Как найти длину если известен период колебаний

Как выразить длину через формулу периода колебаний математического маятника?

Георгий Пилипенко



Профи

(544),
на голосовании



7 лет назад

Голосование за лучший ответ

Вика Лапина

Ученик

(135)


7 лет назад

задай вопрос мне по этому поводу твоему http://vk.com/id175795693

П.А.Н.

Мудрец

(13212)


7 лет назад

Из этого (см. внизу)?

L = (T^2 * g) / (4 * pi^2)

Георгий ПилипенкоПрофи (544)

7 лет назад

Thanks

Георгий ПилипенкоПрофи (544)

7 лет назад

мне уже не надо)

Похожие вопросы

1

габба­с
[215K]

4 года назад 

Если известен период колебаний математического маятника, то длину маятника можно подсчитать по известной формуле периода математического маятника Т=2*пи*корень квадратный из( L/g), где g=9,8 м/с2 – ускорение свободного падения на Земле (приблизительно). Оттуда длина маятника L = (Т^2*g)/(4*пи^2) = (1*9,8)/(4*3,14*3,14­) = 9,8/39,48 = 0,248 м или примерно 25 см.

Ответ: 25 см.

автор вопроса выбрал этот ответ лучшим

комментировать

в избранное

ссылка

отблагодарить

Задания

Версия для печати и копирования в MS Word

Тип 12 № 311544

i

Период колебания математического маятника T  (в секундах) приближенно можно вычислить по формуле T=2 корень из: начало аргумента: l конец аргумента , где   l  — длина нити (в метрах). Пользуясь данной формулой, найдите длину нити маятника, период колебаний которого составляет 7 с.

Спрятать решение

Решение.

Выразим длину маятника:

l= левая круглая скобка дробь: числитель: T, знаменатель: 2 конец дроби правая круглая скобка в квадрате .

Подставляя, получаем:

l= левая круглая скобка дробь: числитель: 7, знаменатель: 2 конец дроби правая круглая скобка в квадрате =12,25.

Ответ: 12,25.

Аналоги к заданию № 46: 311544 337952 338064 … Все

Источник: ГИА-2012. Ма­те­ма­ти­ка. Кон­троль­ная ра­бо­та.(1 вар)

Спрятать решение

·

Прототип задания

·

Помощь

Физика 9 класс

Анонимный вопрос

1 июня 2018  · 8,0 K

ОтветитьУточнить

Ирина С.6,1K

Книги, звери и еда – это хобби навсегда.  · 19 янв 2019

Формула для расчета периода математического маятника:

T=2*π*sqrt(l/g), где l-длина математического маятника, g-ускорение свободного падения. Из нее можно получить формулу для l:

l=(T^2*g)/(4*π^2)=(4^2*10)/(4*3.14^2)=4.06 м.

7,9 K

Комментировать ответ…Комментировать…

Вы знаете ответ на этот вопрос?

Поделитесь своим опытом и знаниями

Войти и ответить на вопрос

Как найти длину через период колебаний

  • Как найти период и частоту колебаний
  • Как найти резонансную частоту
  • Как измерить частоту

При решении задач на нахождение периода и частоты колебаний, а также длины волны используйте следующие физические и математические константы:
— скорость света в вакууме: c=299792458 м/с (некоторые исследователи, в частности, креационисты, считают, что в прошлом данная физическая константа могла иметь другую величину);

— скорость звука в воздухе при атмосферном давлении и нуле градусов по Цельсию: Fзв=331 м/с;

— число «пи» (до пятидесятого знака): π=3,14159265358979323846264338327950288419716939937510 (безразмерная величина).

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей­ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес­ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю­щихся величин, например, для затухающих колебаний.

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Повторяющиеся движения или процессы, которые воспроизводят все состояния предыдущего цикла являются периодическими. Одной из характеристик периодических процессов или колебаний является период.

Период колебаний — Это время за которое периодический процесс проходит полностью один цикл.

Для того чтобы найти период колебаний, необходимо взять определенный временной интервал и подсчитать количество циклов, после чего воспользоваться формулой:

∆t определенный временной интервал, секунд
N количество циклов, шт.
f частота колебаний (число циклов в одну секунду), Герц

Пример определения периода колебаний

Например возьмем кусочек пластилина и подвесим его на нитке. Отведем нитку от положения равновесия и отпустим. На сотовом телефоне в момент отпускания запустим секундомер. Отсчитаем 10 циклов, т.е. нить 10 раз вернется в ту же точку из которой мы ее отпустили. Секундомер показал 14.35 секунд, соответственно приблизительный период колебаний нити 1.435 секунд.

Добавить комментарий