Как найти емкостное сопротивление конденсатора

Что такое емкостное сопротивление

Содержание

  • 1 Определение
  • 2 Принцип работы
  • 3 Расчет
  • 4 Характеристики элемента
  • 5 Импеданс
  • 6 Расчет
  • 7 Применение
  • 8 Измерение и проверка
    • 8.1 Проверка
    • 8.2 Замер
    • 8.3 Измерение емкости
  • 9 Заключение
  • 10 Видео по теме

При проектировании электрический цепей, оборудования и электроприборов учитываются многие свойства проводников. Одним из важных свойств считается емкостное сопротивление.

Конденсаторы

В данной статье будет подробно описано — что такое емкостное сопротивление конденсатора. Так же будет приведена формула расчета такого параметра, описана работа конденсатора в цепи переменного тока и сферы применения ёмкостного сопротивления.

Определение

Сопротивлением называют физический эффект противодействия протеканию тока по любой электрической цепи. Этим свойством обладают все проводники электрического тока. Данная величина измеряется в Ом.

Емкостное электрическое сопротивление является величиной, благодаря которой можно понять, что в цепи присутствует конденсатор. Емкостные сопротивления конденсатора рассчитываются только для цепей переменного тока, без учета наличия в них резисторов.

Конденсатор обозначается на схеме буквой «С», а его ёмкостное сопротивление «Xc».

Принцип работы

Конденсатор с определенной ёмкостью работает по принципу периода, который состоит из заряда и разряда элемента. Период делится на 4 части:

  1. Первая часть предполагает рост напряжения. В этот момент сопротивление конденсатора минимально, а зарядный ток очень высокий.
  2. Во второй четверти происходит наполнение его ёмкости за счет зарядного тока.
  3. В третьей четверти конденсатор полностью заряжается, при этом происходит снижение тока вплоть до 0. ЭДС возрастает с эффектом смены своей направленности.
  4. В последней четверти происходит разряд элемента. На этом этапе ЭДС будет в пределах 0, а ток постепенно нарастать.

Принцип работы конденсатора

Все описанные процессы за один период определяют дальнейший фазный сдвиг на 90 градусов.

Природа возникновения емкостного сопротивления полностью зависит от нескольких факторов:

  1. Обязательно наличие конденсатора в цепи.
  2. По цепи должен течь только переменный ток.
  3. Сопротивление проводника должно быть меньше емкости конденсатора.

Все эти факторы помогают рассчитать наиболее правильное значение ёмкостных характеристик для наиболее эффективной работы электроцепи.

Расчет

Расчет электрического емкостного сопротивления цепи делается по формуле. Она состоит из следующих значений:

  1. «Xc» — является емкостным сопротивлением в Омах.
  2. «1» — период полного заряда и разряда элемента.
  3. «w» — круговая частота переменного тока с емкостью, рад/сек.
  4. «C» — емкость конденсатора, единицы измерения Фарад.

Сама формула при этом выглядит следующим образом:

Формула емкостного сопротивления

При помощи этой формулы легко рассчитывается Xc. Для этого требуется просто умножить циклическую частоту переменного тока на известную величину емкости конденсатора. Далее необходимо будет один период разделить на полученное значение. Таким образом можно всегда найти сопротивление конденсатора в Ом.

Рассчитываться емкостное сопротивление может так же с помощью и другой формулы, которая приведена на рисунке ниже.

Альтернативная формула расчета емкостного сопротивления

При расчетах по данной формуле прослеживаются следующие зависимости:

  1. Емкость конденсатора и частота тока всегда выше сопротивления.
  2. От величин емкости и частоты зависит скорость одного периода заряда/разряда конденсатора.

Также стоит учесть, что после подключения конденсатора в цепь постоянного тока, его сопротивление сильно увеличивается. Объясняется причина такого явления довольно просто — отсутствует частота протекания электричества.

Характеристики элемента

Для того чтобы понять, что такое емкостное сопротивление, необходимо разобраться с его основной характеристикой, которая называется емкостью. Емкостью называется накопительная способность элемента. Она заключается в накоплении определенной доли электрического тока за определённый промежуток времени. Единицей измерения этой величины является Фарад (Ф или F).

