Как найти параметры диода

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

обратный клапан

Диод — это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

диод 1N4007диод

А некоторые выглядят чуточку по-другому:

д226б диодд214 диод

Есть также и SMD исполнение диодов:

смд диодsmd диод

Выводы диода называются — анод и катод. Некоторые по ошибке называют их «плюс» и «минус». Это неверно. Так говорить нельзя.

На схемах диод обозначается так

диод обозначение на схеме

Он может пропускать электрический ток только от анода к катоду.

направление электрического тока через диод

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток — фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа — катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод диодакатод диодакатод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диоддиод обозначение на схеме

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

диод в цепи переменного тока

Мой генератор частоты выглядит вот так.

генератор частоты

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

цифровой осциллограф OWON

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»

параметры диода КД411

Для объяснения параметров диода, нам также потребуется его ВАХ

вольтамперная характеристика диода

1) Обратное максимальное напряжение Uобр — это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр — это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

вах стабилитрона

Выглядят стабилитроны точно также, как и обычные диоды:

ДиодДиод

На схемах обозначаются вот так:

стабилитрон обозначение на схеме

Светодиоды

Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

светодиодыосветительные светодиоды

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Диодсветодиодные лампочки

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

светодиодная лента

На схемах светодиоды обозначаются так:

обозначение на схеме светодиода

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

светодиоды

Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Диод

Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

таблица светодиоды напряжение

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода (УЭ). Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — Iос,ср. — среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор —  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

тиристорДиод

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

силовой тиристор

На схемах  триодные тиристоры  выглядят вот таким образом:

обозначение тиристора на схеме

Существуют также  разновидности тиристоров — динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  — одна из разновидностей диодных сборок.

маломощный диодный мостдиодные мосты

 На схемах диодный мост обозначается вот так:

диодный мост обозначение на схемедиодный мост обозначение на схеме

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Приобрести диоды можно тут.

Очень интересное видео про диод

Похожие статьи по теме «диод»

Как работает стабилитрон

Диод Шоттки

Диодный мост

Как проверить диод и светодиод мультиметром

Как проверить тиристор

Схема для проверки тиристоров

Некоторые популярные диоды

Определение и типы диодов

Упрощенно диод можно понимать как активный электрический элемент проводящий ток только в одном направлении.
Как клапан в гидравлике. Существует несколько типов диодов отличающихся как по физическому принципу работы,
так и по базовому материалу. В очень общих чертах они делятся на полупроводниковые и вакуумные. Итак, диоды
бывают:

– вакуумные (они же кенотроны);

– на основе p-n перехода между полупроводниками различных типов проводимости: кремниевые (Si) и
карбидокремниевые (SiC) диоды;

– на основе контакта Шоттки между металлом и полупроводником.

Вакуумные диоды используются крайне редко, только в спецприложениях, например высоковольтной и
высокочастотной технике. Наиболее популярными диодами являются кремниевые диоды и диоды Шоттки.

Кроме физической природы диоды классифицируются по функциональному назначению:

выпрямительные диоды, используемые, как правило, для
выпрямления сетевого напряжения низкой частоты (50 Гц). Как правило, это кремниевые, дешевые диоды. Они
ставятся как непосредственно на входе безтрансформаторных импульсных источников питания, так и после
трансформатора в трансформаторных источниках.

быстродействующие кремниевые диоды – используются в составе
импульсных источников питания при высоких значениях обратного напряжения (100-1000 вольт). Отличаются малым
временем восстановления обратной проводимости, составляющим величину менее 200 нс. Внутри класса имеют
условную подклассификацию Fast (500-150 нс), UltraFast (70-50 нс), HiperFast (35-20 нс).

кремниевые импульсные диоды – используются в составе
функциональных (не силовых) цепей. Типичный пример – диод 1N4148; Отличаются малыми рабочими токами
(миллиамперы) и большим быстродействием (время обратного восстановления 1N4148 – 4 нс).

