

Пример:

Найти изображения функций Операционное исчисление — любое число), с (const), Операционное исчисление

Решение:

Пользуясь свойством линейности, формулой (78.3), находим:

Операционное исчисление

т. е.

Операционное исчисление

Аналогично получаем формулу

Операционное исчисление

Далее, Операционное исчислениет. е.

Операционное исчисление

Наконец,

Операционное исчисление

Операционное исчисление

Аналогично получаем формулу

Операционное исчисление

Подобие

Если

Операционное исчисление

т.е. умножение аргумента оригинала на положительное число Операционное исчисление приводит к делению изображения и его аргумента на это число.

По формуле (78.1) имеем

Операционное исчисление

(так как безразлично, какой буквой обозначена переменная интегрирования).
Например, пусть Операционное исчисление. Тогда

Операционное исчисление

Смещение (затухание)

Если

Операционное исчисление

т. е. умножение оригинала на функциюОперационное исчисление влечет за собой смещение переменной р.

В силу формулы (78.1) имеем

Операционное исчисление

Операционное исчисление

Благодаря этому свойству можно расширить таблицу соответствия между оригиналами и их изображениями:

Операционное исчисление

Операционное исчисление

Пример:

Найти оригинал по его изображению

Операционное исчисление

Решение:

Преобразуем данную дробь так, чтобы можно было воспользоваться свойством смещения:

Операционное исчисление

(См. формулы (78.9), (78.10) и свойство линейности.)

Запаздывание

Если

Операционное исчисление

т. е. запаздывание оригинала на положительную величину Операционное исчислениеприводит к умножению изображения оригинала без запаздывания на Операционное исчисление.

Положив Операционное исчисление, получим

Операционное исчисление

Поясним термин «запаздывание». Графики функции f(t) и Операционное исчислениеимеют одинаковый вид, но график функции Операционное исчисление сдвинут на Операционное исчисление единиц

Рис. 304
Рис. 305
вправо (см. рис. 304). Следовательно, функции f(t) и Операционное исчисление описывают один и тот же процесс, но процесс, описываемый функцией Операционное исчисление, начинается с опозданием на время Операционное исчисление.

Свойство запаздывания удобно применять при отыскании изображения функций, которые на разных участках задаются различными аналитическими выражениями; функций, описывающих импульсные процессы.

Функция

Операционное исчисление

называется обобщенной единично ной функцией (см. рис 305).

Так как

Операционное исчисление

Запаздывающую функцию

Операционное исчисление

можно записать так:

Операционное исчисление

Пример:

Найти изображение f(t) = t — 1.

Решение:

Для того чтобы быть оригиналом, функция f(t) должна удовлетворять условиям 1-3 (см. п. 78.1). В этом смысле исходную задачу можно понимать двояко.

Если понимать функцию f(t) как

Операционное исчисление

т. е. Операционное исчисление (см. рис. 306, а), то, зная, что Операционное исчисление(см. формулу (78.4)), Операционное исчисление и, используя свойство линейности, находим

Операционное исчисление

Если же понимать функцию f(t) как

Операционное исчисление

т. е. Операционное исчисление (см. рис. 306, б), то, используя свойство запаздывания, находим

Операционное исчисление

Операционное исчисление

Пример:

Найти изображение функции

Операционное исчисление

Решение:

Данная функция описывает единичный импульс (см. рис. 307), который можно рассматривать как разность двух оригиналов: единичной функции Операционное исчисление и обобщенной единичной функции Операционное исчисление. Поэтому

Операционное исчисление

Пример:

Найти изображение функции

Операционное исчисление

Операционное исчисление

Решение:

Функция-оригинал изображена на рис. 308. Запишем ее одним аналитическим выражением, используя функции Хевисайда Операционное исчисление:

Операционное исчисление

Раскроем скобки и приведем подобные слагаемые:

Операционное исчисление

Изображение функции f(t) будет равно

Операционное исчисление

Замечания:

1.Изображение периодического оригинала с периодом, равным Т,

есть Операционное исчисление

2.Свойство опережения

Операционное исчисление

применяется значительно реже.