Емкость конденсатора

Элемент заряжается электричеством до определенного момента, после которого он начинает разряжаться и отдавать ток дальше по электроцепи. Время полного разряда напрямую зависит от величины сопротивления цепи. Чем выше это значение, тем меньше времени тратится на разрядку элемента. Для расчета ёмкостной характеристики используется следующее выражение:

Формула расчета емкостной характеристики

Так же конденсаторы обладают рядом дополнительных характеристик. К ним относят:

  1. Общую удельную емкость. Является отношением массы диэлектрических пластин и емкостных параметров.
  2. Напряжение. Параметр определяется как рабочее напряжение, которое способен выдержать элемент.
  3. Температурная стойкость или стабильность. Это температурный параметр, который не влияет на изменение емкости.
  4. Изоляционное сопротивление. Является величиной точки утечки и саморазряда.
  5. Эквивалентная нагрузка. Значение, определяющее потери на выводе или контактах устройства.
  6. Абсорбция. Разность потенциалов в момент разряда до 0.
  7. Полярность. Параметр свойственен элементам, которые работают строго при подаче на обкладку потенциала определенного значения (плюс или минус).
  8. Индуктивность. Свойство конденсатора образовывать на контактах индуктивное сопротивление. Такое свойство может наделить элемента параметрами колебательного контура.

Все эти значения строго учитываются при проектировании цепей или схем электрического оборудования.

Импеданс

Кроме емкостного, конденсатор еще имеет общее сопротивление или импеданс. Данное значение определяется с учетом значений трех параметров: индуктивного, резистивного и емкостного сопротивления.

Импеданс

Для вычисления импеданса применяется следующая формула:

Формула полного сопртивления цепи

В данном выражении используются следующие сопротивления:

  1. xL — индуктивное;
  2. xC — емкостное;
  3. R — активное.

Активное сопротивление цепи появляется вследствие возникновения в ней ЭДС. Так как переменный ток по своей природе импульсный, то электромагнитный поток может довольно незначительно изменяться, а это приводит к сдвигу постоянного значения ЭДС.

Емкостные и индуктивные величины взаимосвязаны. По разнице между ними легко находят реактивную составляющую цепи.

Формула реактивного сопртивления

Отсюда легко проследить, от чего зависит само реактивное сопротивление:

  1. Если реактивная величина больше 0, то устройство больше нагружено индуктивным значением.
  2. Если реактивное значение равно 0, то емкость не нагружается активным сопротивлением.
  3. Если реактивность меньше 0, то элемент имеет высокое емкостное сопротивление.

Активное сопротивление считается невосполнимой величиной. Она тратится на преобразование тока в иной вид энергии. Реактивная величина неизменна для актуальной цепи переменного тока.

Расчет

Узнав, по какой формуле делаются необходимые вычисления и поняв смысл емкостного сопротивления, можно заняться расчетом данной величины.

Конденсатор в цепи переменного тока

Например, сделаем расчет на основе следующих данных:

  • Емкость конденсатора C=1мкФ;
  • В цепи также имеется активное сопротивление R, которое равно 5 кОм;
  • Индуктивное сопротивление цепи xL составляет 4.5 кОм;
  • Частота переменного тока равна 50 Гц;
  • Напряжение 50 вольт.

На основе этих данных необходимо будет найти сопротивление конденсатора.

Емкостное сопротивление определим следующим образом:

xC=1/(2πfC)=1/(2×3.14×50×1×10-6)=3184 Ом или округленно 3.2 кОм.

Для определения величины тока в этой цепи воспользуемся законом Ома:

I=U/xC=50/3184=0.0157 ампер или 15.7мА.

После этого определяются параметры общего сопротивления:

Z=(R²+(xL-xC)²)½=(5000²+(4500–3184)²)½=5170 Ом или 5.1 кОм.

По данным расчётам можно определить влияние емкостного элемента на электроцепь. Главное понимать, какие физические величины используются в данных формулах для выполнения правильных вычислений.

Применение

В электронных цепях очень часто конденсатор используется в качестве фильтрующего элемента. При этом инженеры учитывают способ подключения данного элемента:

  1. При параллельном соединении конденсатора с цепью, устройство способно задерживать ток высокой частоты. Такой фильтр работает по принципу зависимости сопротивления от частоты тока. Чем выше частота, тем ниже будет сопротивление.
  2. При последовательном включении фильтр уже отсеивает низкочастотные импульсы. Вторым свойством такого фильтра является возможность не пропускать постоянный ток.

Виды соединения конденсаторов

Также большая доля использования таких устройств приходится на звуковые усилители. Конденсатор способен отделить переменный и постоянный ток, а значит работать в качестве усилителя низкой частоты. При этом подбираются элементы с наименьшей емкостью.

