Как найди скорость по физике

Скорость
{vec  v}={frac  {{mathrm  {d}}{vec  r}}{{mathrm  {d}}t}}
Размерность LT−1
Единицы измерения
СИ м/с
СГС см/с
Примечания
вектор
Классическая механика
История…

Фундаментальные понятия

  • Пространство
  • Время
  • Масса
  • Скорость
  • Сила
  • Механическая работа
  • Энергия
  • Импульс

Формулировки

  • Ньютоновская механика
  • Лагранжева механика
  • Гамильтонова механика
  • Формализм Гамильтона — Якоби
  • Уравнения Рауса
  • Уравнения Аппеля
  • Теория Купмана — фон Неймана

Разделы

  • Прикладная механика
  • Небесная механика
  • Механика сплошных сред
  • Геометрическая оптика
  • Статистическая механика

Учёные

  • Галилей
  • Кеплер
  • Ньютон
  • Эйлер
  • Лаплас
  • Д’Аламбер
  • Лагранж
  • Гамильтон
  • Коши
См. также: Портал:Физика

Ско́рость (стандартное обозначение: {vec {v}}, от англ. velocity, исходно от лат. vēlōcitās) — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта. По определению, равна производной радиус-вектора точки по времени[1]. В СИ измеряется в метрах в секунду.

В русском языке этим же словом называют и скалярную величину — либо модуль вектора скорости, либо алгебраическую скорость точки, то есть проекцию вектора {vec {v}} на касательную к траектории точки[2]. В некоторых других языках для скалярной скорости имеются отдельные наименования, например англ. speed, лат. celeritas[значимость факта?].

Термин «скорость» используют в науке и в широком смысле, понимая под ним быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени, но также в пространстве или любой другой). Так, например, говорят об угловой скорости, скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.

Понятие «скорость» в классической механике[править | править код]

Случай материальной точки[править | править код]

Вектор скорости (мгновенной скорости) материальной точки в каждый момент времени определяется как производная по времени радиус-вектора {{vec  r}} текущего положения этой точки, так что[3]:

{vec  v}={{mathrm  {d}}{{vec  r}} over {mathrm  {d}}t}equiv v_{{tau }}{{vec  tau }},

где {{vec  tau }}equiv {mathrm  {d}}{{vec  r}}/{mathrm  {d}}s — единичный вектор касательной, проходящей через текущую точку траектории (он направлен в сторону возрастания дуговой координаты s движущейся точки), а v_{{tau }}equiv {dot  {s}} — проекция вектора скорости на направление упомянутого единичного вектора, равная производной дуговой координаты по времени и именуемая алгебраической скоростью точки. В соответствии с приведёнными формулами, вектор скорости точки всегда направлен вдоль касательной, а алгебраическая скорость точки может отличаться от модуля v этого вектора лишь знаком[4]. При этом:

Пройденный точкой путь {tilde {s}} за промежуток времени от t_0 до t, находится как

{displaystyle {tilde {s}}=int _{t_{0}}^{t}|{dot {s}}|,mathrm {d} t;}.

Когда алгебраическая скорость точки всё время неотрицательна, путь совпадает с приращением дуговой координаты за время от t_0 до t (если же при этом начало отсчёта дуговой координаты совпадает с начальным положением движущейся точки, то {tilde {s}} будет просто совпадать с s).

Иллюстрация средней и мгновенной скорости

Если алгебраическая скорость точки не меняется с течением времени (или, что то же самое, модуль скорости постоянен), то движение точки называется[5] равномерным (алгебраическое касательное ускорение {ddot  {s}} при этом тождественно равно нулю).

Предположим, что {{ddot  {s}}}geqslant {0}. Тогда при равномерном движении скорость точки (алгебраическая) будет равна отношению пройденного пути {tilde {s}} к промежутку времени t-t_{0}, за который этот путь был пройден:

{{dot  {s}}}^{{,{mathrm  {cp}}}}={{tilde  {s}} over t-t_{0}};.

В общем же случае аналогичные отношения

{{vec  v}}^{{,,{mathrm  {cp}}}}={{{vec  r}}-{{vec  r}}_{0} over t-t_{0}}equiv {Delta {{vec  r}} over Delta {t}} и {{dot  {s}}}^{{,{mathrm  {cp}}}}={s-s_{0} over t-t_{0}}equiv {Delta {s} over Delta {t}}

определяют соответственно среднюю скорость точки[6] и её среднюю алгебраическую скорость; если термином «средняя скорость» пользуются, то о величинах {vec {v}} и {dot  {s}} говорят (чтобы избежать путаницы) как о мгновенных скоростях.

Различие между двумя введёнными выше понятиями средней скорости состоит в следующем. Во-первых, {{vec  v}}^{{,,{mathrm  {cp}}}} — вектор, а {{dot  {s}}}^{{,{mathrm  {cp}}}} — скаляр. Во-вторых, эти величины могут не совпадать по модулю. Так, пусть точка движется по винтовой линии и за время своего движения проходит один виток; тогда модуль средней скорости этой точки будет равен отношению шага винтовой линии (то есть расстояния между её витками) ко времени движения, а модуль средней алгебраической скорости — отношению длины витка ко времени движения.

Случай тела конечных размеров[править | править код]

Для тела протяжённых размеров понятие «скорости» (тела как такового, а не одной из его точек) не может быть определено; исключение составляет случай мгновенно-поступательного движения. Говорят, что абсолютно твёрдое тело совершает мгновенно-поступательное движение, если в данный момент времени скорости всех составляющих его точек равны[7]; тогда можно, разумеется, положить скорость тела равной скорости любой из его точек. Так, например, равны скорости всех точек кабинки колеса обозрения (если, конечно, пренебречь колебаниями кабинки).

В общем же случае скорости точек, образующих твёрдое тело, не равны между собой. Так, например, для катящегося без проскальзывания колеса модули скоростей точек на ободе относительно дороги принимают значения от нуля (в точке касания с дорогой) до удвоенного значения скорости центра колеса (в точке, диаметрально противоположной точке касания). Распределение скоростей точек абсолютно твёрдого тела описывается кинематической формулой Эйлера.

Начальная скорость[править | править код]

Начальная скорость ({displaystyle {vec {v}}_{0}}) — это скорость материальной точки в момент, принимаемый за нуль по шкале времени (то есть при t = 0)[8].