Дифференцирование оригинала

Если Операционное исчисление и функции Операционное исчисление являются оригиналами, то

Операционное исчисление

По определению изображения находим

Операционное исчисление

Итак,Операционное исчисление Пользуясь полученным результатом, найдем изображение второй производной f»(t):

Операционное исчисление

Аналогично найдем изображение третьей производной f»‘(t):

Операционное исчисление

Применяя формулу (78.11) (п — 1) раз, получим формулу (78.14).

Замечание. Формулы (78.11)-(78.14) просто выглядят при нулевых начальных условиях: если

Операционное исчисление

т. е. дифференцированию оригинала соответствует умножение его изображения на р.

Рассмотренное свойство дифференцирования оригинала вместе со свойством линейности широко используется при решении линейных дифференциальных уравнений.

Пример:

Найти изображение выражения

Операционное исчисление

Операционное исчисление

Решение:

Пусть Операционное исчисление Тогда, согласно формулам (78.11)—(78.13), имеем

Операционное исчисление

Следовательно,

Операционное исчисление

Дифференцирование изображения

Если Операционное исчисление то

Операционное исчисление

т. е. дифференцированию изображения соответствует умножение его оригинала на (-t).

Согласно теореме 78.1 существования изображения, F(p) является аналитической функцией в полуплоскости Операционное исчислениеСледовательно, у нее существует производная любого порядка. Дифференцируя интеграл (78.1) по параметру р (обоснование законности этой операции опустим), получим

Операционное исчисление

Операционное исчисление

Пример:

Найти изображения функций Операционное исчисление

Операционное исчисление

Решение:

Так как Операционное исчисление, то, в силу свойства дифференцирования изображения, имеем Операционное исчисление т. е.

Операционное исчисление

Далее находим

Операционное исчисление

Продолжая дифференцирование, получим

Операционное исчисление

С учетом свойства смещения получаем

Операционное исчисление

Согласно формуле (78.5), Операционное исчисление Следовательно,

Операционное исчисление

Операционное исчисление

Аналогично, используя формулы (78.6), (78.7) и (78.8), находим

Операционное исчисление

С учетом свойства смещения и формул (78.15) и (78.16), получаем

Операционное исчисление

Интегрирование оригинала

Если

Операционное исчисление

т. е. интегрированию оригинала от 0 до t соответствует деление его изображения на р.

Функция Операционное исчисление является оригиналом (можно проверить).

Пусть Операционное исчисление Тогда по свойству дифференцирования оригинала имеем

Операционное исчисление

(так как Операционное исчисление). А так как

Операционное исчисление

Операционное исчисление

Интегрирование изображения

Если Операционное исчисление и интеграл Операционное исчисление сходится, то Операционное исчислениет. е. интегрированию изображения от p до Операционное исчисление соответствует деление его оригинала на t.

Используя формулу (78.1) и изменяя порядок интегрирования (обоснование законности этой операции опускаем), получаем

Операционное исчисление

Пример:

Найти изображение функции Операционное исчисление найти изображение интегрального синуса Операционное исчисление

Решение:

Так как

Операционное исчисление

т. е. Операционное исчисление Применяя свойство интегрирования t оригинала, получаем

Операционное исчисление

Умножение изображений

Если Операционное исчислението

Операционное исчисление

Можно показать, что функция Операционное исчислениеявляется оригиналом.

Используя преобразование Лапласа (78.1), можно записать

Операционное исчисление

Область D интегрирования полученного двукратного интеграла определяется условиями Операционное исчисление (см. рис. 309).

Операционное исчисление

Изменяя порядок интегрирования и полагая Операционное исчисление, получим

Операционное исчисление

Интеграл в правой части формулы (78.17) называется сверткой функции Операционное исчисление и обозначается символом Операционное исчисление, т. е.