Так же устройства используются для блоков питания постоянного тока или стабилизаторов. Тут применяется свойство разделения постоянной и переменной составляющей. Например, разделение ее между потребителями с помощью отдельных выходов для постоянного и переменного тока. В таких устройствах конденсатор разряжается, если нагрузка на цепь увеличивается за счет подключения нового устройства. Тем самым общая пульсация в цепи сглаживается. При необходимости можно передать ток обоих значений по одному проводнику. Делается это следующим образом — контакты с постоянным напряжением подключают к выводу емкости для прямого контакта с переменным напряжением. Таким образом происходит фильтрация частоты, сглаживание импульсов и передача постоянного тока потребителю. Такая схема используется в антенных усилителях, которые подключаются к телевизорам.

Измерение и проверка

Измерить целостность конденсатора и его сопротивление можно при помощи мультиметра. Перед этим элемент обязательно необходимо отсоединить от цепи.

Проверка

Диагностика целостности конденсатора начинается с визуально осмотра его состояния. Любые трещины, вздутия или деформации корпуса можно считать неисправностью элемента. Если визуальный осмотр не дал никаких результатов, то элемент проверяется на пробой при помощи тестера.

Неисправные конденсаторы

Делается такая проверка следующим образом:

  1. Элемент необходимо выпаять из схемы, а его контактные выводы замкнуть металлическим предметом для разрядки.
  2. Мультиметр перемести в режим замера сопротивления.
  3. Измерительные щупы соединить с контактами устройства.
  4. Сопротивление исправного элемента будет измеряться бесконечным значением, которое будет превышать значение сопротивления утечки. Величина этой утечки при этом составляет 2 кОм.

Проверка конденсатора мультиметром

Если показания меньше этого значения, значит элемент неисправен и пробит.

Замер

Замерить сопротивление можно так же с помощью мультиметра. Его надо будет перевести в режим измерения сопротивлений более 100 кОм. Далее необходимо соединить щупы прибора с контактами устройства. Некоторое время потребуется на полную зарядку элемента. После этого он покажет конечный результат, который не должен быть выше 100 кОм. Если этот порог преодолен, то можно сделать однозначный вывод о неисправности элемента.

Измерение емкости

Для замера емкости потребуется тестер с режимом СX. Если такого режима нет, проверить элемент будет невозможно. Далее требуется:

  1. Полностью разрядить конденсатор.
  2. На мультиметре выбирается режим СX.
  3. Измерительные щупы соединить с контактными выводами устройства, строго соблюдая полярность.
  4. Прибор должен показать величину больше 1, но при этом ее значение должно быть в пределах тех значений, которые указаны на корпусе детали. Если значение равняется 0 или находится за пределами указанных значений, то конденсатор можно признать неисправным.

Замер емкости конденсатора

Полученные мультиметром данные также можно считать ёмкостным значением, так как в момент проверки элемент проходит зарядку током.

Заключение

Емкостным сопротивлением обладают все цепи, в которых задействованы конденсаторы. Зная, какой по параметрам элемент включен в данную цепь, можно легко рассчитать его емкостное влияние на цепь, используя представленные в статье формулы для расчётов.

Видео по теме

Емкостное сопротивление конденсатора – величина, измеряемая в омах, создается непосредственно самим конденсатором, который включен в любую цепь. Оно должно иметь большую величину, то есть быть большим. Если на них происходит подача переменного тока, в устройстве происходят процессы заряда и последующего разряда. Последнее происходит по требованию цепи. При включении электрического тока, напряжение будет равно 0. Само устройство при этом начнет заряжаться, следовательно его величина напряжения постепенно растет. В случае необходимости, при достижении максимального заряда, произойдет разряд конденсатора.

В статье, посвященной теме расчета сопротивления конденсатора, приведена вся информация о процессе, как происходит заряд-разряд. В качестве бонуса есть интересный материал по теме, который можно скачать, и видеоролик в конце статьи.

Формула сопротивления конденсаторов

Формула сопротивления конденсаторов.

Формула сопротивления

Формула ёмкостного сопротивления выводится следующим образом:

  • Вначале следует вычислить угловую частоту. Для этого частоту протекающего по цепи тока (в герцах) необходимо умножить на удвоенное число «пи».
  • Затем полученное число следует перемножить на ёмкость конденсатора в фарадах.