Истолкование {displaystyle {vec {v}}_{0}} как скорости, с которой тело начинает движение, не вполне корректно, поскольку покоившееся тело в принципе не может начать двигаться с отличной от нуля скоростью. При такой формулировке неявно подразумевается, что в короткий промежуток времени {displaystyle t=[-Delta tldots 0]} действовала большая по величине сила, на пренебрежимо малом участке разогнавшая тело до скорости {displaystyle {vec {v}}={vec {v}}_{0}} к моменту t = 0.

Запись скорости в разных системах координат[править | править код]

В декартовых координатах[править | править код]

В прямоугольной декартовой системе координат[9]:

{displaystyle mathbf {v} =v_{x}mathbf {i} +v_{y}mathbf {j} +v_{z}mathbf {k} .}

При этом {mathbf  r}=x{mathbf  i}+y{mathbf  j}+z{mathbf  k}, следовательно,

{displaystyle mathbf {v} ={frac {mathrm {d} (xmathbf {i} +ymathbf {j} +zmathbf {k} )}{mathrm {d} t}}={frac {mathrm {d} x}{mathrm {d} t}}mathbf {i} +{frac {mathrm {d} y}{mathrm {d} t}}mathbf {j} +{frac {mathrm {d} z}{mathrm {d} t}}mathbf {k} .}

Таким образом, компоненты вектора скорости — это скорости изменения соответствующих координат материальной точки[9]:

{displaystyle v_{x}={frac {mathrm {d} x}{mathrm {d} t}};v_{y}={frac {mathrm {d} y}{mathrm {d} t}};v_{z}={frac {mathrm {d} z}{mathrm {d} t}}.}

В цилиндрических координатах[править | править код]

Скорость в полярных координатах

В цилиндрических координатах R,varphi ,z[9]:

{displaystyle v_{R}={frac {mathrm {d} R}{mathrm {d} t}};v_{varphi }=R{frac {mathrm {d} varphi }{mathrm {d} t}};v_{z}={frac {mathrm {d} z}{mathrm {d} t}}.}

v_{varphi } носит название поперечной скорости, v_{R} — радиальной.

В сферических координатах[править | править код]

В сферических координатах R,varphi ,theta [9]:

{displaystyle v_{R}={frac {mathrm {d} R}{mathrm {d} t}};v_{varphi }=Rsin theta {frac {mathrm {d} varphi }{mathrm {d} t}};v_{theta }=R{frac {mathrm {d} theta }{mathrm {d} t}}.}

Для описания плоского движения иногда используются полярные координаты, которые можно рассматривать как частный случай цилиндрических (c {displaystyle z=} const) или сферических (с theta =pi /2).

Физическая и координатная скорости[править | править код]

В аналитической механике вышеприведённые и другие криволинейные координаты играют роль обобщённых координат; изменение положение тела описывается их зависимостью от времени. Производные от координат тела по времени при этом называются координатными скоростями (они могут иметь размерность отличную от м/c). Физической же скоростью является производная радиус-вектора по времени, а её составляющие в каждом случае задаются всем стоящим перед соответствующим ортом выражением.

Некоторые связанные со скоростью понятия[править | править код]

Ряд величин в классической механике выражается через скорость.

Импульс, или количество движения, — это мера механического движения точки, которая определяется как произведение массы точки на её скорость

{vec  p}=m{vec  v}.

Импульс является векторной величиной, его направление совпадает с направлением скорости. Для замкнутой системы выполняется закон сохранения импульса.

От скорости также зависит кинетическая энергия механической системы. Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения[10][11]:

{displaystyle T={frac {mv^{2}}{2}}+{frac {{mathcal {I}}{vec {omega }}^{2}}{2}},}

где  m — масса тела,  v — скорость центра масс тела, {mathcal  {I}} — момент инерции тела, {vec  omega } — угловая скорость тела.

Изменение скорости во времени характеризуется ускорением. Ускорение отражает изменение скорости как по величине (тангенциальное ускорение), так и по направлению (центростремительное ускорение)[12]:

{vec  a}={frac  {{mathrm  {d}}{vec  v}}{{mathrm  {d}}t}}={vec  a}_{tau }+{vec  a}_{n}={frac  {{mathrm  {d}}|{vec  v}|}{{mathrm  {d}}t}}{vec  e}_{tau }+{v^{2} over r}{vec  e}_{n},

где  r — радиус кривизны траектории точки.

Преобразования Галилея и Лоренца для скорости[править | править код]

В классической механике Ньютона скорости преобразуются при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея. Если скорость тела в системе отсчёта S была равна {vec {v}}, а скорость системы отсчёта S' относительно системы отсчёта S равна vec u, то скорость тела при переходе в систему отсчёта S' будет равна[9]

{displaystyle {vec {v}}'={vec {v}}-{vec {u}}.}

Для скоростей, близких к скорости света, преобразования Галилея становятся несправедливы. При переходе из системы S в систему S' необходимо использовать преобразования Лоренца для скоростей[9]:

v_{x}'={frac  {v_{x}-u}{1-(v_{x}u)/c^{2}}},v_{y}'={frac  {v_{y}{sqrt  {1-{frac  {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},v_{z}'={frac  {v_{z}{sqrt  {1-{frac  {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},

в предположении, что скорость vec u направлена вдоль оси x системы S. В пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Скорость в релятивистской механике[править | править код]

Четырёхмерная скорость[править | править код]

Одним из обобщений понятия скорости является четырёхмерная скорость (скорость в релятивистской механике[9]). В специальной теории относительности каждому событию ставится в соответствие точка пространства Минковского, три координаты которого представляют собой декартовы координаты трёхмерного евклидова пространства, а четвёртая ― временну́ю координату ct, где c ― скорость света, t ― время события. Компоненты четырёхмерного вектора скорости связаны с проекциями трёхмерного вектора скорости следующим образом[9]:

v_{0}={frac  {c}{{sqrt  {1-{frac  {v^{2}}{c^{2}}}}}}};v_{1}={frac  {v_{x}}{{sqrt  {1-{frac  {v^{2}}{c^{2}}}}}}};v_{2}={frac  {v_{y}}{{sqrt  {1-{frac  {v^{2}}{c^{2}}}}}}};v_{3}={frac  {v_{z}}{{sqrt  {1-{frac  {v^{2}}{c^{2}}}}}}}.