высоковольтные диоды – представляют собой последовательное
соединение нескольких (5-20 штук) кристаллов кремниевых диодов в одном корпусе. При этом максимальное
обратное напряжение составляет единицы-десятки киловольт, а ток как правило – небольшой и не превышает 1
ампера. Используются в ряде специальных приложений. Быстродействие этих диодов, как правило, невысокое.

Отдельно следует выделить диоды Шоттки – которые используются
и как функциональные (сигнальные) диоды и как силовые. Их отличительными чертами являются высокое
быстродействие, малое падение напряжения (0,3-0,5 В) по сравнению с кремниевыми диодами (1-1,2 В). К
недостаткам относят сравнительно малое обратное напряжение (20-100 В) чувствительность к перенапряжению,
значительный обратный ток. Диоды Шоттки часто используются в качестве выпрямительных диодов высокочастотных
преобразователей с малым выходным напряжением.

Здесь не рассматриваются диоды чисто радиочастотных применений СВЧ, варикапы, смесительные и т.д. поскольку
это вы ходит за рамки данного повествования.

Условное обозначение диода представлено на рисунке VD.1

Рисунок-схема

Рисунок VD.1 – Условное обозначение диода на основе p-n перехода и диода Шоттки

Электрод, в который втекает ток, называется анодом, а электрод из которого ток вытекает – катодом.
Исторические названия эти связаны с вакуумными диодами, в которых электроны эмитировались накальным катодом
и принимались анодом. Символически диод обозначает собой направление протекания тока.

Функциональные применения диода

– выпрямление переменного тока в составе тех или иных выпрямителей (включая умножители напряжения);

– защита от превышения напряжения в схемах ограничения уровня и снабберах;

– в пиковых детекторах на операционных усилителях;

– в низковольтных стабилизаторах напряжения (используется прямое падение напряжения);

– в схемах на переключаемых конденсаторах, включая схемы бустрепного питания;

– схемах реализации логических операций ИЛИ (рисунок VD.3 ).

Ниже представлено несколько примеров использования диодов.

Рисунок-схема

Рисунок VD.2 – Схема двухполупериодного выпрямителя

Рисунок-схема

Рисунок VD.3 – Схема реализации логических операций ИЛИ

– схемах ограничения амплитуды сигнала (рисунок VD.4).

Рисунок-схема

Рисунок VD.4 – Схема ограничения амплитуды сигнала

Характеристики диодов

Основной характеристикой диода является его ВАХ – вольтамперная характеристика – зависимость тока
пропускаемого диодом от напряжения на нем. Она не линейна и имеет фактически экспоненциальный характер.

Форма кривой ВАХ диода (рисунок VD.5) зависит от температуры: при нагреве уменьшается прямое падение
напряжения и возрастает обратный ток, снижается напряжение пробоя.

Рисунок-схема

Рисунок VD.5. Форма вольтамперной характеристики диода

Из вольтамперной характеристики следуют её производные:

– прямое падение напряжение на диоде VF (при заданных токе и температуре);

– обратный ток утечки IRM (при заданном обратном напряжении и температуре);

– максимальное обратное напряжение VR (при заданной температуре).

Площадь p-n перехода, размер кристалла, конструкция теплоотвода определяют мощностные характеристики
диода:

– максимальный постоянный рабочий ток;

– максимальный импульсный ток (при заданной длительности импульса);

– максимальная отводимая (рассеиваемая мощность);

– тепловое сопротивление корпуса.

Динамическими характеристиками диода, определяющими его быстродействие, являются:

– время восстановления при резкой смене напряжения с прямого на обратное;

– емкость перехода.

На рисунках VD.6 – VD.8 представлены экспериментально измеренные ВАХ распространенных типов диодов (для
сравнения представлены ВАХ кремниевых диодов и диода Шоттки).

Рисунок-схема

Рисунок VD.6 – Экспериментально измеренная вольтамперная характеристика кремниевого диода 1N4148

Рисунок-схема

Рисунок VD.7 Экспериментально измеренная вольтамперная характеристика кремниевого диода FR157

Рисунок-схема

Рисунок VD.8 Экспериментально измеренная вольтамперная характеристика диода Шоттки 1N5819

Основные параметры реальных диодов

1. Максимальное импульсное обратное напряжение (Peak Repetitive Reverse Voltage) VRRM
максимальная величина прикладываемого к диоду импульсного обратного напряжения.