Чтобы получить значение ёмкостного сопротивления в омах, следует разделить единицу на число, полученное после умножения угловой частоты на ёмкость. Из этой формулы вытекает, что чем больше ёмкость конденсатора или частота переменного тока, тем меньше его сопротивление. Когда частота будет равна нулю (постоянный ток), ёмкостное сопротивление станет бесконечно большим. Конденсатор очень большой ёмкости будет проводить ток в широком диапазоне частот.

Формула сопротивления

Формула сопротивления.

Применение на практике

Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:

  • Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
  • Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.
  • Ещё одна область применения — отделение переменной составляющей от постоянной. Например, в оконечных каскадах усилителей звуковой частоты. Чем выше ёмкость, тем более низкую частоту способен воспроизвести подключённый громкоговоритель.

В фильтрах электропитания, наряду с ёмкостным сопротивлением, используется также свойство накопления и отдачи заряда. В момент повышения нагрузки заряженная ёмкость фильтра разряжается, отдавая дополнительную энергию. Она также осуществляет подавление пульсаций и прочих паразитных сигналов, пропуская их через себя и замыкая на общий провод. Таким образом, обеспечивается сглаживание и поддержание напряжения на нагрузке в заданных пределах, и устранение нежелательных междукаскадных связей, вызывающих нестабильную работу.

Формула сопротивления

Измерение сопротивления конденсаторов.

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними. Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.

Таблица расчета емкости

Таблицы максимальных значений емкости конденсаторов.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.

[stextbox id=’info’]Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние. Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.[/stextbox]

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Материал в тему: все о переменном конденсаторе.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Импеданс элемента

Импеданс элемента.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2 ) ½.

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

Стоит почитать: все об электролитических конденсаторах.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6 ) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (50002+32002)½ = 5 936 Ом =5,9 кОм.

[stextbox id=’info’]Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.[/stextbox]

Свойства ёмкостей

Основное свойство состоит в их способности накапливать и отдавать электрический заряд. Оба этих процесса происходят не мгновенно, а за вполне определённый период, который поддаётся расчету. Данное свойство используется для создания различных времязадающих RC цепей. Если зарядить конденсатор до некоторого значения, то время его разряда через резистор R будет зависеть от ёмкости C. RC цепь Ещё одно распространённое свойство конденсаторов – это возможность ограничивать переменный ток. Вызвана она реактивом этих элементов. Ёмкость, включенная в цепь переменного тока, ограничивает его до значения I = 2pfCU.

Свойства ёмкостей

Свойства ёмкостей.

Здесь U – напряжение источника питания. Дополнительная информация. Ёмкость, подключенная параллельно с катушкой, имеющей индуктивный характер сопротивления, называется колебательным контуром. Данная цепь обладает высокой амплитудой колебаний на резонансной частоте. Она применяется для выделения из множества окружающих радиосигналов именно того, на который требуется настроить приём.

[stextbox id=’info’]Сопротивление – это одна их характеристик конденсатора, подключенного к цепи переменного тока. Понимание процессов, происходящих с этим элементом в подобных схемах, существенно расширяет сферу его использования. Реактивное сопротивление конденсаторов учитывается как в простых бытовых электроприборах, так и в сложной вычислительной технике.[/stextbox]

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением. В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов. Сопротивление катушки вычисляется по формуле. Сопротивление конденсатора вычисляется по формуле:

расчет сопротивления

Расчет сопротивления.

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Z = R + i X , где Z – импеданс, R – величина активного сопротивления , X – величина реактивного сопротивления, i – мнимая единица . В зависимости от величины X какого-либо элемента электрической цепи, говорят о трёх случаях:

  • X > 0 – элемент проявляет свойства индуктивности .
  • X = 0 – элемент имеет чисто активное сопротивление .
  • X < 0 – элемент проявляет ёмкостные свойства.

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений.

расчет сопротивления

Индуктивное сопротивление (X L ) обусловлено возникновением ЭДС самоиндукции . Электрический ток создает магнитное поле. Изменение тока, и как следствие изменение магнитного поля, вызывает ЭДС самоиндукции, которая препятствует изменению тока. Величина индуктивного сопротивления зависит от индуктивности элемента и частоты протекающего тока. Ёмкостное сопротивление (X C ). Величина ёмкостного сопротивления зависит от ёмкости элемента С и также частоты протекающего тока.