Четырёхмерный вектор скорости является времениподобным вектором, то есть лежит внутри светового конуса[9].

Существует также понятие четырёхимпульс, временна́я компонента которого равна E/c (где E — энергия). Для четырёхмерного импульса выполняется равенство[13]:

{displaystyle p_{i}=m,v_{i}},

где v_{i} — четырёхмерная скорость.

Понятие «быстрота»[править | править код]

В релятивистской механике угол между касательной к мировой линии частицы и осью времени в базовой системе отсчёта носит название быстроты (обозначается theta ). Быстрота выражается формулой

theta =c,{mathrm  {Arth}},{frac  {v}{c}}={frac  {c}{2}}ln {frac  {1+{dfrac  {v}{c}}}{1-{dfrac  {v}{c}}}},

где {mathrm  {Arth}},x — ареатангенс, или гиперболический арктангенс. Быстрота стремится к бесконечности когда скорость стремится к скорости света. В отличие от скорости, для которой необходимо пользоваться преобразованиями Лоренца, быстрота аддитивна, то есть

theta '=theta +theta _{0},

где theta _{0} — быстрота системы отсчёта S' относительно системы отсчёта S.

Некоторые скорости[править | править код]

Космические скорости[править | править код]

Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос

Небесная механика изучает поведение тел Солнечной системы и других небесных тел. Движение искусственных космических тел изучается в астродинамике. При этом рассматривается несколько вариантов движения тел, для каждого из которых необходимо придание определённой скорости. Для вывода спутника на круговую орбиту ему необходимо придать первую космическую скорость (например, искусственный спутник Земли); преодолеть гравитационное притяжение позволит вторая космическая скорость (например, объект запущенный с Земли, вышедший за её орбиту, но находящийся в Солнечной системе); третья космическая скорость нужна чтобы покинуть звёздную систему, преодолев притяжение звезды (например, объект запущенный с Земли, вышедший за её орбиту и за пределы Солнечной системы); четвёртая космическая скорость позволит покинуть галактику.

В небесной механике под орбитальной скоростью понимают скорость вращения тела вокруг барицентра системы.

Скорости распространения волн[править | править код]

Скорость звука[править | править код]

Скорость звука — скорость распространения упругих волн в среде, определяется упругостью и плотностью среды. Скорость звука не является постоянной величиной и зависит от температуры (в газах), от направления распространения волны (в монокристаллах). При заданных внешних условиях обычно не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и скорость звука зависит от частоты, говорят о дисперсии звука. Впервые измерена Уильямом Дерхамом. Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, поэтому при сжижении газа скорость звука возрастает.

Отношение скорости течения в данной точке газового потока к местной скорости распространения звука в движущейся среде называется числом Маха по имени австрийского учёного Эрнста Маха. Упрощённо, скорость, соответствующая 1 Маху при давлении в 1 атм (у земли на уровне моря), будет равна скорости звука в воздухе. Движение аппаратов со скоростью, сравнимой со скоростью звука, сопровождается рядом явлений, которые называются звуковой барьер. Скорости от 1,2 до 5 Махов называются сверхзвуковыми, скорости выше 5 Махов — гиперзвуковыми.

Скорость света[править | править код]

Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 секунды.

Скорость света в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме. Традиционно обозначается латинской буквой «c» (произносится как [це]). Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства пространства-времени в целом. По современным представлениям, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.

Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году. Теперь ввиду современного определения метра скорость света считается равной точно 299792458 м/с[14].

Скорость гравитации[править | править код]

Скорость гравитации — скорость распространения гравитационных воздействий, возмущений и волн. До сих пор остаётся не определённой экспериментально, но согласно общей теории относительности должна совпадать со скоростью света.

Единицы измерения скорости[править | править код]

Линейная скорость:

  • Метр в секунду, (м/с), производная единица системы СИ
  • Километр в час, (км/ч)
  • узел (морская миля в час)
  • Число Маха, 1 Мах равен скорости звука; Max n в n раз быстрее. Как единица, зависящая от конкретных условий, должна дополнительно определяться.
  • Скорость света в вакууме (обозначается c)

Угловая скорость:

  • Радианы в секунду, принята в системах СИ и СГС. Физическая размерность 1/с.
  • Обороты в секунду (в технике)
  • градусы в секунду, грады в секунду

Соотношения между единицами скорости[править | править код]

  • 1 м/с = 3,6 км/ч
  • 1 узел = 1,852 км/ч = 0,514 м/c
  • Мах 1 ~ 330 м/c ~ 1200 км/ч (зависит от условий, в которых находится воздух)
  • c = 299 792 458 м/c

Исторический очерк[править | править код]

Две стадии движения брошенного тела по теории Авиценны: отрезок АВ — период «насильственного стремления», отрезок ВС — период «естественного стремления» (падение вертикально вниз)

Автолик из Питаны в IV веке до н. э. определил равномерное движение так: «О точке говорится, что она равномерно перемещается, если в равные времена она проходит равные и одинаковые величины». Несмотря на то, что в определении участвовали путь и время, их отношение считалось бессмысленным[15], так как сравнивать можно было только однородные величины и скорость движения являлась чисто качественным, но не количественным понятием[16]. Живший в то же время Аристотель делил движение на «естественное», когда тело стремится занять своё естественное положение, и «насильственное», происходящее под действием силы. В случае «насильственного» движения произведение величины «двигателя» и времени движения равно произведению величины «движимого» и пройденного пути, что соответствует формуле Ft=ms, или F=mv[15]. Этих же взглядов придерживался Авиценна в XI веке, хотя и предлагал другие причины движения[17], а также Герард Брюссельский в конце XII —
начале XIII века. Герард написал трактат «О движении» — первый европейский трактат по кинематике — в котором сформулировал идею определения средней скорости движения тела (при вращении прямая, параллельная оси вращения, движется «одинаково с любой своей точкой», а радиус — «одинаково со своей серединой»)[18].