Операционное исчисление

Можно убедиться (положив Операционное исчисление), что свертывание обладает свойством переместительности, т. е. Операционное исчисление

Умножение изображений соответствует свертыванию их оригиналов, т. е.

Операционное исчисление

Пример:

Найти оригинал функций

Операционное исчисление

Решение:

Так как

Операционное исчисление

то

Операционное исчисление

Операционное исчисление

т. e.

Операционное исчисление

Аналогично получаем

Операционное исчисление

Следствие:

Если Операционное исчисление также является оригиналом, то

Операционное исчисление

Запишем произведение Операционное исчисление в виде

Операционное исчисление

или

Операционное исчисление

Первое слагаемое в правой части есть произведение изображений, соответствующих оригиналам Операционное исчисление Поэтому на основании свойства умножения изображений и линейности можно записать Операционное исчисление или

Операционное исчисление

Формула (78.18) называется формулой Дюамеля. На основании свойства переместительности свертки формулу Дюамеля можно записать в виде

Операционное исчисление

Формулу Дюамеля можно применять для определения оригиналов по известным изображениям.

Пример:

Найти оригинал, соответствующий изображению

Операционное исчисление

Решение:

Так как

Операционное исчисление

то на основании формулы Дюамеля (78.18) имеем

Операционное исчисление

Умножение оригиналов

Операционное исчисление

где путь интегрирования — вертикальная прямая Операционное исчисление (см. рис. 310) (примем без доказательства).

Операционное исчисление

Резюме

Рассмотренные свойства преобразования Лапласа представляют собой основные правила (аппарат) операционного исчисления. Для удобства пользования перечислим эти свойства.

Операционное исчисление

Операционное исчисление

6. Дифференцирование изображения

Операционное исчисление

Операционное исчисление

Операционное исчисление

Таблица оригиналов и изображений

Составим краткую таблицу, устанавливающую соответствие между некоторыми оригиналами (часто встречающимися на практике) и их изображениями. Достаточно полная таблица оригиналов и изображений, позволяющая по заданному оригиналу находить изображение и наоборот, есть, в частности, в книге «Справочник по операционному исчислению» (авторы В. А. Диткин и П. И. Кузнецов).

Операционное исчисление

Операционное исчисление

Операционное исчисление

Обратное преобразование Лапласа

Теоремы разложения:

Рассмотрим две теоремы, называемые теоремами разложения, позволяющие по заданному изображению F(p) находить соответствующий ему оригинал f(t).

Теорема:

Если функция F(p) в окрестности точки Операционное исчисление может быть представлена в виде ряда Лорана

Операционное исчисление

то функция

Операционное исчисление

является оригиналом, имеющим изображение F(p), т. е.

Операционное исчисление

Примем эту теорему без доказательства.

Пример:

Найти оригинал f(t), если

Операционное исчисление

Решение:

Имеем

Операционное исчисление

Следовательно, на основании теоремы 79.1

Операционное исчисление

Запишем лорановское разложение функции Операционное исчисление в окрестности точкиОперационное исчисление:

Операционное исчисление

где Операционное исчислениеСледовательно,

Операционное исчисление

Теорема:

Если Операционное исчислениеправильная рациональная дробь, знаменатель которой В(р) имеет лишь простые корни (нули)Операционное исчисление то функция

Операционное исчисление

является оригиналом, имеющим изображение F(p).

Отметим, что дробь Операционное исчисление должна быть правильной (степень многочлена А(р) ниже степени многочлена В(р)) в противном случае не выполняется необходимый признак существования изображения

Операционное исчисление

не может быть изображением.