Заключение

В данной статье были рассмотрены основные вопросы расчета сопротивления конденсаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике “Что такое конденсаторы”

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.amperof.ru

www.eduspb.com

www.beasthackerz.ru

www.electroandi.ru

www.websor.ru

Предыдущая

КонденсаторыСколько стоят керамические конденсаторы?

Следующая

КонденсаторыЧто такое ионистор?

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Для школьников.

Кроме активного сопротивления, в цепях переменного тока возможно существование емкостного и индуктивного сопротивлений. Про индуктивное сопротивление будет говориться в следующей статье, а сейчас речь пойдёт об емкостном сопротивлении.

Рассмотрим опыты, позволяющие увидеть существование емкостного сопротивления.

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Две маленькие одинаковые электрические лампочки подключались к источникам одинакового напряжения. Но одна (правая) подключалась к источнику постоянного тока (аккумуляторной батарее), а другая (левая) – к источнику переменного тока.

Лампочки светили одинаково, так как количество выделяющегося тепла не зависит от того, какой ток протекает по нитям лампочек (постоянный или переменный).

Подсоединение в цепи конденсаторов большой ёмкости (рис. б) показало, что лампочка, включенная в цепь переменного тока, светила также ярко, а лампочка, включенная в цепь постоянного тока, не светила совсем.

При постоянном источнике тока результат понятен – конденсатор разрывает электрическую цепь, его сопротивление постоянному току бесконечно велико.

Но что происходит, когда цепь, состоящая из лампочки и конденсатора подсоединена к источнику переменного тока, почему лампочка при этом светит или почему конденсатор не препятствует прохождению по цепи переменного тока?

Опыты показывают, что конденсатор пропускает переменный ток, но оказывает ему сопротивление. Это сопротивление назвали емкостным сопротивлением).

Существование емкостного сопротивления обнаружено, например, при проведении следующего опыта.

Конденсатор ёмкостью 10 мкФ, с последовательно соединённым с ним амперметром, включали в городскую осветительную сеть переменного тока с частотой 50 Гц и напряжением 220 В.

Амперметр показал ток 0,69 А. Подсчитали сопротивление конденсатора переменному току, разделив напряжение 220 В на показание амперметра.

Оно оказалось равным 319 Ом.

Расчёт и опыт показали, что емкостное сопротивление для синусоидального тока находится по формуле :

Конденсатор в цепи переменного тока. Емкостное сопротивление.

(Формула для емкостного сопротивления получена путём сравнения выражений закона Ома для участка цепи постоянного тока, содержащего активное сопротивление и закона Ома для участка цепи переменного тока, содержащего конденсатор).

Таким образом, емкостное сопротивление зависит от ёмкости конденсатора и частоты переменного тока.

Емкостное сопротивление конденсатора тем меньше, чем больше его ёмкость и чем больше частота переменного тока (чем меньше период).

Чем больше ёмкость, тем больший электрический заряд накапливается на его обкладках при зарядке.

Чем больше частота переменного тока, тем за более короткое время этот заряд будет проходить по проводам, тем больший ток будет пропускать конденсатор.

Посмотрим, что происходит в цепи переменного тока, содержащей только ёмкость.

Если цепь переменного тока содержит только емкостное сопротивление

Конденсатор в цепи переменного тока. Емкостное сопротивление.

то ток и напряжение в цепи колеблются с одинаковой частотой, но ток опережает напряжение по фазе на “пи” пополам (на 90 градусов), поэтому в уравнении тока сдвиг по фазе записываем со знаком “плюс”(см. уравнение ниже).

Конденсатор в цепи переменного тока. Емкостное сопротивление.
Конденсатор в цепи переменного тока. Емкостное сопротивление.

На рисунке синусоиды тока и напряжения смещены в соответствии с записанными уравнениями для мгновенных значений напряжения и тока

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Поясним, почему ток в такой цепи (содержащей источник переменного тока и конденсатор) опережает напряжение, воспользовавшись следующим рисунком

Конденсатор в цепи переменного тока. Емкостное сопротивление.

По оси ординат откладываются мгновенные значения приложенного к цепи напряжения (напряжение на зажимах источника) и мгновенные значения возникающего в цепи тока в согласии с приведёнными выше формулами для мгновенных значений тока и напряжения, когда в цепи источника переменного тока находится только конденсатор.

Конденсатор заряжается от источника, между его обкладками возникает напряжение, которое в каждый момент времени равное напряжению на клеммах источника, так как ток распространяется по цепи с огромной скоростью (скоростью света).