В 1328 году увидел свет «Трактат о пропорциях или о пропорциях скоростей при движении» Томаса Брадвардина, в котором он нашёл несоответствие в физике Аристотеля и связи скорости с действующими силами. Брадвардин заметил, что по словесной формуле Аристотеля если движущая сила равна сопротивлению, то скорость равна 1, в то время как она должна быть равна 0. Он также представил свою формулу изменения скорости, которая хоть и была не обоснована с физической точки зрения, но представляла собой первую функциональную зависимость скорости от причин движения. Брадвардин называл скорость «количеством движения»[19]. Уильям Хейтсбери, в трактате «О местном движении» ввёл понятие мгновенной скорости. В 1330—1340 годах он и другие ученики Брадвардина доказали так называемое «мертонское правило», которое означает равенство пути при равноускоренном движении и равномерном движении со средней скоростью[20].

Всякая широта движения, униформно приобретаемая или теряемая, соответствует своему среднему градусу, так что столько же в точности будет пройдено благодаря этой приобретаемой широте, сколько и благодаря среднему градусу, если бы тело двигалось всё время с этим средним градусом.

«Мертонское правило» в формулировке Суайнсхеда[20]

В XIV веке Жан Буридан ввёл понятие импетуса[21], благодаря чему была определена величина изменения скорости — ускорение. Николай Орем, ученик Буридана, предложил считать, что благодаря импетусу ускорение остаётся постоянным (а не скорость, как полагал сам Буридан), предвосхитив, таким образом, второй закон Ньютона[22]. Орем также использовал графическое представление движения. В «Трактате о конфигурации качеств и движения» (1350) он предложил изображать отрезками перпендикулярных прямых количество и качество движения (время и скорость), иными словами, он нарисовал график изменения скорости в зависимости от времени[23].

По мнению Тартальи, только вертикальное падение тела является «естественным» движением, а все остальные — «насильственные», при этом у первого типа скорость постоянно возрастает, а у второго — убывает. Два этих типа движения не могут проистекать одновременно. Тарталья считал, что «насильственные» движения вызваны ударом, результатом которого является «эффект», определяемый скоростью[24]. С критикой работ Аристотеля и Тартальи выступал Бенедетти, который вслед за Оремом пользовался понятиями импетуса и ускорения[25].

В 1609 году в работе «Новая астрономия» Кеплер сформулировал закон площадей, согласно которому секторная скорость планеты (площадь, описываемая отрезком планета — Солнце, за единицу времени) постоянна[26]. В «Началах философии» Декарт сформулировал закон сохранения количества движения, которое в его понимании есть произведение количества материи на скорость[27], при этом Декарт не принимал во внимание тот факт, что количество движения имеет не только величину, но и направление[28]. В дальнейшем понятие «количество движения» развивал Гук, который понимал его как «степень скорости, присущей в определённом количестве вещества»[29]. Гюйгенс, Валлис и Рен добавили к этому определению направление. В таком виде во второй половине XVII века количество движения стало важным понятием в динамике, в частности в работах Ньютона и Лейбница[30]. При этом Ньютон не определял в своих работах понятие скорости[31]. По-видимому, первая попытка явного определения скорости была сделана Валлисом в его трактате «Механика или геометрический трактат о движении» (1669—1671): «Скорость есть свойство движения, отражающееся в сравнении длины и времени; а именно, она определяет, какая длина в какое время проходится»[32].

В XVII веке были заложены основы математического анализа, а именно интегрального и дифференциального исчисления. В отличие от геометрических построений Лейбница, теория «флюксий» Ньютона строится на потребностях механики и имеет в своём основании понятие скорости. В своей теории Ньютон рассматривает переменную величину «флюенту» и её скорость изменения — «флюксию»[33].

Скорости в природе и технике[править | править код]

Основной источник: [34]

Метры в секунду
Скорость улитки {displaystyle 1{,}4times 10^{-2}}
Скорость черепахи {displaystyle 5{,}0times 10^{-2}}
Средняя скорость здорового человека (произвольный темп) {displaystyle 1{,}43}
Рекорд скорости человека в ходьбе на 50 км {displaystyle 3{,}4} ({displaystyle 3{,}92})
Рекорд скорости человека в беге на дистанции 100 м {displaystyle 1{,}0times 10^{1}} ({displaystyle 1{,}044times 10^{1}})
Скорость гепарда 31
Максимальная скорость полёта сокола 100
Максимальная скорость локомотива на железной дороге {displaystyle 110}
Максимальная скорость автомобиля {displaystyle 340}[35]
Средняя скорость молекулы азота при температуре 0 °C 500
Максимальная скорость пассажирского реактивного самолёта 700
Скорость движения Луны по орбите вокруг Земли 1000
Скорость искусственного спутника Земли {displaystyle 8000}
Скорость движения Земли по орбите вокруг Солнца {displaystyle 30000}
Скорость движения Солнца по орбите вокруг центра Галактики {displaystyle 230000}
Скорость электронов в кинескопе телевизора {displaystyle 1{,}0times 10^{8}}
Скорость движения самых далёких галактик {displaystyle 1{,}4times 10^{8}}
Максимальная скорость протонов в Большом адронном коллайдере 299 792 455
Скорость частицы Oh-My-God 299792457,9999999999999985310169558
Скорость безмассовых частиц (фотонов, глюонов, гравитонов) 299 792 458
Скорость тахионов и сверхбрадионов > 299792458

Скорости движения живых существ[править | править код]

  • Сапсан (самое быстрое животное): самая высокая зарегистрированная скорость — 389 км/ч[36];
  • Гепард (самое быстрое наземное животное): самая высокая зарегистрированная скорость — 98 км/ч[37];
  • Меч-рыба: от 100 до 130 км в час[37];
  • Чёрный марлин: самая высокая зарегистрированная скорость — 105 км/ч[36];
  • Вилорогая антилопа: самая высокая зарегистрированная скорость — 88,5 км/ч[36];
  • Лошадь (американский квортерхорс): 88 км/ч[36];
  • Человек: самая высокая зарегистрированная скорость — 44,72 км/ч (Усэйн Болт)[37].

Рекорды скорости транспортных средств[править | править код]

Самый быстрый рукотворный объект — Parker Solar Probe, 150 км/с (относительно Солнца) в 2021 году[38].

Абсолютный рекорд скорости в воздухе был поставлен в 1976 году американским самолетом-разведчиком Lockheed SR-71 Blackbird — 3529,56 км/ч.

Рекорд скорости на земле был установлен в 2003 году на ракетных санях и составил 10 325 км/ч или 2868 м/с (по другим данным, 10 430 км/ч)[39]

Самая высокая скорость на наземном управляемом транспортном средстве была достигнута на реактивном автомобиле Thrust SSC в 1997 году — 1228 км/ч.

