Первая (скорость)
и вторая (ускорение) производные по
времени от гармонически колеблющейся
величины s
также
совершают гармонические колебания с
той же циклической частотой:
Из последнего
уравнения видно, что s
удовлетворяет
уравнению
или
Это уравнение
называется дифференциальным
уравнением гармонических колебаний.
Его решение:
s
= A·cos(ωt
+ φ).
4. Метод векторных диаграмм.
Г
армонические колебания изображаются
графическиметодом
вращающегося вектора амплитуды или
методом векторных
диаграмм.
Из произвольной
точки О,
выбранной
на оси х, под
углом φ,
равным
начальной фазе
колебания,
откладывается вектор А,
модуль
которого равен амплитуде А,
рассматриваемого колебания. Если этот
вектор будет вращаться
вокруг точки О
с угловой
скоростью со,
то проекция
вектора на ось х
будет
совершать колебания по закону s
= A·cos(ωt
+ φ).
5. Экспоненциальная форма записи гармонических колебаний.
Согласно формуле
Эйлера для комплексных чисел
где
— мнимая единица. Поэтому уравнение
гармонического колебанияs
= A·cos(ωt
+φ) можно
записать в комплексной
экспоненциальной
форме:
Физический смысл
имеет только вещественная
часть комплексной
функции
,
которая и представляет собой гармоническое
колебание:
Re()
= A
cos(ωt
+φ)
= s
6. Механические гармонические колебания.
Пусть материальная
точка совершает прямолинейные
гармонические
к
олебания вдоль осих
около положения равновесия
принятого, за начало координат. Тогда
для колеблющейся точки
Смещение: х=
A·cos(ωt
+ φ)
Скорость:=
=
-Аωcos(ωt
+ φ +
)
Ускорение:
a
=
=
=Аω2
cos(ωt
+ φ +)
Амплитуды
скорости
и ускорения равны Aω
и Aω2
Фаза
скорости
отличается от фазы
смещения
на
,
а фаза ускорения на.
Сила,
действующая
на колеблющуюся материальную точку
массой т
равна
Таким образом,
сила пропорциональна
смещению
материальной точки и
направлена
в сторону, противоположную смещению (к
положению равновесия).
Такая зависимость
от смещения характерна для упругих сил
и поэтому силы,
которые аналогичным
образом зависят от смещения,
называются
квазиупругими.
7. Энергия материальной точки, совершающей гармонические колебания.
Кинетическая
энергия материальной
точки:
Потенциальная
энергия материальной
точки, совершающей гармонические
колебания под действием квазиупругой
силы:
Полная
энергия:
остается
постоянной, с течением времени
происходит только превращение
кинетической энергии в потенциальную
и обратно.
8. Гармонический осциллятор.
Гармоническим
осциллятором называется система,
совершающая колебания, описываемые
дифференциальным уравнением
Примерами
гармонического осциллятора являются
пружинный, математический и физический
маятники и электрический колебательный
контур.
9. Пружинный маятник.
Пружинный
маятник —
это груз массой т,
подвешенный на абсолютно упругой пружине
и совершающий гармонические колебания
под действием упругой силы
F
=
где
—
жесткость
пружины.
Уравнение движения
маятника
или
Сравнивая это
уравнение с уравнением движения
гармонического
осциллятора
,
мы видим, что пружинный маятник совершает
колебания по закону
с
циклической частотой и периодом:
Потенциальная
энергия пружинного маятника:
Если на маятник
действует сила трения, пропорциональная
скорости
,где
r
— коэффициент
сопротивления, то колебания маятника
будут
затухающими и
закон движения маятника будет иметь
вид
или
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Дифференциальные уравнения колебаний
– гармонические,
– затухающие,
– вынужденные.
· Уравнение колебания, полученного при сложении двух колебаний одинаковой частоты и одного направления, амплитуды колебаний которых и , а начальные фазы и ,
, где
–
амплитуда результирующего колебания, – разность фаз слагаемых колебаний; начальная фаза результирующего колебания определяется формулой
.
· Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с одинаковыми частотами
:
а) если , то – уравнение прямой,
б) если , то – уравнение прямой,
в) если , то – уравнение эллипса, приведённого к осям,
г) если и , то – уравнение окружности, где – радиус окружности.
МЕХАНИЧЕСКИЕ ВОЛНЫ
· Длина волны, т.е расстояние между ближайшими частицами, колеблющимися в одинаковой фазе
,
где – скорость волны, – период, – частота.
· Уравнение бегущей волны, распространяющейся вдоль положительного направления оси в среде, не поглощающей энергию,
или
, где
– амплитуда волны, – циклическая частота, -фаза волны, – начальная фаза, – волновое число.
Волна называется продольной, если колебания частиц среды происходят в направлении распространения волны. Волна называется поперечной, если частицы колеблются в плоскостях, перпендикулярных направлению распространения волны.
Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т.е. способна сопротивляться деформации сдвига. Этим свойством обладают только твердые тела. Продольные волны могут распространяться как в твердых телах, так и в жидких и газообразных средах.
Маятник
В физике под маятником понимают твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной точки или оси. Принято различать математический и физический маятники.
Математическим маятником называют идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке. Достаточно хорошим приближением к математическому маятнику служит небольшой тяжелый шарик, подвешенный на длинной тонкой нити.
Отклонение маятника от положения равновесия будем характеризовать углом образованным нитью с вертикалью (рис. 54.1). При отклонении маятника от положения равновесия возникает вращательный момент N, равный по величине — масса, a l — длина маятника). Он имеет такое направление, что стремится вернуть маятник в положение равновесия, и аналогичен в этом отношении квазиупругой силе. Поэтому так же, как смещению и квазиупругой силе, моменту N и угловому смещению нужно приписывать противоположные знаки 1). Следовательно, выражение для вращательного момента имеет вид
Напишем для маятника уравнение динамики вращательного движения. Обозначив угловое ускорение через и учитывая, что момент инерции маятника равен получаем:
Последнее уравнение можно привести к виду
(54.2)
Ограничимся рассмотрением малых колебаний. В этом случае можно положить Введя, кроме того, обозначение
придем к уравнению
к зторое идентично с уравнением (53.1). Его решение имеет вид
Следовательно, при малых колебаниях угловое отклонение математического маятника изменяется со временем по гармоническому закону.