Когда конденсатор заряжен до максимума (напряжение на нём и напряжение источника имеют максимальные значения), ток равен нулю, а вся энергия цепи есть электрическая энергия заряженного конденсатора (точка а на рисунке).

При уменьшении напряжения источника уменьшается напряжение между обкладками конденсатора, то есть конденсатор начинает разряжаться. В цепи появляется ток, направленный навстречу напряжению источника. На рисунке он изображён как отрицательный (точки лежат ниже оси времени).

К моменту времени Т/4 конденсатор полностью разряжен (напряжение между его обкладками равно нулю), а ток в цепи достигает максимального значения (точка в). В этот момент электрическая энергия становится равной нулю, вся энергия цепи сводится к энергии магнитного поля, создаваемого током.

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Затем напряжение источника изменяет знак (заряд на обкладках изменился на обратный), ток начинает ослабевать, сохраняя прежнее направление.

Когда напряжение источника (и конденсатора) достигнет максимума, вся энергия цепи снова становится электрической, а ток равным нулю (точка с).

В дальнейшем напряжение источника (и конденсатора) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь положительное направление (совпадающее с напряжением между обкладками конденсатора), ток достигает максимального значения (точка d) и т. д.

Рассуждая так (сравнивая синусоиды тока и напряжения), видим, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, то есть ток опережает напряжение по фазе на 90 градусов (или на”пи” пополам), или по времени на четверть периода Т/4.

Можно сказать ещё так: при замыкании цепи сначала ток приносит заряд на обкладки конденсатора, а уж потом появляется напряжение на конденсаторе, то есть ток является первичным, а напряжение вторичным, то есть ток опережает напряжение на участке цепи содержащей электрическую ёмкость.

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Свойством конденсатора брать из сети ток, опережающий напряжение, широко пользуются на практике для повышения коэффициента мощности сети.

Таким образом, если электрическая цепь переменного тока состоит только из конденсатора, то роль конденсатора сводится к периодическому накоплению им электрической энергии (при зарядке) и возвращению этой энергии обратно источнику тока (при разрядке).

На следующем рисунке показано, как в цепи, содержащей только емкостное сопротивление, меняется мощность в зависимости от времени (пунктирная синусоида).

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Мгновенные значения мощности находятся через произведение мгновенных значений тока и напряжения.

Из рисунка видно, что мощность цепи переменного тока, содержащая только конденсатор, изменяется с двойной частотой.

Из рисунка также видно, что в первую и третью части периода, когда напряжение между обкладками конденсатора растёт, мощность цепи с конденсатором положительна (горизонтально заштрихованная площадь). В эти части периода конденсатор получает энергию от источника тока.

Во вторую и четвёртую части периода, когда напряжение между обкладками конденсатора уменьшается, мощность цепи с конденсатором имеет отрицательный знак (вертикально заштрихованная площадь). В эти части периода конденсатор возвращает энергию источнику тока.

Средняя мощность за период цепи с конденсатором равна нулю.

Таким образом, в конденсаторе в каждый момент времени либо запасается энергия от источника (при зарядке), либо возвращается обратно источнику тока (при разрядке конденсатора).

Для электрической цепи промышленного тока факт возвращения энергии источнику тока является отрицательным. Энергия, поступающая в цепь, должна использоваться ею наиболее полно, а не возвращаться источнику.

Рассмотренную мощность называют реактивной емкостной мощностью.

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Реактивной её называют потому что она не совершает никакой работы в цепи и не превращается в другие виды энергии, например в тепло (конденсатор остаётся холодным).

Напряжение на конденсаторе:

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Ток в цепи, содержащей только конденсатор, равен отношению напряжения на зажимах источника к емкостному сопротивлению цепи:

Конденсатор в цепи переменного тока. Емкостное сопротивление.

Пример.

Конденсатор ёмкостью 10 мкФ включен в цепь переменного тока напряжением 120 В и частотой 50 Гц. Какой ток будет проходить через конденсатор и какую мощность будет брать этот конденсатор из сети?

Используя приведённые ниже формулы, получим ответ на поставленные вопросы.

Конденсатор в цепи переменного тока. Емкостное сопротивление.
Конденсатор в цепи переменного тока. Емкостное сопротивление.
Конденсатор в цепи переменного тока. Емкостное сопротивление.

Ответ: 0,4 А; 51 Вт.