Рекорд скорости на воде был поставлен в 1978 году австралийским судном с реактивным газотурбинным двигателем Spirit of Australia[en] — 511,11 км/ч[40]

См. также[править | править код]

  • Кинематика

Примечания[править | править код]

  1. Маркеев, 1990, с. 15.
  2. Старжинский, 1980, с. 154.
  3. Маркеев, 1990, с. 15—17.
  4. Старжинский, 1980, с. 154—155.
  5. Старжинский, 1980, с. 163.
  6. Старжинский, 1980, с. 152.
  7. Маркеев, 1990, с. 46—47.
  8. См. Всегда ли начальная скорость равна нулю? в справочнике «Студворк».
  9. 1 2 3 4 5 6 7 8 9 Скорость // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  10. Главный редактор А. М. Прохоров. Кинетическая энергия // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
  11. Главный редактор А. М. Прохоров. Вращательное движение // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
  12. Главный редактор А. М. Прохоров. Ускорение // Физический энциклопедический словарь.. — 1983. Физическая энциклопедия
  13. Главный редактор А. М. Прохоров. Импульс // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
  14. Определение метра Архивная копия от 26 июня 2013 на Wayback Machine (англ.) Резолюция 1 XVII Генеральной конференции по мерам и весам (1983)
  15. 1 2 Яковлев, 2001, с. 21.
  16. Яковлев, 2001, с. 34.
  17. Яковлев, 2001, с. 29.
  18. Яковлев, 2001, с. 31—32.
  19. Яковлев, 2001, с. 32—34.
  20. 1 2 Яковлев, 2001, с. 35.
  21. Яковлев, 2001, с. 35—36.
  22. Яковлев, 2001, с. 37.
  23. Яковлев, 2001, с. 37—38.
  24. Яковлев, 2001, с. 43.
  25. Яковлев, 2001, с. 45.
  26. Яковлев, 2001, с. 51—52.
  27. Яковлев, 2001, с. 59.
  28. Яковлев, 2001, с. 68.
  29. Яковлев, 2001, с. 77.
  30. Яковлев, 2001, с. 91.
  31. Яковлев, 2001, с. 96.
  32. Яковлев, 2001, с. 72—73.
  33. Яковлев, 2001, с. 64—66.
  34. Кабардин О.Ф., Орлов В.А., Пономарёва А.В. Факультативный курс физики. 8 класс. — М.: Просвещение, 1985. — Тираж 143 500 экз. — С. 44
  35. FIA World Land Speed Records (англ.). Federation Internationale de l’Automobile (10 июня 2012). Дата обращения: 3 декабря 2020. Архивировано 31 марта 2019 года.
  36. 1 2 3 4 12 самых быстрых животных в мире. Дата обращения: 17 июня 2022. Архивировано 29 июля 2021 года.
  37. 1 2 3 12 самых быстрых животных в мире. Дата обращения: 17 июня 2022. Архивировано 22 сентября 2020 года.
  38. Самый быстрый объект, созданный человеком. Зонд Parker Solar Probe развил скорость около 150 км/с. Дата обращения: 17 июня 2022. Архивировано 17 мая 2021 года.
  39. Test sets world land speed record. www.af.mil. Дата обращения: 19 апреля 2016.
  40. Назло рекордам: почему люди не хотят передвигаться очень быстро

Литература[править | править код]

  • Маркеев А. П.  Теоретическая механика. — М.: Наука, 1990. — 416 с. — ISBN 5-02-014016-3.
  • Старжинский В. М.  Теоретическая механика. — М.: Наука, 1980. — 464 с.
  • Яковлев В. И.  Предыстория аналитической механики. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — 328 с. — ISBN 5-93972-063-3.

Содержание:

  • Определение и формула скорости
  • Скорость в разных системах координат
  • Частные случаи формул для вычисления скорости
  • Единицы измерения скорости
  • Примеры решения задач

Определение и формула скорости

Определение

Мгновенной скоростью (или чаще просто скоростью) материальной точки называется физическая величина равная первой производной от радиус–вектора
$bar{r}$ точки по времени (t). Обозначают скорость обычно буквой v.
Это векторная величина. Математически определение вектора мгновенной скорости записывается как:

$$bar{v}=frac{d bar{r}}{d t}=dot{bar{r}}(1)$$

Скорость имеет направление указывающее направление движения материальной точки и лежит на касательной к траектории ее движения.
Модуль скорости можно определить как первую производную от длины пути (s) по времени:

$$v=frac{d s}{d t}=dot{s}(2)$$

Скорость характеризует быстроту перемещения в направлении движения точки по отношениюк рассматриваемой системе координат.

Скорость в разных системах координат

Проекции скорости на оси декартовой системы координат запишутся как:

$$v_{x}=dot{x} ; v_{y}=dot{y} ; v_{z}=dot{z}(3)$$

Следовательно, вектор скоростив декартовых координатах можно представить:

$$bar{v}=dot{x} bar{i}+dot{y} bar{j}+dot{z} bar{k}(4)$$

где $bar{i}, bar{j}, bar{k}$ единичные орты. При этом модуль вектора скорости находят при помощи формулы:

$$v=sqrt{(dot{x})^{2}+(dot{y})^{2}+(dot{z})^{2}}(5)$$

В цилиндрических координатах модуль скорости вычисляют при помощи формулы:

$$v=sqrt{(dot{rho})^{2}+(rho dot{varphi})^{2}+(dot{z})^{2}}(6)$$

в сферической системе координат:

$$v=sqrt{(r)^{2}+(r dot{theta})^{2}+(r dot{varphi} sin theta)^{2}}(7)$$

Частные случаи формул для вычисления скорости

Если модуль скорости не изменяется во времени, то такое движение называют равномерным (v=const).
При равномерном движении скорость можно вычислить, применяя формулу:

$$v=frac{s}{t}(8)$$

где s– длина пути, t – время, за которое материальная точка преодолела путь s.

При ускоренном движении скорость можно найти как:

$$bar{v}=int_{t_{1}}^{t_{2}} bar{a} d t(9)$$

где $bar{a}$ – ускорение точки,
$t_{1} leq t leq t_{2}$ – отрезок времени, в течение которого рассматривается скорость.