Как следует из (54.3), частота колебаний математического маятника зависит только от длины маятника и от ускорения силы тяжести и не зависит от массы маятника. По формуле (53.8) с учетом (54.3) получается известное из школьного курса выражение для периода колебаний математического маятника:
Отметим, что, решив уравнение (54.2), можно найти для периода колебаний следующую формулу:
где а — амплитуда колебаний, т. е. наибольший угол, на который отклоняется маятник из положения равновесия.
Если колеблющееся тело нельзя представить как материальную точку, маятник называется физическим. При отклонении маятника от положения равновесия на угол возникает вращательный момент, стремящийся вернуть маятник в положение равновесия. Этот момент равен
где m — масса маятника, а l — расстояние между точкой подвеса О и центром масс С маятника (рис. 54.2). Знак «—» имеет то же значение, что и в случае формулы (54.1).
Обозначив момент инерции маятника относительно оси, проходящей через точку подвеса, буквой I, можно написать:
В случае малых колебаний (54.8) переходит в уже известное нам уравнение:
Через обозначена в данном случае следующая величина:
(54.10)
Из уравнений (54.9) и (54.10) следует, что при малых отклонениях от положения равновесия физический маятник совершает гармонические колебания, частота которых зависит от массы маятника, момента инерции маятника относительно оси вращения и расстояния между осью вращения и центром масс маятника. В соответствии с (54.10) период колебаний физического маятника определяется выражением
(54.11)
Из сопоставления формул (54.6) и (54.11) получается, что математический маятник с длиной
(54.12)
будет иметь такой период колебаний, как и данный физический маятник. Величину (54.12) называют приведенной длиной физического маятника. Таким образом, приведенная длина физического маятника — это длина такого математического маятника, период колебании которого совпадает с периодом данного физического маятника.
Точка на прямой, соединяющей точку подвеса с центром масс, лежащая на расстоянии приведенной длины от оси вращения, называется центром качания физического маятника (см.точку О на рис. 54.2).
Можно показать (рекомендуем это сделать в порядке упражнения), что при подвешивании маятника в центре качания О приведенная длина, а значит, и период колебаний будут теми же, что и вначале. Следовательно, точка подвеса и центр качания обладают свойством взаимности: при переносе точки подвеса в центр качания прежняя точка подвеса становится нозым центром качания.
На этом свойстве основано определение ускорения свободного падения с помощью так называемого оборотного маятника. Оборотным называется такой маятник, у которого имеются две параллельные друг другу, закрепленные вблизи его концов опорные призмы, за которые он может поочередно подвешиваться. Вдоль маятника могут перемещаться и закрепляться на нем тяжелые грузы. Перемещением грузов добиваются того, чтобы при подвешивании маятника за любую из призм период колебаний был одинаков. Тогда расстояние между опорными ребрами призм будет равно Измерив период колебаний маятника и зная можно по формуле
найти ускорение свободного падения .
Как составить дифференциальное уравнение колебаний
Простейшими из колебаний являются гармонические. Это колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса.
Рассмотрим пружинный маятник (Рис. 1.7.1).
Рис. 1.7.1. Пружинный маятник
В состоянии покоя сила тяжести уравновешивается упругой силой:
Если сместить шарик от положения равновесия на расстояние х, то удлинение пружины станет равным Δl0 + х. Тогда результирующая сила примет значение:
Учитывая условие равновесия (1.7.1), получим:
Знак “минус” показывает, что смещение и сила имеют противоположные направления.
Упругая сила f обладает следующими свойствами:
- Она пропорциональна смещению шарика из положения равновесия;
- Она всегда направлена к положению равновесия.
Для того, чтобы сообщить системе смещение х, нужно совершить против упругой силы работу:
Эта работа идет на создание запаса потенциальной энергии системы:
Под действием упругой силы шарик будет двигаться к положению равновесия со все возрастающей скоростью . Поэтому потенциальная энергия системы будет убывать, зато возрастает кинетическая энергия (массой пружины пренебрегаем). Придя в положение равновесия, шарик будет продолжать двигаться по инерции. Это – замедленное движение и прекратится тогда, когда кинетическая энергия полностью перейдет в потенциальную. Затем такой же процесс будет протекать при движении шарика в обратном направлении. Если трение в системе отсутствует, шарик будет колебаться неограниченно долго.
Уравнение второго закона Ньютона в этом случае имеет вид:
Преобразуем уравнение так:
Вводя обозначение , получим линейное однородное дифференциальное уравнение второго порядка:
Прямой подстановкой легко убедиться, что общее решение уравнения (1.7.8) имеет вид:
где а – амплитуда и φ – начальная фаза колебания – постоянные величины. Следовательно, колебание пружинного маятника является гармоническим (Рис. 1.7.2).
Рис. 1.7.2. Гармоническое колебание
Вследствие периодичности косинуса различные состояния колебательной системы повторяются через определенный промежуток времени (период колебаний) Т, за который фаза колебания получает приращение 2π. Рассчитать период можно с помощью равенства:
Число колебаний в единицу времени называется частотой:
За единицу частоты принимается частота такого колебания, период которого равен 1 с. Такую единицу называют 1 Гц.
Из (1.7.11) следует, что:
Следовательно, ω0 – это число колебаний, совершаемое за 2π секунд. Величину ω0 называют круговой или циклической частотой. Используя (1.7.12) и (1.7.13), запишем:
Дифференцируя (1.7.9) по времени, получим выражение для скорости шарика:
Из (1.7.15) следует, что скорость также изменяется по гармоническому закону и опережает смещение по фазе на ½π. Дифференцируя (1.7.15), получим ускорение:
1.7.2. Математический маятник
Математическим маятником называют идеализированную систему, состоящую из нерастяжимой невесомой нити, на которой подвешено тело, вся масса которого сосредоточена в одной точке.