2. Максимальное рабочее обратное напряжение (Working Peak Reverse Voltage)
VRWM
– максимальная величина прикладываемого к диоду обратного напряжения в рабочем режиме.

3. Максимальное блокирующее напряжение (DC Blocking Voltage) VR – максимальная величина
прикладываемого к диоду постоянного напряжения. Выше этого напряжения начинается пробой. Соответствует
началу пробоя на обратной ветви ВАХ.

NB: На практике все перечисленные типы напряжения равны между собой и при проектировании схем необходимо,
не допускать превышения напряжения на диоде данной величины.

4. Максимальное среднеквадратичное обратное напряжение (RMS Reverse Voltage)
VR(RMS) – максимальная величина действующего
(среднеквадратичного) напряжения в цепи переменного тока, превышение которой приводит к пробою диода.
Фактически подразумевается переменное напряжение синусоидальной формы.

5. Средний рабочий ток (Average Rectified Output Current) IO – максимальное среднеквадратичное
значение тока проходящего через диод в стационарном режиме.

6. Максимальный импульсный ток (Repetitive peak forward current) IFRM – максимальная амплитуда
импульсного периодического тока проходящего через кристалл диода. Как правило, указывается длительность
импульсов и частота повторения.

7. Максимальный импульсный непериодический ток (Non-Repetitive Peak Forward SurgeCurrent) IFSM
– максимальная амплитуда импульсного непериодического тока проходящего через кристалл диода. Как
правило, указывается длительность импульса.

8. Прямое падение напряжения на диоде (Forward Voltage) VFM – падение напряжения на диоде при
прямом смещении (в открытом состоянии). Как правило, указывается при конкретной величине прямого тока.

9. Максимальный обратный ток (Peak Reverse Current) IRM – максимальный обратный ток через
диод. Указывается при максимальном обратном напряжении на диоде и при конкретном значении температуры.

10. Ёмкость p-n перехода (Typical Junction Capacitance) Cj – паразитная емкость p-nперехода
диода. Сильно зависит от приложенного обратного напряжения, поэтому в datasheetкроме усредненной
величины, как правило, приводят зависимость емкости от обратного напряжения.

11. Тепловое сопротивление кристалл – воздух (Typical Thermal Resistance Junction toAmbient)
RθJA – тепловое сопротивление между кристаллом (p-n переходом) диода и окружающим
воздухом. Зависит от типа корпуса.

12. Максимальная рабочая температура (Maximum DC Blocking Voltage Temperature) TA
максимальная рабочая температура при которой сохраняется указанное значение максимального обратного
напряжения.

13. Максимальная рассеиваемая мощность (Total power dissipation) Ptot – максимальная мощность
рассеиваемая корпусом диода.

14. Параметр максимальной энергии поглощаемой кристаллом без разрушения (Rating for fusing) I2t
– произведение квадрата максимального импульсного тока через диод на его длительность. Это соотношение,
измеряемое в А2с (ампер в квадрате на секунду) используется при выборе защитных цепей от
перегрузки (предохранителей).

15. Время восстановления обратной проводимости (Reverse recovery time) trr – время за которое
диод после приложения обратного напряжения переходит в закрытое состояние (обратная проводимость).

Максимальные ток и мощность диода

Режим постоянного тока

Полупроводниковый диод – нелинейный элемент мощность, рассеиваемая на диоде равна произведению напряжения на
диоде VVD и тока через него IVD:

Формула

Для практических расчетов в качестве VVD можно брать падение напряжения при номинальном токе,
указываемое в справочных листках. Поскольку напряжение на диоде составляет величину порядка 1,0-1,5 В (для
кремниевого диода, для Шоттки меньше) и слабо изменяется с ростом тока, то в первом приближении можно
считать, что рассеиваемая на диоде мощность прямо пропорциональна току через него:

Формула

Это существенно отличает нелинейный диод от линейного резистора, мощность которого пропорциональна квадрату
тока. В справочных листках указывается максимальное значение постоянного тока через диод. Этот ток задает
максимальное значение отводимой от кристалла диода тепловой мощности.