Итак, присутствие электрической ёмкости С в цепи переменного тока приводит к сдвигу фаз между током и напряжением (колебания тока опережают колебания напряжения).

Емкостная мощность не совершает механической работы, не нагревает проводники.

Процесс прохождения переменного тока через конденсатор – это многократное повторение зарядки и разрядки конденсатора. При зарядке конденсатора источник отдаёт ему некоторое количество энергии, которая запасается в конденсаторе в виде энергии электрического поля. При разрядке конденсатор возвращает эту энергию источнику (в сеть).

Ещё можно сказать, что замкнутость цепи переменного тока, содержащей конденсатор, объясняется существованием между обкладками конденсатора тока смещения, составной частью которого является ток поляризации в диэлектрике.

О токе смещения и токе поляризации говорится в статьях: “Какое одинаковое свойство имеют изменяющееся во времени электрическое поле. Направление тока поляризации” и “Вектор электрического смещения. Замкнутость цепи переменного тока с конденсатором током смещения”

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Спасибо.

Предыдущая запись: Характеристики переменного тока. Переменный ток в цепях, содержащих только активное сопротивление.

Следующая запись :Катушка индуктивности в цепи переменного тока. Индуктивное сопротивление.

Ссылки на занятия до электростатики даны в Занятии 1.

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45.

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.

Ссылки на занятия, начиная с переменного тока, даны в конце Занятия 70.

Калькулятор электрического сопротивления ёмкости

При подключении конденсатора в цепь переменного тока возникает совокупность процессов заряда и разряда ёмкости,
т.е. накопление и отдача энергии электрическим полем между обкладками. По мере заряда ёмкости, ток через нее уменьшается.
Конденсатор будет заряжаться до максимального значения, пока ток не сменит направление на противоположное.
В моменты максимального значения напряжения на конденсаторе, ток в нём будет равен нулю.
Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.
Ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току Xc.

formula1

X C — сопротивление, Ом;
f — частота, Гц;
C — ёмкость, Ф.

Сопротивление конденсатора переменному току это отношение действующих значений напряжения к току.
Оно обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.
Фазы кривых тока и напряжения на конденсаторе смещены на 90 градусов, при этом ток опережает напряжение.

diagram

Расчет электрического сопротивления ёмкости

Для расчета введите значение ёмкости конденсатора и частоту переменного тока

Калькулятор вычисления действующих значений тока или напряжения на конденсаторе.

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом.
Соблюдайте технику безопасности во время работы с электронными компонентами!

Емкостное сопротивление конденсатораКонденсатор используется в схемах для разделения переменной и постоянной составляющей напряжения, при этом он хорошо проводит высокочастотный сигнал, и плохо – низкочастотный. Находясь в цепи постоянного тока, его импеданс принимается бесконечно большим. Для переменного тока ёмкостное сопротивление конденсатора не имеет постоянной величиной. Поэтому расчёт этого значения крайне важен при проектировании различных радиоэлектронных приборов.

  • Общее описание
  • Характеристики прибора
  • Импеданс элемента
    • Ёмкостное сопротивление
    • Индуктивная составляющая
  • Пример расчёта

Общее описание

Физически электронное устройство – конденсатор – представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово “конденсатор” произошло от латинского “condensatio” – “накопление”. Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками — выводами устройства.

Принцип действия конденсатора Принцип действия конденсатора заключается в следующем: при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом – отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток – минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними.

Характеристики прибора

Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Импеданс элемента

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Формула емкостного сопротивления

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

  • Xc = 1/w*C = ½*p*f*C. Единица измерения – ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

На практике всё немного по-другому. Чем ближе частота сигнала приближается к нулевому значению, тем больше становится сопротивление конденсатора, но при этом разрыв цепи наступить всё равно не может. Связанно это с током утечки. В случае когда частота стремится к бесконечности, сопротивление конденсатора должно становиться нулевым, но этого тоже не происходит – из-за присутствия паразитной индуктивности и всё того же тока утечки.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L — индуктивность.

Индуктивная составляющая конденсатора

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Таким образом, индуктивное сопротивление будет равно Xl = w * L, измеряется оно также в омах. Из полученного выражения видно, что чем больше частота сигнала, тем сильнее будет сопротивление прохождению тока.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2 ) ½.

Закон Ома для участка схемы с ёмкостью

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6 ) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (50002+32002)½ = 5 936 Ом =5,9 кОм.

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.

Добавить комментарий