Отклонение маятника от положения равновесия характеризуют углом φ, образованным нитью с вертикалью (Рис. 1.7.3).
Рис. 1.7.3. Математический маятник
При отклонении маятника от положения равновесия возникает вращательный момент, который стремится вернуть маятник в положение равновесия:
Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен ml 2 :
Это уравнение можно привести к виду:
Ограничиваясь случаем малых колебаний sinφ ≈ φ и вводя обозначение:
уравнение (1.7.19) может быть представлено так:
что совпадает по форме с уравнением колебаний пружинного маятника. Следовательно, его решением будет гармоническое колебание:
Из (1.7.20) следует, что циклическая частота колебаний математического маятника зависит от его длины и ускорения свободного падения. Используя формулу для периода колебаний (1.7.11) и (1.7.20), получим известное соотношение:
1.7.3. Физический маятник
Физическим маятником называется твердое тело, способное совершать колебания вокруг неподвижной точки, не совпадающей с центром инерции. В положении равновесия центр инерции маятника С находится под точкой подвеса О на одной с ней вертикали (Рис. 1.7.4).
Рис. 1.7.4. Физический маятник
При отклонении маятника от положения равновесия на угол φ возникает вращательный момент, который стремится вернуть маятник в положение равновесия:
где m – масса маятника, l – расстояние между точкой подвеса и центром инерции маятника.
Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен I:
Для малых колебаний sinφ ≈ φ. Тогда, вводя обозначение:
что также совпадает по форме с уравнением колебаний пружинного маятника. Из уравнений (1.7.27) и (1.7.26) следует, что при малых отклонениях физического маятника от положения равновесия он совершает гармоническое колебание, частота которого зависит от массы маятника, момента инерции и расстояния между осью вращения и центром инерции. С помощью (1.7.26) можно вычислить период колебаний:
Сравнивая формулы (1.7.28) и (1.7.23) получим, что математический маятник с длиной:
будет иметь такой же период колебаний, что и рассмотренный физический маятник. Величину (1.7.29) называют приведенной длиной физического маятника. Следовательно, приведенная длина физического маятника – это длина такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.
Точка на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения, называется центром качания физического маятника. По теореме Штайнера момент инерции физического маятника равен:
где I0 – момент инерции относительно центра инерции. Подставляя (1.7.30) в (1.7.29), получим:
Следовательно, приведенная длина всегда больше расстояния между точкой подвеса и центром инерции маятника, так что точка подвеса и центр качания лежат по разные стороны от центра инерции.
1.7.4. Энергия гармонических колебаний
При гармоническом колебании происходит периодическое взаимное превращение кинетической энергии колеблющегося тела Ек и потенциальной энергии Еп, обусловленной действием квазиупругой силы. Из этих энергий слагается полная энергия Е колебательной системы:
Распишем последнее выражение
Но к = mω 2 , поэтому получим выражение для полной энергии колеблющегося тела
Таким образом полная энергия гармонического колебания постоянна и пропорциональна квадрату амплитуды и квадрату круговой частоты колебания.
1.7.5. Затухающие колебания .
При изучении гармонических колебаний не учитывались силы трения и сопротивления, которые существуют в реальных системах. Действие этих сил существенно изменяет характер движения, колебание становится затухающим .
Если в системе кроме квазиупругой силы действуют силы сопротивления среды (силы трения), то второй закон Ньютона можно записать так:
Для решения этого дифференциального уравнения необходимо знать, от каких параметров зависит сила трения. Обычно предполагают, что при не очень больших амплитудах и частотах сила трения пропорциональна скорости движения и, естественно, направлена противоположно ей:
где r – коэффициент трения, характеризующий свойства среды оказывать сопротивление движению. Подставим (1.7.34б) в (1.7.34а):
где β – коэффициент затухания; ω 0 – круговая частота собственных колебаний системы.
Решение уравнения(1.7.34.в) существенно зависит от знака разности: , где ω – круговая частота затухающих колебаний. При круговая частота ω является действительной величиной и решение (1.7.34.в) будет следующим:
График этой функции показан на рис.1.7.5 сплошной кривой 1, а штриховой линией 2 изображено изменение амплитуды:
Период затухающих колебаний зависит от коэффициента трения и определяется формулой
При очень малом трении период затухающего колебания близок к периоду незатухающего свободного колебания (1.7.35.б)
Рис.1.7.5. Затухающее колебание | Рис.1.7.6. Апериодический процесс |
Быстрота убывания амплитуды колебаний определяется коэффициентом затухания : чем больше β, тем сильнее тормозящее действие среды и тем быстрее уменьшается амплитуда. На практике, степень затухания часто характеризуют логарифмическим декрементом затухания , понимая под этим величину, равную натуральному логарифму отношения двух последовательных амплитуд колебаний, разделенных интервалом времени, равным периоду колебаний:
;
Следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью:
При сильном затухании из формулы (1.7.37) видно, что период колебания является мнимой величиной. Движение в этом случае уже называется апериодическим . График апериодического движения в виде показан на рис. 1.7.6. Незатухающие и затухающие колебания называют собственными или свободными . Они возникают вследствие начального смещения или начальной скорости и совершаются при отсутствии внешнего воздействия за счет первоначально накопленной энергии.
1.7.6. Вынужденные колебания. Резонанс .
Вынужденными колебаниями называются такие, которые возникают в системе при участии внешней силы, изменяющейся по периодическому закону.
Предположим, что на материальную точку кроме квазиупругой силы и силы трения действует внешняя вынуждающая сила
,
где F 0 – амплитуда; ω – круговая частота колебаний вынуждающей силы. Составим дифференциальное уравнение (второй закон Ньютона):
,
где .
Решение дифференциального уравнения (3.19) является суммой двух колебаний: затухающих и незатухающих с амплитудой
Амплитуда вынужденного колебания (1.7.39) прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебания. Если ω 0 и β для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной .
Само явление – достижение максимальной амплитуды для заданных ω 0 и β – называют резонансом.