Представленная формула описывает потери на кристалле диода при прямом смещении, то есть при протекании
прямого тока через диод. Потери при обратном смещении, то есть при реверсном токе обычно пренебрежимо малы,
однако в ряде случаев их необходимо учитывать (об этом ниже).

Режим импульсного тока

Импульсный ток через диод может в разы превышать максимальное значение для постоянного тока. В режиме
импульсных токов на первое место выходит максимальная энергия рассеивания кристалла диода, определяющая
предельные режимы импульсных нагрузок при которых еще не происходит термическое разрушение кристалла. В
справочных листках обычно приводят номограммы произведения длительности токового импульса на его
величину.

Динамические характеристики диода. Восстановление обратной проводимости. Барьерная емкость
диода

Быстродействие диода, то есть свойство быстро восстанавливать обратную проводимость, является важной
характеристикой для диодов, работающих в условиях быстрой смены полярностей напряжения прикладываемого к
диоду – в высокочастотных выпрямителях, схемах бустрепного питания, детекторных схемах и ряде других.

На рисунке VD.9 представлен один из типовых фрагментов электрических схем с диодами и полупроводниковыми
ключами. Эта схема описывает жесткий режим восстановления обратной проводимости диода. На примере этой схемы
поясним процесс восстановленияобратной проводимости диода [EE33D – Power Electronic Circuits ссылка], [2 Reasons Why
Soft-Recovery Trr is Important in High Voltage Diodes ссылка],
[Understanding Diode Reverse Recovery and its Effect on Switching Losses. Peter Haaf, Jon Harper. Fairchild
Power Seminar 2007]. Временные диаграммы токов и напряжений, описывающих процессы в представленной схеме
представлены на рисунке VD.10.

Рисунок-схема

Рисунок VD.9. Электрическая схема включения диода для пояснения эффекта обратного восстановления

Рисунок-схема

Рисунок VD.10. Временные диаграммы напряжений и токов схемы поясняющие процесс восстановления обратной
проводимости диода

Для упрощенного понимания процессов выключения диода примем индуктивность L в схеме достаточно большой, чтобы
она фактически играла роль источника тока. В начальный момент времени полупроводниковый ключ закрыт, и ток
индуктивности полностью замыкается через диод. После подачи управляющего импульса на затвор транзистора и
превышения им некоторого порогового напряжения происходит постепенный рост тока через ключ ISW,
начиная с момента времени tswitch. При этом ток, протекающий через диод IDпостепенно
уменьшается, поскольку ток индуктивности начинает частично «сливаться» через открывающийся ключ. В некоторый
момент времени (начало интервала tA) когда ток индуктивности полностью замкнется через ключ
(IL = ISW) ток через диод изменит свое направление. В первой половине импульса
реверсного тока (период tA) происходит разряд емкости p-n перехода при этом напряжение на диоде
некоторое время остается положительным а обратный ток достигает максимума. Далее обратный ток через диод
начинает снижаться (период tB), а обратное напряжение возрастает до напряжения источника
VDC.

Практически важной характеристикой является форма кривой обратного тока в момент восстановления обратной
проводимости (рисунок VD.10). По кривой определяется время восстановления и «мягкость восстановления».
Кривая реверсного тока имеет два характерных периода:

– период tA – время от начала импульса реверсного тока (пересечение током нулевой линии) до
максимального значения обратного тока IRRM . Соответствует разряду зарядов накопленных в так
называемой обеднённой области p-n перехода.

– период tB – время между моментом соответствующим максимуму обратного тока IRRM и
моментом когда ток уменьшится на 25% от максимального достигнутого значения.