Если движение является равнопеременным, то применяется следующая формула для вычисления скорости:

$$bar{v}=bar{v}_{0}+bar{a} t$$

где $bar{v}_0$ – начальная скорость движения,
$bar{a} = const$ .

Единицы измерения скорости

Основной единицей измерения скорости в системе СИ является: [v]=м/с2

В СГС: [v]=см/с2

Примеры решения задач

Пример

Задание. Движение материальной точки А задано уравнением:
$x=2 t^{2}-4 t^{3}$ . Точка начала свое движение при
t0=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.

Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для
этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:

$$v=frac{d x}{d t}=4 t-12 t^{2}(1.1)$$

Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент
времении сравним результат с нулем:

$$v(t=0,5)=4 cdot 0,5-12(0,5)^{2}=-1 lt 0$$

Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.

Ответ. Против оси X.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Скорость материальной точки является функцией от времени вида:

$$v=10left(1-frac{t}{5}right)$$

где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии
10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.

Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:

$$x=int_{0}^{t} v d t=int_{0}^{t} 10left(1-frac{t}{5}right) d t=10 t-frac{10 t^{2}}{2 cdot 5}=10 t-t^{2}(2.1)$$

Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:

$$x=10 cdot 10-(10)^{2}=0(m)$$

Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат
приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:

$$
begin{array}{c}
10 t-t^{2}=10(2.2) \
t_{1}=5+sqrt{15} approx 8,8(c) ; t_{2}=5-sqrt{15} approx 1,13(c)
end{array}
$$

Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:

$$10 t-t^{2}=-10(2.3)$$

При решении уравнения (2.3) нам подойдет корень равный:

$$t_{3}=5+6=11 (c)$$

Ответ. 1) $x=0 mathrm{~m}$ 2) $t_{1}=8,8 mathrm{c}, t_{2}=1,13 c, t_{3}=11 c$

Читать дальше: Формула средней скорости.

Как найти скорость время расстояние

Добавлено: 12 февраля 2023 в 16:40

Скорость время расстояние в ЕГЭ по физике

Время, расстояние и скорость — три фундаментальные величины, играющие важную роль как в математике, так и в физике. Все вместе они образуют движение, которое и изучают в школе, начиная с 4-го класса.

Теория о данных факторах важна и для подготовки к ЕГЭ по физике, поэтому сегодня мы разберемся с тем, как найти скорость, время, расстояние и понять взаимодействия между указанными параметрами.

К преимуществам темы относят то, что формулы для этих величин просты в запоминании. А при возникновении трудностей в обучении поможет таблица скорости, времени и расстояния.

Скорость время расстояние в ЕГЭ по физике

Скорость время расстояние в ЕГЭ по физике

Понятие о времени

Временем называют особый маркер, который и определяет то или иное событие. Мы сталкиваемся с этим явлением регулярно. Время помогает нам разобраться, где прошлое, где настоящее, а где будущее.

Невозможно рассматривать теорию движения без учета времени, т.к. оно выступает в роли одной из пространственных координат. Однако, если в случае с прочими осями мы можем двигаться в разных направлениях, в случае со временем перемещение возможно только вперед или назад.

Чтобы получше понять правило, нужно разобраться с тем, что собой представляет пространство. Потому что оно объясняет смысл указанного параметра.

Время изучают с античных времен, но с тех пор в науке осталось немало неразрешенных вопросов касающихся этой величины:

  • Что является причиной течения времени;
  • Почему время может двигаться только по одному направлению;
  • Действительно ли время является одномерным параметром;
  • Возможно ли определить кванты этого параметра и как это сделать.

Скорость время расстояние в ЕГЭ по физике

Скорость время расстояние в ЕГЭ по физике

Расстояние и скорость

Если смотреть на обсуждаемые величины с точки зрения физики, то можно определить их так:

Расстояние — это размерность длинны, которую выражают в единицах длинны. В каких единицах измеряется пройденный путь? Данная величина измеряется в метрах.

В математике расстоянием называют меру пройденного пути (другими словами, длину). Для определения изменений положений используются оси координат. В чем измеряется расстояние и как обозначается в математике?

В физике путь измеряется в метрах, секундах или часах. А в математике путь измеряется в единицах длины (метрах, метрах в секунду, километрах в час).

Расстояние представляет меру пройденного пути, длину. Для определения изменений положений используют оси координат. Обычно координатная ось X направлена вдоль направления движения, а Y — перпендикулярно ей. В физике координатной осью обычно называют ось, в направлении которой изменяется физическая величина.

В процессе нахождения пройденного пути по общей формуле крайне важную роль играет еще один фактор, называемый скоростью. Она представляет собой параметр быстроты движения объектов.

Скорость время расстояние в ЕГЭ по физике

Скорость время расстояние в ЕГЭ по физике

Скорость можно определить, если известны время и пройденный путь. Подставив эти величины в формулу для пройденного пути, получим формулу для нужного нам неизвестного.

Скорость — параметр скалярный, и путь измеряется в единицах расстояния, а скорость в единицах времени.

Её отмечают, как одну из важнейших математических величин. По причине этого для её определения существуют формулы, которые используются во многих смежных математических дисциплинах.

Эти формулы не только позволяют определить скорость, но и позволяют вывести новые формулы для таких величин, как ускорение, сила, вес и др. На практике для определения скорости используют две основные формулы: формулу скорости равноускоренного движения и формулу ускорения.

Скорость при равноускоренном движении – это скорость тела после истечения определенного промежутка времени.

Скорость время расстояние в ЕГЭ по физике

Скорость время расстояние в ЕГЭ по физике

Общая формула

Время, расстояние и скорость — это фундаментальные, взаимосвязанные параметры. Изучая один из них, невозможно проигнорировать другие ключевые элементы.

Взаимосвязь этих трех величин отображается в общей формуле S = V * t (формула пройденного пути в физике и математике).

  • S — обозначает расстояние;
  • V — обозначает скорость;
  • t — обозначается время, что было потрачено на весь путь.

Выучив это равенство, вы сможете легко определить любой из трех параметров.

Например, S = V * t — это формула того, как найти расстояние, зная скорость и время. Зная расстояние и скорость, вы поймете, как найти время:

  • t = S / V.

А параметр скорости определяется так:

  • V = S / t.