При отсутствии сопротивления амплитуда вынужденных колебаний при резонансе бесконечно большая. При этом из ω рез =ω 0 , т.е. резонанс в системе без затухания наступает тогда, когда частота вынуждающей силы совпадает с частотой собственных колебаний. Графическая зависимость амплитуды вынужденных колебаний от круговой частоты вынуждающей силы при разных значениях коэффициента затухания показана на рис. 5.
Механический резонанс может быть как полезным, так и вредным явлением. Вредное действие резонанса связано главным образом с разрушением, которое он может вызвать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможные возникновения резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.
Если коэффициент затухания внутренних органов человека был бы не велик, то резонансные явления, возникшие в этих органах под воздействием внешних вибраций или звуковых волн, могли бы привести к трагическим последствиям: разрыву органов, повреждению связок и т.п. Однако такие явления при умеренных внешних воздействиях практически не наблюдаются, так как коэффициент затухания биологических систем достаточно велик. Тем не менее резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.
1.7.7. Автоколебания
Существуют и такие колебательные системы, которые сами регулируют периодическое восполнение растраченной энергии и поэтому могут колебаться длительное время.
Незатухающие колебания, существующие в какой-либо системе при отсутствии переменного внешнего воздействия, называются автоколебаниями , а сами системы – автоколебательными.
Амплитуда и частота автоколебаний зависят от свойств в самой автоколебательной системе, в отличие от вынужденных колебаний они не определяются внешними воздействиями.
Рис. 1.7.8. Блок-схема автоколебаний |
Во многих случаях автоколебательные системы можно представить тремя основными элементами (рис.1.7.8): 1) собственно колебательная система; 2) источник энергии; 3) регулятор поступления энергии в собственно колебательную систему. Колебательная система каналом обратной связи (рис. 6) воздействует на регулятор, информирую регулятор о состоянии этой системы.
Классическим примером механической автоколебательной системы являются часы, в которых маятник или баланс являются колебательной системой, пружина или поднятая гиря – источником энергии, а анкер – регулятором поступления энергии от источника в колебательную систему.
Многие биологические системы (сердце, легкие и др.) являются автоколебательными. Характерный пример электромагнитной автоколебательной системы – генераторы автоколебательных колебаний.
1.7.8. Сложение колебаний одного направления
Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты:
x 1 =a 1 cos(ω 0 t + α 1 ), x 2 =a 2 cos(ω 0 t + α 2 ).
Гармоническое колебание можно задать с помощью вектора, длина которого равна амплитуде колебаний, а направление образует с некоторой осью угол, равный начальной фазе колебаний. Если этот вектор вращается с угловой скоростью ω 0 , то его проекция на выбранную ось будет изменяться по гармоническому закону. Исходя из этого, выберем некоторую ось Х и представим колебания с помощью векторов а 1 и а 2 (рис.1.7.9).
Вектор а является суммой векторов а 1 и а 2 . Проекция вектора а на ось Х равна сумме проекций векторов а 1 и а 2 :
Следовательно, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью, что и векторы а 1 и а 2 . Таким образом, результирующее движение представляет собой гармоническое колебание с частотой ω 0 , амплитудой а и начальной фазой α. Используя теорему косинусов, находим значение амплитуды результирующего колебания:
Из рис.1.7.6 следует, что
.
Схемы, в которых колебания изображаются графически в виде векторов на плоскости, называются векторными диаграммами.
Из формулы 1.7.40 следует. Что если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме амплитуд складываемых колебаний. Если разность фаз складываемых колебаний равна , то амплитуда результирующего колебания равна . Если частоты складываемых колебаний не одинаковы, то векторы, соответствующие этим колебаниям будут вращаться с разной скоростью. В этом случае результирующий вектор пульсирует по величине и вращается с непостоянной скоростью. Следовательно, в результате сложения получается не гармоническое колебание, а сложный колебательный процесс.
1.7.9. Биения
Рассмотрим сложение двух гармонических колебаний одинакового направления мало отличающихся по частоте. Пусть частота одного из них равна ω , а второго ω+∆ω, причем ∆ω 1 =a cos ωt, x 2 =a cos(ω+∆ω)t.
Сложив эти выражения и используя формулу для суммы косинусов, получаем:
(во втором множителе пренебрегаем членом по сравнению с ω). График функции (1.7.41) изображен на рис. 1.7.10.
Колебания (1.7.41) можно рассматривать как гармоническое колебание частотой ω, амплитуда которого изменяется по закону . Эта функция является периодической с частотой в два раза превышающей частоту выражения, стоящего под знаком модуля, т.е. с частотой ∆ω. Таким образом, частота пульсаций амплитуды, называемая частотой биений, равна разности частот складываемых колебаний.
1.7.10. Сложение взаимно перпендикулярных колебаний (фигуры Лиссажу)
Если материальная точка совершает колебания как вдоль оси х, так и вдоль оси у, то она будет двигаться по некоторой криволинейной траектории. Пусть частота колебаний одинакова и начальная фаза первого колебания равна нулю, тогда уравнения колебаний запишем в виде:
х=а cos ωt, y=b cos(ωt+α), | (1.7.42) |
где α – разность фаз обоих колебаний.
Выражение (1.7.42) представляет заданное в параметрическом виде уравнение траектории, по которой движется точка, участвующая в обоих колебаниях. Если исключить из уравнений (1.7.42) параметр t, то получим уравнение траектории в обычном виде:
Уравнение (1.7.43) представляет собой уравнение эллипса, оси которого ориентированы произвольно относительно координатных осей х и у. Ориентация эллипса и величина его полуосей зависят от амплитуд а и b и разности фаз α. Рассмотрим некоторые частные случаи:
α=mπ (m=0, ±1, ±2, …). В этом случае эллипс вырождается в отрезок прямой
где знак плюс соответствует нулю и четным значениям m (рис 1.7.8.а), а знак минус – нечетным значениям m (рис.1.7.8.б). Результирующее колебание является гармоническим с частотой ω, амплитудой , совершающимся вдоль прямой (1.7.44), составляющей с осью х угол (рис.1.7.11).
(m=0, ±1, ±2, …). В этом случае уравнение имеет вид
Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны амплитудам (рис. 1.7.12). Если амплитуды равны, то эллипс становится окружностью.