Разложим правильную рациональную дробь Операционное исчисление на простейшие:

Операционное исчисление

где Операционное исчисление— неопределенные коэффициенты. Для определения коэффициента Операционное исчисление этого разложения умножим обе части этого равенства почленно на Операционное исчисление:

Операционное исчисление

Переходя в этом равенстве к пределу при Операционное исчисление, получаем

Операционное исчисление

Итак, Операционное исчислениеАналогичным путем (умножая обе части равенства (79.2) на Операционное исчисление найдем Операционное исчисление

Подставляя найденные значения Операционное исчисление в равенство (79.2), получим

Операционное исчисление

Так как по формуле (78.3)

Операционное исчисление

то на основании свойства линейности имеем

Операционное исчисление

Замечание:

Легко заметить, что коэффициенты Операционное исчислениеопределяются как вычеты комплексной функции F(p) в простых полюсах (формула (77.4)):

Операционное исчисление

Можно показать, что если Операционное исчисление правильная дробь, но корни (нули)Операционное исчисление знаменателя В(р) имеют кратности Операционное исчисление соответственно, то в этом случае оригинал изображения F(p) определяется формулой

Операционное исчисление

Теорему 79.2 можно сформулировать следующим образом:
Теорема:

Если изображение Операционное исчислениеявляется дробно-рациональной функцией от Операционное исчисление — простые или кратные полюсы этой функции, то оригинал f(t), соответствующий изображению F(p), определяется формулой

Операционное исчисление

Формула Римана-Меллина

Общий способ определения оригинала по изображению дает обратное преобразование Лапласа (формула обращения Римана-Меллина), имеющее вид

Операционное исчисление

где интеграл берется вдоль любой прямой Операционное исчисление.

При определенных условиях интеграл (79.5) вычисляется по формуле

Операционное исчисление

Замечание:

На практике отыскание функции-оригинала обычно проводят по следующему плану: прежде всего следует по таблице оригиналов и изображений попытаться отыскать для заданного изображения F(p) соответствующий ему оригинал; второй путь состоит в том, что функцию F(p) стараются представить в виде суммы простейших рациональных дробей, а затем, пользуясь свойством линейности, найти оригинал; наконец, использовать теоремы разложения, свойство умножения изображений, формулу обращения и т.д.

Пример:

Найти оригинал по его изображению

Операционное исчисление

Решение:

Проще всего поступить так:

Операционное исчисление

(использовали свойство линейности и формулы (78.5) и (78.6)).

Если же использовать теорему 79.2 разложения, то будем иметь:

Операционное исчисление

корни знаменателяОперационное исчисление и, согласно формуле (79.1),

Операционное исчисление

Пример:

Найти функцию-оригинал, если ее изображение
задано как Операционное исчисление

Решение:

Здесь

Операционное исчисление

— простой корень знаменателя, Операционное исчисление — 3-кратный корень (m = 3). Используя формулы (79.1) и (79.3), имеем:

Операционное исчисление

Приведем другой способ нахождения f(t). Разобьем дробь Операционное исчисление

на сумму простейших дробей:

Операционное исчисление

Следовательно,

Операционное исчисление

Приведем третий способ нахождения f(t). Представим F(p) как
произведение Операционное исчислениеи так как Операционное исчислениепользуясь свойством умножения изображений, имеем:

Операционное исчисление

Операционный метод решения линейных дифференциальных уравнений и их систем

Пусть требуется найти частное решение линейного дифференциального уравнения с постоянными коэффициентами

Операционное исчисление

удовлетворяющее начальным условиям

Операционное исчисление

где Операционное исчисление — заданные числа.

Будем считать, что искомая функция y(t) вместе с ее рассматриваемыми производными и функция f(t) являются оригиналами.