Занимайтесь на курсах ЕГЭ и ОГЭ в паре TwoStu и получите максимум баллов на экзамене:

Эксперт по подготовке к ЕГЭ, ОГЭ и ВПР

Эксперт по подготовке к ЕГЭ, ОГЭ и ВПР

Задать вопрос

Закончил Московский физико-технический институт (Физтех) по специальности прикладная физика и математика. Кандидат физико-математичеких наук. Преподавательский стаж более 10 лет. Соучредитель курсов ЕГЭ и ОГЭ в паре TwoStu.

Читайте также:

Одинаковое расстояние можно проехать за разное время.

Например, спортивная машина один километр может проехать быстрее, чем тяжело нагруженная грузовая машина. Одна и та же машина может ехать как быстрее, так и медленнее.

Понятие-скорости2.png

Обрати внимание!

Чтобы сравнить различные движения, необходимо знать скорость движения.

Скоростью движения называется величина, численно равная пути, проходимому телом в единицу времени.

Скорость вычисляется по формуле

v=st

, где

(s) — пройденный путь;

(t) — время.

Чем больше скорость, тем больший путь проходит тело за единицу времени. Если путь измеряется в метрах (м), а время движения в секундах (с), то скорость тела измеряется в (м/с).

Метр в секунду (м/с) — единица скорости в международной системе единиц.

Скорость можно выражать и в других единицах, например в км/с или в км/ч.
Различные примеры скорости:

1. скорость реактивного самолета — 3000 км/ч.

2. Скорость спринтера на дистанции — 37 км/ч.

3. Скорость звука в воздухе — 1224 км/ч.

4. Средняя скорость ходьбы — 6 км/ч.

5. Максимальная скорость гепарда — 114 км/ч.

6. Скорость улитки — 0,02 км/ч.

Давно планировал начать рубрику для школьников и студентов (а может и не только для них), в которой будет рассказываться о методах решения конкретных задачи и подготовке к экзаменам по физике. Само собой, в этой же рубрике мы поговорим и про егэ по физике, которое пугает ребят больше всего. Пусть рубрика на канале называется #инженер репетитор

Как решать задачи на скорость по физике

Ну а начнем с самого простого – научимся решать задачи на скорость. Эти задачки являются базой для дальнейшего понимания кинематики и динамики, и будут вылезать на протяжении всей механики.

Давайте сначала кратенько вспомним, а что такое скорость?

Кратко про скорость в физике

Скорость в физике – это то насколько быстро изменяется некоторая физическая величина с течением времени. Векторная величина, которая имеет размер и направление.

Например, мы нагреваем комнату. Каждый час система отопления прибавляет в комнате один градус. Значит, скорость прогрева комнаты составляет один градус в час. Или едем мы на велосипеде и за один час проезжаем 20 км. Значит, мы едем со скоростью 20 километров в час.

Вот собственно и всё, что нужно помнить из теории по этому вопросу.

Задачки на скорость обычно сконцентрированы в разделе механики, но вылезают и в других более серьезных разделах физики – скорость света, время течения какой-то реакции, скорость изменения чего-то.

Однако, разобравшись как решать подобные задачи для движения чего-то материального, разобраться и в других разделах проблем не составит. Так или иначе, когда говорят про задачи на скорость, обычно подразумевают именно кинематику и динамику.

Как решать задачи на скорость по физике

Итак, а какие собственно задачи в этой теме бывают и как их решать :)?

Задачи по скорости и их типы

Все задачи из этой темы обычно сводятся к тому, что нужно вытащить скорость из некоторой закономерности. Для этого нужно понимать и примерно помнить формулировки, связанные со скоростью. Их не так много. Не забываем и классические косяки – например привести всё к единой системе СИ.

Самые простые задачки на скорость

Как решать задачи на скорость по физике

Самый простой случай, когда нам известно пройденное расстояние и время, а нужно найти скорость:

S = v * t, значит V = S / t

Находим скорость в м/с или км/ч.

Задачки на “встречу”

Задачки на “встречу”. Кто-то едет навстречу кому-то или кто-то кого-то встретил. Обычно такие задачки, с помощью витиеватого условия, пытаются заморочить читателю голову, но суть-то от этого не меняется.

Как решать задачи на скорость по физике

Нам, например, задают граничные условия и указывают, что два мотоциклиста едут по одной дороге в одну сторону и выехали одновременно. Дальше они встретились. Ну и один другого подождал на точке встречи. Один едет 20 минут, а другой едет со скоростью 50 км/ч 60 минут. Найдите скорость первого мотоциклиста. Проблем быть не должно 🙂

Считаем по приведенной выше формуле сколько проехал второй мотоциклист до времени встречи. Из этого расстояния выражаем скорость первого мотоциклиста. Ведь в точке встречи расстояние, которое они проехали было одинаковым. Вот вам и решение.

Вообще, относительно, всей этой тематики, очень полезно освоить процесс рисования чертежей и схем. Нужно сделать доходчивую и понятную схему, которая будет в нужном масштабе отражать все перемещения и их особенность. Это будет залогом практически 100% успеха. Плюс внимательность!

Задачи на скорость в присутствии ускорения

Задачки на равноускоренное движение. Этот тип задач чуть сложнее. В дело вступает ускорение. Что такое ускорение? Это уже, в свою очередь, быстрота изменения скорости. Обозначается буквой а.

Обычно большая часть величин для решения такой задачи дана или выводится из нехитрой формулы:

V = Vo + аt, где V – скорость, а – ускорение, t – время движения.

В отличие от равномерного движения тело тут перемещается равноускоренно. Т.е. за каждый интервал времени скорость изменяется на одинаковую величину. Это применимо, например, к свободному падению с высоту. Пусть всё тот же мотоциклист едет первый час со скоростью 40 км/ч, а потом разгоняется до 60 км/ч и дальше ускоряется на 20 км/ч каждый час.

Опять-таки, все задачи тут завязаны на “кручу верчу обмануть хочу”. И да, на всякий случай отмечу, что все наши рассуждения из пунктов 1 и 2 тут тоже применимы, а ещё ускорение может получиться отрицательным и это не должно вас пугать.

Для решения задач из данной категории вам потребуется внимательно читать условие задачи и включить логику.

Задачки на среднюю скорость

Как решать задачи на скорость по физике

Задачки на среднюю скорость. Тоже очень просто решаются. Что такое средняя скорость – это скорость, полученная как среднее арифметическое от скоростей на каждом из участков.