Если частоты взаимно перпендикулярных колебаний отличаются на малую величину ∆ω, их можно рассматривать как колебания одинаковой частоты, но с медленно изменяющейся разностью фаз. В этом случае уравнения колебаний можно записать
x=a cos ωt, y=b cos[ωt+(∆ωt+α)]
и выражение ∆ωt+α рассматривать как разность фаз, медленно изменяющуюся со временем по линейному закону. Результирующее движение в этом случае происходит по медленно изменяющейся кривой, которая будет последовательно принимать форму, отвечающую всем значениям разности фаз от -π до+π.
Если частоты взаимно перпендикулярных колебаний не одинаковы, то траектория результирующего движения имеет вид довольно сложных кривых, называемых фигурами Лиссажу . Пусть, например, частоты складываемых колебаний относятся как 1 : 2 и разность фаз π/2. Тогда уравнения колебаний имеют вид
x=a cos ωt, y=b cos[2ωt+π/2].
За то время, пока вдоль оси х точка успевает переместиться из одного крайнего положения в другое, вдоль оси у, выйдя из нулевого положения, она успевает достигнуть одного крайнего положения, затем другого и вернуться. Вид кривой показан на рис. 1.7.13. Кривая при таком же соотношении частот, но разности фаз равной нулю показана на рис.1.7.14. Отношение частот складываемых колебаний обратно отношению числа точек пересечения фигур Лиссажу с прямыми, параллельными осям координат. Следовательно, по виду фигур Лиссажу можно определить соотношение частот складываемых колебаний или неизвестную частоту. Если одна из частот известна.
Чем ближе к единице рациональная дробь, выражающая отношение частот колебаний, тем сложнее получающиеся фигуры Лиссажу.
1.7.11. Распространение волн в упругой среде
Если в каком-либо месте упругой (твёрдой жидкой или газообразной) среды возбудить колебания её частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью υ. процесс распространения колебаний в пространстве называется волной .
Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия.
В зависимости от направлений колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волн. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновения только продольных волн. В твёрдой среде возможно возникновение как продольных, так и поперечных волн.
На рис. 1.7.12 показано движение частиц при распространении в среде поперечной волны. Номерами 1,2 и т. д. обозначены частицы отстающие друг от друга на расстояние, равное (¼ υT), т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент, времени принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения равновесия частица 2. По пришествие ещё четверти периода первая часть будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнёт смещаться вверх из положения равновесия. В момент времени равный T, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как чальный момент. Волна к моменту времени T, пройдя путь (υT), достигнет частицы 5.
На Рис. 1.7.13 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево.
Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разряжения частиц (места сгущения обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со скоростью υ.
На рис. 1.7.15 и 1.7.16 показаны колебания частиц, положения, равновесия которых лежат на оси x. В действительности колеблются не только частицы, расположенные вдоль оси x, а совокупность частиц, заключённых в некотором объёме. Распространяясь от источников колебаний, волновой процесс охватывает всё новые и новые части пространства, геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания ещё не возникли.
Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются не подвижными (они проходят через положения равновесия частиц, колеблющихся в одной фазе ). Волновой фронт всё время перемещается.
Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер.
Пусть плоская волна распространяется вдоль оси x . Тогда все точки сферы, положения, равновесия которых имеет одинаковую координату x (но различие значения координат y и z), колеблются в одинаковой фазе.
На Рис. 1.7.17 изображена кривая, которая даёт смещение ξ из положения равновесия точек с различными x в некоторый момент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функций ξ ( x, t) для некоторого фиксированного момента времени t. Такой график можно строить как для продольной так и для поперечной волны.
Расстояние λ, на короткое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны . Очевидно, что
где υ – скорость волны, T – период колебаний. Длину волны можно определить также как расстояние между ближайшими точками среды, колеблющимися с разностью фаз, равной 2π (см. рис. 1.7.14)
Заменив в соотношении(1.7.45) T через 1/ν (ν – частота колебаний), получим
К этой формуле можно придти также из следующих соображений. За одну секунду источник волн совершает ν колебаний, порождая в среде при каждом колебании один “гребень” и одну “впадину” волны. К тому моменту, когда источник будет завершать ν – е колебание, первый “гребень” успеет пройти путь υ. Следовательно, ν “гребней” и “впадин” волны должны уложиться в длине υ.
1.7.12. Уравнение плоской волны
Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат x, y, z и времени t :
(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической относительно времени t , и относительно координат x, y, z. . Периодичность по времени вытекает из того, что точки, отстоящие друг от друга на расстоянии λ , колеблются одинаковым образом.
Найдем вид функции ξ в случае плоской волны, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси x и, поскольку все точки волновой поверхности колеблются одинаково, смещение ξ будет зависеть только от x и t :
Пусть колебания точек, лежащих в плоскости x = 0 (рис. 1.7.18), имеют вид
Найдем вид колебания точек в плоскости, соответствующей произвольному значению x . Для того, чтобы пройти путь от плоскости x =0 до этой плоскости, волне требуется время ( υ – cкорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости x , будут отставать по времени на τ от колебаний частиц в плоскости x = 0 , т.е. будут иметь вид
Итак, уравнение плоской волны (продольной, и поперечной), распространяющейся в направлении оси x , выглядит следующим образом:
Величина а представляет собой амплитуду волны. Начальная фаза волны α определяется выбором начала отсчета x и t . При рассмотрении одной волны начало отсчета времени и координаты обычно выбирают так, чтобы α была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись нулю, как правило, не удается.
Зафиксируем какое – либо значение фазы, стоящей в уравнении (1.7.47), положив
Это выражение определяет связь между временем t и тем местом x , в котором фаза имеет зафиксированное значение. Вытекающее из него значение dx/dt дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (1.7.48), получим
Таким образом, скорость распространения волны υ уравнении (1.7.47) есть скорость перемещения фазы, в связи с чем, ее называют фазовой скоростью.
Согласно (1.7.49) dx/dt> 0, следовательно, уравнение (1.7.47) описывает волну, распространяющуюся в сторону возрастания x .