Пусть Операционное исчислениеПользуясь свойствами дифференцирования оригинала и линейности, перейдем в уравнении(80.1) от оригиналов к изображениям:

Операционное исчисление

Полученное уравнение называют операторным (или уравнением в изображениях). Разрешим его относительно Y:

Операционное исчисление

— алгебраические многочлены от p степени п и п-1 соответственно. Из последнего уравнения находим

Операционное исчисление

Полученное равенство называют операторным решением дифференциального уравнения (80.1). Оно имеет более простой вид, если все начальные условия равны нулю, т. е.Операционное исчисление

В этом случае Операционное исчисление

Находя оригинал y(t), соответствующий найденному изображению (80.2), получаем, в силу теоремы единственности, частное решение дифференциального уравнения (80.1).

Замечание:

Полученное решение y(t) во многих случаях оказывается справедливым при всех значениях t (а не только при Операционное исчисление).

Пример:

Решить операционным методом дифференциальное уравнение Операционное исчисление при условиях Операционное исчисление

Решение:

Пусть Операционное исчисление Тогда

Операционное исчисление

Подставляя эти выражения в дифференциальное уравнение, получаем операторное уравнение:

Операционное исчисление

Отсюда Операционное исчисление Находим y(t). Можно разбить дробь на сумму простейших Операционное исчисление но так как корни знаменателя Операционное исчисление простые, то удобно воспользоваться второй теоремой разложения (формула (79.1)), в которой

Операционное исчисление

Получаем:

Операционное исчисление

Пример:

Найти решение уравнения

Операционное исчисление

при условии Операционное исчисление

Решение:

График данной функции имеет вид, изображенный на рисунке 311.

Операционное исчисление

С помощью единичной функции правую часть данного дифференциального уравнения можно записать одним аналитическим выражением:

Операционное исчисление

Операционное исчисление

Таким образом, имеем

Операционное исчисление

Операторное уравнение, при нулевых начальных условиях имеет вид

Операционное исчисление

Отсюда

Операционное исчисление

Так как

Операционное исчисление

то по теореме запаздывания находим:

Операционное исчисление

Аналогично применяется операционный метод для решения систем линейных дифференциальных уравнений с постоянными коэффициентами.

Покажем это на конкретном примере.

Пример:

Решить систему дифференциальных уравнений

Операционное исчисление

Решение:

Пусть

Операционное исчисление

Находим, что

Операционное исчисление

Система операторных уравнений принимает вид

Операционное исчисление

Решая эту систему алгебраических уравнений, находим:

Операционное исчисление

Переходя от изображений к оригиналам, получаем искомые решения:

Операционное исчисление

Операционное исчисление

Операционное исчисление

С помощью операционного исчисления можно также находить решения линейных дифференциальных уравнений с переменными коэффициентами, уравнений в частных производных, уравнений в конечных разностях (разностных уравнений); производить суммирование рядов; вычислять интегралы. При этом решение этих и других задач значительно упрощается.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторная алгебра
  128. Векторный анализ
  129. Векторы
  130. Скалярное произведение векторов
  131. Векторное произведение векторов
  132. Смешанное произведение векторов
  133. Операции над векторами
  134. Непрерывность функций
  135. Предел и непрерывность функций нескольких переменных
  136. Предел и непрерывность функции одной переменной
  137. Производные и дифференциалы функции одной переменной
  138. Частные производные и дифференцируемость функций нескольких переменных
  139. Дифференциальное исчисление функции одной переменной
  140. Матрицы
  141. Линейные и евклидовы пространства
  142. Линейные отображения
  143. Дифференциальные теоремы о среднем
  144. Теория устойчивости дифференциальных уравнений
  145. Функции комплексного переменного
  146. Преобразование Лапласа
  147. Теории поля
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Примеры решений задач по операционному исчислению (преобразованию Лапласа)

Операционное (символическое) исчисление – это один из методов математического анализа, позволяющий в
некоторых случаях свести исследование и решение дифференциальных, псевдодифференциальных, интегральных уравнений, к более простым алгебраическим задачам.

