Как найти площадь кольца образованного двумя окружностями

Площадь кольца

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Площадь кольца

Чтобы найти площадь кольца, ограниченного двумя концентрическими окружностями, воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Прощать кольца
Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности

=

у внутренней окружности

=

Ответ: S =

0

Округление числа π: Округление ответа:

Просто введите радиусы или диаметры окружностей, и получите ответ.

Площадь кольца по толщине и любому другому параметру

Прощать кольца по толщине
Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

=

Ответ: S =

0

Округление числа π: Округление ответа:

Просто введите толщину кольца и любой другой известный вам параметр, и получите ответ.

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула

S = π ⋅ (R² – r²)

Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² – 2²) = 3.14 ⋅ (9 – 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула

S = π/4 ⋅ (D² – d²)

Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² – 2²) = 0.785 ⋅ (16 – 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r

Формулы

S = π/4 ⋅ (D² – (D – 2t)²)

S = π/4 ⋅ ((d + 2t)² – d²)

S = π ⋅ (R² – (R – t)²)

S = π ⋅ ((r + t)² – r²)

Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² – (5 – 2 ⋅ 2)²) = 0.785 ⋅ (25 – 1) = 18.84 см²

См. также

Площадь кольца через радиусы

{S = pi (R^2 – r^2)}

С помощью приведенных калькулятора и формул можно рассчитать площадь кольца через радиусы или диаметры онлайн.

Кольцо — плоская геометрическая фигура, ограниченная двумя концентрическими окружностями.

Содержание:
  1. калькулятор площади кольца
  2. формула площади кольца через радиусы
  3. формула площади кольца через диаметры
  4. примеры задач

Формула площади кольца через радиусы

Площадь кольца через радиусы

{S = pi (R^2 – r^2)}

R – внешний радиус кольца

r – внутренний радиус кольца

Формула площади кольца через диаметры

Площадь кольца через диаметры

{S= dfrac{pi}{4}(D^2 – d^2)}

D – внешний диаметр кольца

d – внутренний диаметр кольца

Примеры задач на нахождение площади кольца

Задача 1

Найдите площадь кольца ограниченного двумя окружностями с общим центром и радиусами 3 см и 7 см.

Решение

В условии задачи даны радиусы ограничивающих кольцо окружностей, поэтому воспользуемся первой формулой.

S = pi (R^2 – r^2) = pi (7^2 – 3^2) = pi (49 – 9) = 40pi approx 125.66371 : см^2

Ответ: 108 cdot 0.866 approx 93.53074 : см^2

Полученный ответ можно проверить с помощью калькулятора .

Задача 2

Найдите площадь кольца, ограниченного концентрическими окружностями, радиусы которых равны dfrac{4}{sqrt{pi}} и dfrac{2}{sqrt{pi}}.

Решение

Задача похожа на предыдущую, поэтому алгоритм ее решения будет тот же.

S = pi (R^2 – r^2) = pi ({Big(dfrac{4}{sqrt{pi}} Big) }^2 – {Big(dfrac{2}{sqrt{pi}} Big) }^2) = pi (dfrac{16}{pi} – dfrac{4}{pi}) = pi dfrac{12}{pi} = 12 : см^2

Ответ: 12 : см^2

Наш калькулятор может производить вычисления с выражениями. Для того, чтобы ввести радиусы из условия их нужно записать в понятном для калькулятора формате:

dfrac{4}{sqrt{pi}} : rarr : 4/sqrt(pi)

dfrac{2}{sqrt{pi}} : rarr : 2/sqrt(pi)

Если ввести данные в таком формате, можно проверить ответ .

Задача 3

Найдите площадь кольца образованного двумя окружностями с общим центром если радиусы равны 15 и 13.

Решение

Задача аналогична предыдущим.

S = pi (R^2 – r^2) = pi (15^2 – 13^2) = pi (225 – 169) = 56pi approx 175.92919 : см^2

Ответ: 56pi approx 175.92919 : см^2

Проверка .

Задача 4

Найдите площадь кольца ограниченного двумя окружностями с общим центром и радиусами 13 и 12 см.

Решение

Задача аналогична предыдущим.

S = pi (R^2 – r^2) = pi (13^2 – 12^2) = pi (169 – 144) = 25pi approx 78.53982 : см^2

Ответ: 25pi approx 78.53982 : см^2

Проверка .

Площадь кольца

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности
у внутренней окружности

Площадь кольца по толщине и любому другому параметру

Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула

Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² – 2²) = 3.14 ⋅ (9 – 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула

Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² – 2²) = 0.785 ⋅ (16 – 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r

Формулы

Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² – (5 – 2 ⋅ 2)²) = 0.785 ⋅ (25 – 1) = 18.84 см²

Найти площадь кольца образованного двумя окружностями

Площадь кольца

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности
у внутренней окружности

Площадь кольца по толщине и любому другому параметру

Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула

Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² — 2²) = 3.14 ⋅ (9 — 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула

Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² — 2²) = 0.785 ⋅ (16 — 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r

Формулы

Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² — (5 — 2 ⋅ 2)²) = 0.785 ⋅ (25 — 1) = 18.84 см²

Задача: определить площадь кольца, если известны радиусы

Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O — общий центр окружностей

Найти площадь кольца: S

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула площади внешнего круга.

Формула площади внутреннего круга.

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Ответ:

Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14

Найдите площадь кольца, ограниченного двумя окружностями с общим центром и радиусами R1 и R2, R12

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,900
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Задача: определить площадь кольца, если известны радиусы

Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O – общий центр окружностей

Найти площадь кольца: S

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула площади внешнего круга.

Формула площади внутреннего круга.

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Ответ:

Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/nayti-ploschad-koltsa-obrazovannogo-dvumya-okruzhnostyami

http://www-formula.ru/zadacha/solve-area-annulus-know-radius

[/spoiler]

назад к списку всех задач


Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.


Рисунок кольца для задачи

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O – общий центр окружностей


Найти площадь кольца: S


Решение

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула разницы площадей

Формула площади внешнего круга.

площадь внешнего круга

Формула площади внутреннего круга.

площадь внутреннего круга

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Формула площади кольца

Вставляем значения.

Полученный результат


Ответ:

ответ



Число пи приблизительноеРезультат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли  π ≈ 3.14



Калькулятор для расчета площади кольца



назад к списку всех задач

Подробности

Опубликовано: 06 сентября 2017

Обновлено: 13 августа 2021

как найти площадь кольца

Ксения Владимировна



Ученик

(97),
закрыт



10 лет назад

Лучший ответ

Serg

Высший разум

(170536)


10 лет назад

По формуле S = П*(R^2 – r^2)
(Кольцо имеет 2 радиуса – внешний R и внутренний r)

Остальные ответы

Stas Garcia

Гуру

(2802)


10 лет назад

3.14 умножить на радиус кольца в квадрате.

Jonatan Barbara-Barbie

Ученик

(111)


7 лет назад

П*(R^2–r^2);
где:
R – Радиус большего круга
r – Радиус меньшего круга
П – Число Пи или 3.1415926535……

Похожие вопросы

Добавить комментарий