Волна, распространяющаяся в противоположном направлении, описывается уравнением
Действительно, приравняв константе фазу волны (1.7.50) и продифференцировав получившееся равенство, придем к соотношению
,
из которого следует, что волна (1.7.50) распространяется в сторону убывания x .
Уравнению плоской волны можно придать симметричный относительно x и t вид. Для этого введем величину
которая называется волновым числом. Умножив числитель и знаменатель последнего выражения на частоту ν, и вспомнив, что , можно представить волновое число в виде
Раскрыв в уравнении волны
круглые скобки и используя волновое число, придем к следующему уравнению плоской волны, распространяющейся вдоль оси :
Уравнение волны, распространяющейся в сторону убывания x :
При выводе формулы (1.7.53) мы предполагали, что амплитуда колебаний не зависит от x . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается – наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону:
Соответственно уравнение плоской волны, с учетом затухания , имеет следующий вид:
(a 0 – амплитуда в точках плоскости x = 0).
© ФГОУ ВПО Красноярский государственный аграрный университет, 2013
Лекция №7. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
5.1. Свободные гармонические колебания и их характеристики.
Колебания − это движения или процессы, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебания, повторяются через равные промежутки времени. Наиболее важными характеристиками колебания являются: смещение, амплитуда, период, частота, циклическая частота, фаза.
Простейший вид периодических колебаний − это гармонические колебания. Гармонические колебания − это периодическое изменение во времени физической величины, происходящее по закону косинуса или синуса. Уравнение гармонических колебаний имеет вид
1) Смещение x − это величина, характеризующая колебания и равная отклонению тела от положения равновесия в данный момент времени.
2) Амплитуда колебаний А − это величина, равная максимальному отклонению тела от положения равновесия.
3) Период колебаний T − это наименьший промежуток времени, через который система, совершающая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Единица измерения [T] = 1 с .
За период система совершает одно полное колебание.
4) Частота колебаний ν − это величина, равная числу колебаний, совершаемых в единицу времени (за 1 секунду). Единица измерения [ν]= 1 Гц . Частота определяется по формуле
5) Циклическая частота ω − это величина, равная числу полных колебаний, совершающихся за 2π секунд. За единицу циклической частоты принята угловая частота, при которой за время 1 с совершается 2π циклов колебаний, [ω]= с -1 . Циклическая частота связана с периодом и частотой колебаний соотношением
6) Фаза колебаний ωt + φ0 − фаза указывает местоположение колеблющейся точки в данный момент времени.
7) Начальная фаза φ0 − указывает местоположение колеблющейся точки в момент времени t = 0 .
5.2. Сложение одинаково направленных и взаимно перпендикулярных гармонических колебаний.
Сложение нескольких колебаний одинакового направления можно изображать графически с помощью метода векторной диаграммы.
Гармоническое колебание может быть представлено графически с помощью вращающегося вектора амплитуды А . Для этого из произвольной точки O , выбранной на оси Ox , под углом φ0 , равным начальной фазе колебания, откладывается вектор амплитуды А . Модуль этого вектора равен амплитуде рассматриваемого колебания. Если этот вектор привести во вращение с угловой скоростью ω , равной циклической частоте колебаний, то проекция конца вектора амплитуды будет перемещаться по оси Ox и принимать значения от -A до +A , а колеблющаяся величина изменяться со временем по закону x = Acos(ωt + φ0)
1. Сложение одинаково направленных гармонических колебаний.
Сложим два гармонических колебания одинакового направления и одинаковой частоты. Смещение x колеблющегося тела будет суммой смещений x1 и x2 , которые запишутся следующим образом:
Представим оба колебания на векторной диаграмме. Построим по правилу сложения векторов результирующий вектор А . Проекция этого вектора на ось Ox равна сумме проекций слагаемых векторов x=x2+x2 , следовательно, вектор А представляет собой результирующее колебание. Определим результирующий вектор амплитуды А потеореме косинусов
Так как угол между векторами А 1 и А 2 равен φ=π-(φ2-φ1) , то cos[π-(φ2-φ1)]=-cos(φ2-φ1) , следовательно, результирующая амплитуда колебания будет равна
Определим начальную фазу результирующего колебания.
Из рисунка видно, что начальная фаза результирующего колебания
Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, также совершает гармонические колебания в том же направлении и с той же частотой.
2. Сложение взаимно перпендикулярных гармонических колебаний.
Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты, происходящих во взаимно перпендикулярных направлениях. Допустим, что материальная точка совершает колебания как вдоль оси X , так и вдоль оси Y . Выберем начало отсчета времени так, чтобы начальная фаза первого колебания была равна нулю. Тогда уравнения колебаний примут вид
где φ − разность фаз обоих колебаний.
Уравнение траектории получим, исключив из уравнений (5.2.6) параметр времени t: cosωt= $$xover A_1$$ , а sinωt= $$sqrt<1-cos^2 ωt>=sqrt<1-x^2over A_1^2>$$ Разложим косинус во втором из уравнений (5.2.6)
Перепишем это уравнение в следующем виде
После преобразования, получим
Используя тригонометрическое тождество cos 2 φ+sin 2 φ=1 , окончательно получим
Это есть уравнение эллипса, оси которого ориентированы относительно координатных осей произвольно. Ориентация эллипса и величина его полуосей зависят от амплитуд колебаний и разности фаз.
Рассмотрим несколько частных случаев и определим форму траектории для них:
a) разность фаз равна нулю [φ=0]
В этом случае $$( < xover A_1 >- < yover A_2 >)^2=0$$ , откуда получается уравнение прямой
Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой ω и амплитудой $$A= sqrt+A_2<^2>>$$ .
2) разность фаз равна ±π[φ=±π] .