Изучая преобразование Лапласа, мы вводим оригинал функции $f(t)$ и ее изображение $F(p)$, находимое по формуле:

$$F(p) = int_0^infty f(t) e^{-pt}dt$$

Для быстроты и удобства решения задач составлена таблица изображений и оригиналов, которая, наряду с теоремами (линейности, подобия, смещения, запаздывания), свойствами и правилами дифференцирования и интегрирования изображения/оригинала, постоянно используется в решении примеров.

В этом разделе вы найдете готовые задания разного типа: восстановление оригинала или изображения функции, нахождение свертки функций, решение ДУ, систем ДУ или интегральных уравнений с помощью преобразования Лапласа и т.д.

Полезная страница? Сохрани или расскажи друзьям

Как найти изображение функции

Задача 1. Найти изображение данного оригинала, или оригинала, удовлетворяющего данному уравнению

$$f(t)=frac{e^{2t}-e^{-3t}}{t}.$$

Задача 2. Пользуясь определением, найти изображение функции $f(t)=3^t$.

Задача 3. Найти изображение функции: $int_0^t cos tau cdot e^{-3tau}dtau. $

Задача 4. Найти изображение оригинала $f(x)$ двумя способами:
1) Вычислив интеграл $F(p) = int_0^infty f(x) e^{-px}dx$;
2) Воспользовавшись таблице изображений и свойствами преобразования Лапласа.
Оригинал задается формулой (курсочно-линейная функция, см. файл).

Как найти оригинал функции

Задача 5. Найти оригинал изображения $F(p)$, где

$$F(p)=frac{2p-1}{(p^2-4p+13)^2}.$$

Задача 6. Найти оригинал изображения

$$F(p)=frac{15p^2+3p+34}{(p^2+4p+8)(p^2-6p+5)}.$$

Задача 7. Найти оригинал для функции с помощью вычетов

$$F^*(p)=frac{1}{e^{4p}-625}.$$

Как решить ДУ (систему ДУ) операционным методом

Задача 8. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом

$$x’+x=4e^t, x(0)=2.$$

Задача 9. Найти решение задачи Коши методами операционного исчисления

$$x”+2x’+2x=te^{-t}, quad x(0)=0, x'(0)=0.$$

Задача 10. Методом операционного исчисления найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям.

$$x’=x-y,\
y’=x+y,\
x(0)=2, y(0)=1.$$

Задача 11. Методом операционного исчисления найти решение задачи Коши для ДУ 3-го порядка

$$x”’+x”-2x’-5x=5e^t, quad x(0)=0, x'(0)=1, x”(0)=2.$$

Задача 12. Решите задачу Коши для системы дифференциальных уравнений с помощью преобразования Лапласа.

$$frac{dx}{dt}=x-2y,\
frac{dy}{dt}=x+3y,\
x(0)=0, y(0)=1. $$

Задача 13. C помощью формулы Дюамеля найти решение уравнения

$$x”’+x’=tg t, quad x(0)=x'(0)=x”(0)=0.$$

Задача 14. Решить систему ДУ с помощью преобразования Лапласа

$$
x’=-y+z,\
y’=z, quad x(0)=1, \
z’=-x+z;\
y(0)=z(0)=1/2.
$$

Как решить интегральное уравнение

Задача 15. Методом операционного исчисления найти решение интегрального уравнения

$$ y(t)=cos t +int_0^t (t-tau)^2 y(tau)d tau. $$

Задача 16. Решить интегральное уравнение

$$ int_0^t ch (tau) x(t-tau)d tau = t. $$

Как найти свертку функций

Задача 17. Найти свертку функций $f(t)=1$ и $phi(t)=sin 5t$.

Помощь с решением заданий

Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей, оформление производится в Word, срок от 1 дня.

Подробнее о решении заданий с преобразованием Лапласа

Дополнительная информация

  • Онлайн-помощь по математическому анализу
  • Дифференциальные уравнения – задачи с решениями
  • Как решать ДУ с помощью операционного исчисления

Добавить комментарий