V средняя = Весь путь (S1+S2+S3+…) / всё время (t1+t2+t3+…)

Ну а дальше опять комбинаторика :). Подставь-посчитай-вырази. Ловкость рук и внимательность.

Сразу отмечу, что когда мы обсуждаем скорость или ускорение в том разрезе, как мы его видели до сих пор, мы всегда подразумевали именно среднее значение величин. Или не совсем-таки среднее, но условно разбитое на удобное для вычисления количество участков. Усредненное если желаете. В жизни же всё немного иначе.

Речь идёт о том, что если вы представите реальное движение того же несчастного мотоциклиста (или любого другого тела), о котором мы уже много раз вспомнили, он не будет ехать равномерно. Он поедет с рваным ритмом. Там на светофоре постоял. Там перед ямой затормозил. Дальше мотобат его хлопнул, документы проверяет…Бед будет много! И всё это отражается на скорости и как следствие – на ускорении. Это значит, что он действительно может проехать за час свои 50 км, но при этом за полчаса он проедет не 25 км, как мы ожидаем, а всего лишь 10 км, а дальше нагонит разницу.

Если мы высчитываем интегральный или усредненный показатель, нам в принципе-то, фиолетово. Главное, чтобы цифры сошлись. Но если нам нужно определить значение в конкретный момент, то расчёты уже будут неточные. И тут…

задачки, где есть мгновенная скорость

Что такое мгновенная скорость?

Как решать задачи на скорость по физике

Это скорость в конкретный момент времени. Берем мотоциклиста, смотрим на его траекторию. Тыкаем пальцем в любую точку и узнаем, что там скорость пусть 10 км/ч. А через 5 минут уже 70 км/ч. А ещё через 10 минут – опять 10 км/ч. И вовсе не 50 км/ч на всём участке. Или ещё лучше – рисуем график изменения его расстояния в зависимости от времени. По такому графику всегда можно найти мгновенную скорость.

Как подступиться к подобным задачкам?

Для начала мы вспомним, что скорость это – первая производная от функции изменения расстояния по времени. Ведь производная – это и есть скорость изменения величины.

Дальше нам нужна функция, по которой изменялось расстояние. Без неё ничего решить не выйдет. Ведь данных попросту нет.

Исходя из формы кривой у нас будет её уравнение. Дальше нужно его дифференцировать.

Также в этом разделе часто вылезает некоторое дельта R. Что это такое и почему оно в формуле? Это всего лишь то самое значение расстояния (ничтожно малое), пройденного телом, за время стремящееся к нулю.

Ну и да…Для решения задач теперь нужно учитывать, что скорость мгновенная. Больше ничего не меняется.

Задачки на скорость при движении по кривой или окружности

Ещё мы можем столкнуться с понятием угловой скорости.

Начнем с того, что определим, чем вообще ситуация при движении по окружности отличается от ситуации с движением по обычной траектории? По сути дела ничем, кроме того, что путь будет высчитываться относительно окружности – будем считать длину окружности или дуги по известным всем формулам и использовать приведенные ранее зависимости для нахождения скорости.

Это тот самый случай, про который я говорю что учить без понимания бессмысленно. Ведь по сути нам сейчас нужно запомнить только формулы, приведенные раннее, а для криволинейного движения всё высчитаем, опираясь на них и понимая суть вопроса.

Но ко всему этому добавится угловая скорость. Что это? При движении материальной точки по окружности у неё есть линейная скорость, а есть угловая. Смотрим картинку.

Как решать задачи на скорость по физике

Линейная скорость обозначена V, а угловая W (омега). Линейная скорость – это та же скорость, что мы разобрали выше. Она же мгновенная в данном случае. Скорость материальной точки, направленна по касательной к траектории.

Угловая скорость – это то, насколько быстро вращается наш радиус R. Представьте себе часы со стрелками. Стрелка вращается с некоторой скоростью, или – изменяет угол с некоторой скоростью. Вот вам и угловая скорость 🙂 И всё! Считается вот так:

Как решать задачи на скорость по физике

Видите, логика совершенно такая же, как мы рассматривали выше.

Соответственно, в задачках на угловую скорость нужно мыслить аналогично самому первому пункту в нашем гиде. Это просто обычная материальная точка (тело) которая перемещается по окружности. Отличается только траектория ,а в отдельную тему это выделяют попросту для удобства восприятия.

Как решать задачи на скорость по физике

Также, если есть задачка на криволинейное движение, то нужно иметь представление о виде траектории движения тела. Если траектория сложная, то её разбивают на простые геометрические формы и суммируют результаты.

Если нужно сложить скорости

Ещё бывают случаи, когда нужно выполнять сложение скоростей. Например, сложить две скорости разных тел и найти результирующую. Или сложить скорости одного тела.

Опять-таки, бояться таких задачек не нужно!

Вся логика строится из навыка оперировать с векторами.

Скорость – это величина векторная. Значит и зарисовать её можно с помощью вектора определенной длины. Вектора скорости могут быть расположены в одной плоскости или в объеме.

Советую посмотреть вот этот ролик на моем канале

Если вектора скорости находятся в одной плоскости то всё совсем просто. Чаще всего решение сводится к операциям над прямоугольными треугольниками. Бывают и очень простые случаи – векторы скорости вообще направлены вдоль одной прямой. Уже неважно разно направлены они или сонаправлены.

Чуть сложнее ситуация, если векторы скорости расположены в объеме. Там мы приходим к единичным векторам. Ситуация более геморройная, но от того не более сложная.

Как решать задачи на скорость по физике

———————-

Итак, друзья!

Я постарался изложить все основы, которые могут помочь вам разобраться с решением задач на скорость. Очень надеюсь, что материал вам поможет.

Писать и разбирать каждую задачку – это довольно объемная штука. Такое нужно рассматривать уже в формате индивидуальных занятий.

Если я забыл осветить что-то в статье или не полностью/непонятно раскрыл теорию вопроса – пожалуйста пишите об этом в комментариях и я дополню статью и отвечу на ваш вопрос :)…Давайте вместе сделаем полезный и полный мануал. Ещё можно спросить меня в социальных сетях прямо на страничке https://vk.com/inznan или на лицекниге https://web.facebook.com/inznan

Ну и ответьте пожалуйста на вопрос, нужны ли такие материалы на моем проекте:

Добавить комментарий