В этом случае $$( < xover A_1 >- < yover A_2 >)^2=0$$ , откуда получается уравнение прямой
3) Разность фаз равна ± $$πover 2$$ [φ=± $$π over2$$ ] . Тогда
Уравнение эллипса, причем полуоси эллипса равны соответствующим амплитудам колебаний. При равенстве амплитуд колебаний эллипс вырождается в окружность. Случаи φ=+ $$πover 2$$ и φ=- $$πover 2$$ отличаются направлением движения. Если φ=+ $$πover 2$$ , то уравнения колебаний имеют следующий вид: x=A1cosωt , и y=-A2sinωt и движение совершается по часовой стрелке. Если φ=- $$πover 2$$ , , то уравнения колебаний имеют следующий вид: x=A1cosωt , и y=A2sinωt и движение совершается против часовой стрелке.
Рассмотренные три частных случая представлены на рис. 5.2.3, а, б, в. Рис
4) Если частоты складываемых взаимно перпендикулярных колебаний различны, то траектория результирующего движения имеет вид сложных кривых, называемых фигурами Лиссажу . Форма этих кривых определяется соотношением амплитуд, частот и разности фаз складываемых колебаний.
На рис. 5.2.4 показаны фигуры Лиссажу, которые получаются при соотношении частот 1:2 и различной разности фаз колебаний.
По виду фигур можно определить неизвестную частоту по известной частоте или определить соотношение частот складываемых колебаний.
5.3. Дифференциальное уравнение гармонических колебаний и его решение.
Продифференцируем по времени уравнение гармонических колебаний
и получим выражение для скорости
Из сравнения уравнений (5.3.1) и (5.3.2) следует, что скорость опережает смещение по фазе на π/2 . Амплитуда скорости равна Аω .
Продифференцировав уравнение (2) еще раз по времени, получим выражение для ускорения
Как следует из уравнения (5.3.3), ускорение и смещение находятся в противофазе. Это означает, что в тот момент времени, когда смещение достигает наибольшего, положительного значения, ускорение достигает наибольшего по величине отрицательного значения, и наоборот. Амплитуда ускорения равна Аω 2 (рис. 5.3.1).
Из выражения (5.3.3) следует дифференциальное уравнение гармонических колебаний
Результирующая сила, действующая на материальную точку массой m , определяется с помощью второго закона Ньютона. Проекция этой силы
Эта сила пропорциональна смещению точки из положения равновесия и направлена в сторону противоположную этому смещению, т. е. она стремится вернуть точку в положение равновесия, и поэтому называется возвращающей силой . Таким образом, гармонические колебания происходят под действием силы F , пропорциональной смещению x и направленной к положению равновесия,
где k=mω 2 − постоянный коэффициент. Возвращающая сила подобна упругим силам, возникающим в телах при их деформации. Такая зависимость силы от смещения характерна для упругой силы, поэтому силы иной физической природы, удовлетворяющие зависимости (5.3.6) называются квазиупругими силами .
Материальная точка, совершающая колебания под действием квазиупругой силы, называется линейным осциллятором . Ее динамическое поведение описывается дифференциальным уравнением
ω0 − собственная частота осциллятора.
Решение этого уравнения дает закон движения линейного осциллятора x=Acos(ωt+φ0) .
5.4. Энергия гармонических колебаний.
В процессе колебаний происходит превращение кинетической энергии в потенциальную энергию и обратно (рис. 5.4.1). В момент наибольшего отклонения от положения равновесия полная энергия состоит только из потенциальной энергии, которая достигает своего наибольшего значения. Далее при движении к положению равновесия потенциальная энергия уменьшается, при этом кинетическая энергия возрастает. При прохождении через положение равновесия полная энергия состоит лишь из кинетической энергии, которая в этот момент достигает своего наибольшего значения. Далее при движении к точке наибольшего отклонения происходит уменьшение кинетической и увеличение потенциальной энергии. И при наибольшем отклонении потенциальная опять максимальная, а кинетическая энергия рана нулю. И т. д.
Потенциальная энергия тела, совершающего гармонические колебания равна
Кинетическая энергия тела, совершающего гармонические колебания равна
Таким образом, полная энергия гармонического колебания, состоящая из суммы кинетической и потенциальной энергий, определяется следующим образом
Следовательно, полная энергия гармонического колебания
оказывается постоянной в случае гармонических колебаний.
Найдем среднее значение потенциальной энергии за период колебания
Аналогично получается для среднего значение кинетической энергии
Таким образом, и потенциальная, и кинетическая энергии изменяются относительно своих средних значений по гармоническому закону с частотой 2ω и амплитудой ωt kA 2
5.5. Пружинный, математический и физический маятники.
Рассмотрим несколько простейших систем, совершающих свободные гармонические колебания.
1) Пружинный маятник − это материальная точка массой m , подвешенная (или расположенная горизонтально) на абсолютно упругой пружине жесткостью k и совершающий гармонические колебания под действием упругой силы. Пусть шайба массой m , прикрепленная к пружине, совершает колебания. Для составления дифференциального уравнения колебаний запишем второй закон Ньютона в проекции на ось Ox Fупр=ma . Упругая сила Fупр=-kx . Приравнивая последние два уравнения и, используя определение ускорения тела, получим
Сравнивая уравнения (5.3.7) и (5.5.2) получаем, что пружинный маятник совершает гармонические колебания с частотой
Так как период колебаний определяется по формуле T= $$2πover ω_0$$ , то период колебаний пружинного маятника
2) Математический маятник − это идеализированная система, состоящая из невесомой и нерастяжимой нити, на которой подвешена материальная точка массой m . Отклонение маятника от положения равновесия будем характеризовать углом φ , образованным нитью с вертикалью.
При отклонении маятника от положения равновесия возникает вращательный момент M , равный по величине mqlsinφ .Он имее акое же направление, что стремится вернуть маятник в положение равновесия. Следовательно, выражение для вращательного момента имеет вид: M=-mqlsinφ . Применим основно ательного движения
где L=ml 2 − момент инерции материальной точки. Тогда, учитывая, что угловое ускорение ε= $$d^2φover dt^2$$ , получим
Если рассматривать малые колебания, то sinφ≈φ . Получим
То есть при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону с частотой
Период колебаний математического маятника
3) Физический маятник − это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной оси, проходящей через точку, не совпадающую с центром масс тела. При отклонении маятника от положения равновесия на угол φ возникает вращательный момент, стремящийся вернуть маятник в положение равновесия. Этот момент равен M=-mglsinφ .
Согласно основному уравнению динамики вращательного движения получаем
где I − момент инерции маятника относительно оси, проходящей через точку подвеса.
Если рассматривать малые колебания, то sinφ≈φ . Получим
То есть при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону с частотой
Период колебаний математического маятника
Из сопоставления формул периодов колебаний математического и физического маятников T=2π $$sqrt$$ и T=2π $$sqrt$$ получается, что математический маятник с длиной
будет иметь такой же период колебаний, что и данный физический маятник.
Величина lпр (отрезок OO′) называется приведенной длиной физического маятника − это длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, и лежащая на расстоянии приведенной длины от оси вращения, называется центром качания (О′) физического маятника. Точка подвеса О и центр качания обладают свойством взаимности: при переносе точки подвеса в центр качания прежняя точка подвеса становится новым центром качания.
[spoiler title=”источники:”]
http://www.kgau.ru/distance/2013/et4/001/01_07.htm
http://physics.belstu.by/mechanics_lk/mechanics_lk7.html
[/spoiler]
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 апреля 2020 года; проверки требуют 3 правки.
Графики функций f(x) = sin(x) (красная линия) и g(x) = cos(x) (зелёная линия) в декартовой системе координат. По оси абсцисс отложены значения полной фазы.
Гармони́ческие колеба́ния — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.
Математическое описание[править | править код]
Уравнение гармонического колебания имеет вид
или
- ,
где
- х — отклонение колеблющейся величины в текущий момент времени t от среднего за период значения (например, в кинематике — смещение, отклонение колеблющейся точки от положения равновесия);
- А — амплитуда колебания, т.е. максимальное за период отклонение колеблющейся величины от среднего за период значения, размерность A совпадает с размерностью x;
- ω (радиан/с, градус/с) — циклическая частота, показывающая, на сколько радиан (градусов) изменяется фаза колебания за 1 с;
- (радиан, градус) — полная фаза колебания (сокращённо — фаза, не путать с начальной фазой);
- (радиан, градус) — начальная фаза колебаний, которая определяет значение полной фазы колебания (и самой величины x) в момент времени t = 0.
Дифференциальное уравнение, описывающее гармонические колебания, имеет вид
Любое нетривиальное[1] решение этого дифференциального уравнения — гармоническое колебание с циклической частотой
Примеры[править | править код]
При равномерном движении точки по окружности гармоническое колебание совершает проекция (ортогональная) этой точки на любую прямую, лежащую в той же плоскости[2]. Колебания, близкие к гармоническим, совершает под действием силы тяготения маленький грузик, подвешенный на тонкой длинной нити — математический маятник — при малых амплитудах[3]. Гармонические колебания под действием силы упругости совершает закреплённый между двумя пружинами на горизонтальной направляющей грузик[4]. Гармоническими являются крутильные колебания раскручивающегося под действием силы упругости подвешенного вертикально грузика, такие же колебания совершает балансир механических часов[5].
Вообще, материальная точка совершает гармонические колебания, если они происходят в результате воздействия на точку силы, пропорциональной смещению колеблющейся точки от положения равновесия и направленной противоположно этому смещению.
Примеры гармонических колебаний имеются не только в механике — так, в LC-контуре без диссипативных потерь изменения заряда на ёмкости, напряжения и тока в цепи со временем происходят по гармоническому закону.
Виды колебаний[править | править код]
Эволюция во времени перемещения, скорости и ускорения при гармоническом движении
- Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (при ненулевой диссипации, в системе после возбуждения происходят затухающие колебания).
- Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы вынужденные колебания были гармоническими, достаточно, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила (воздействие) менялась со временем как гармоническое колебание (то есть, чтобы зависимость от времени этой силы тоже, в свою очередь, была синусоидальной).
Применение[править | править код]
Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам:
- Очень часто[6] малые колебания, как свободные, так и вынужденные, которые происходят в реальных системах, можно считать имеющими форму гармонических колебаний или очень близкую к ней.
- Как установил в 1822 году Фурье, широкий класс периодических функций может быть разложен на сумму тригонометрических компонентов — в ряд Фурье. Другими словами, любое периодическое колебание может быть представлено как сумма гармонических колебаний с соответствующими амплитудами, частотами и начальными фазами. Среди слагаемых этой суммы существует гармоническое колебание с наименьшей частотой, которая называется основной частотой, а само это колебание — первой гармоникой или основным тоном, частоты же всех остальных слагаемых, гармонических колебаний, кратны основной частоте, и эти колебания называются высшими гармониками или обертонами — первым, вторым и т.д.[7]
- Для широкого класса систем откликом на гармоническое воздействие является гармоническое колебание (свойство линейности), при этом связь воздействия и отклика является устойчивой характеристикой системы. С учётом предыдущего свойства это позволяет исследовать прохождение колебаний произвольной формы через системы.
См. также[править | править код]
- Гармонический осциллятор
- Математический маятник
- Физический маятник
- Псевдогармонические колебания
- Биения
Примечания[править | править код]
- ↑ То есть не равное тождественно нулю.
- ↑ Ландсберг, 2003, с. 17.
- ↑ Ландсберг, 2003, с. 2,25.
- ↑ Ландсберг, 2003, с. 27—29.
- ↑ Ландсберг, 2003, с. 29—30.
- ↑ Подразумеваемым условием здесь является то, что свойства системы должны быть постоянны во времени (что в реальности достаточно часто выполняется, по крайней мере, приближенно).
- ↑ Ландсберг, 2003, с. 43.
Литература[править | править код]
- Элементарный учебник физики / Под ред. Г.С. Ландсберга. — 13-е изд. — М.: ФИЗМАТЛИТ, 2003. — Т. 3. Колебания и волны. Оптика. Атомная и ядерная физика.
- Хайкин С. Э. Физические основы механики. — М., 1963.
- А. М. Афонин. Физические основы механики. — Изд. МГТУ им. Баумана, 2006.
- Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. — М.: Физматлит, 1959. — 572 с.