Время восстановления обратной проводимости (reverse recovery
time) tRR определяется по осциллограмме обратного тока (рисунок VD.10) как время между
пересечением тока нулевой отметки (начало реверсного тока) и моментом когда величина реверсного тока спадает
на 25% от своего максимально достигнутого значения. Время восстановления – интуитивно понятный параметр,
характеризующий время, за которое диод восстанавливает свои непроводящие свойства. Время восстановления
обратной проводимости tRR равно сумме времен периодов tA и tB:

Формула

Максимальное значение реверсного тока IR связано с длительностью периода tA и скоростью
спада тока:

Формула

Критерий «мягкости восстановления» (softness factor) SF –
критерий определяющий скорость обрыва обратного тока. Если обрыв тока происходит слишком резко, то это может
стать причиной нежелательных перенапряжений обусловленных паразитными индуктивностями контуров. Иногда этот
эффект используют в генераторах импульсов на основе специализированных SOS-диодов. В качестве критерия
«мягкости» использую так называемы «фактор мягкости» SF определяемый как отношение длительностей периодов
tB к tA :

Формула

Для обычных диодов tA много больше tB , для импульсных «мягких» диодов наоборот
tBмного больше tA. «Фактор мягкости» SF можно определить из datasheet диодов исходя из
представленных временных осциллограмм восстановления обратной проводимости. Обычно для импульсных силовых
диодов класса «ultrafast» характерное значение SF равно 1, для обычных диодов величина SF может составлять
0,2-0,6.

Заряд обратного восстановления (Reverse Recovery Charge)
QRR – это реверсный заряд, который должен пройти через переход диода для перевода его из
состояния проводимости в закрытое состояние. Заряд обратного восстановления является базовым параметром
диода, определяющим его динамические характеристики. Исходя из формы импульса реверсного тока этот заряд
равен:

Формула

Откуда максимальный ток определяется из соотношения:

Формула

Приравнивая выражения для IR получаем:

Формула

Преобразуя это выражение получаем:

Формула

Учитывая, что tA и tB связаны через «фактор мягкости» SF:

Формула

Получаем:

Формула

Откуда выразим tA:

Формула

Тогда:

Формула

Откуда получаем практически важные соотношения:

– для расчета времени восстановления обратной проводимости tRR :

Формула

– и для расчета максимальной величины обратного тока IRRM :

Формула

Используя представленные выражения, рассчитываются динамические характеристики диода.

Барьерная емкость диодасобственное
значение емкости p-n перехода находящегося в обратном смещении (закрытом состоянии). В дополнение к выше
описанному инерционному процессу «переключения» диода в непроводящее состояние диод, когда к нему приложено
обратное напряжение он (диод) обладает собственным значением барьерной емкости, которая зависит от
напряжения, что важно также учитывать при расчете динамических режимов. Емкость пропорциональна площади p-n
перехода, на практике это означает, что более мощные диоды с большим номинальным током будут иметь и большее
значение емкости. Реально величина емкости не является постоянной и существенно зависит от приложенного
напряжения.

Расчет тепловых потерь в диоде на переключение

В момент восстановления проводимости к диоду приложено обратное напряжение и через него протекает некоторый
импульс тока длительностью trev. Таким образом, в кристалле диода выделяется некоторая энергия:

Формула

Общая выделяемая тепловая мощность пропорциональна частоте импульсов f.

Формула

Основное выделение энергии происходит в периода tB когда напряжение на диоде имеет величину
существенно большую по сравнению с прямым падением напряжения (как в период tA). Полагая линейную
форму спада тока и роста обратного напряжения получим:

Выражение для напряжения на диоде будет иметь вид:

Формула

Выражение для тока через диод будет иметь вид:

Формула

Выражение для выделяющейся мощности на диоде будет иметь вид:

Формула

Перемножая VVD(t) и IVD(t), получаем:

Формула

Упрощая которое получаем выражение для мощности динамических потерь
PVD_trans«на переключение»:

Формула

где:

VDC – обратное напряжение, (напряжения источника питания);

f – рабочая частота;

IRRM – максимальная величина обратного тока, вычисляемая по формуле:

Формула

здесь: QRR заряд обратного восстановления (Reverse Recovery Charge) – представлен в datasheet-ах,
скорость спада тока di/dt определяется характеристиками схемы, а «фактор мягкости» SF можно определить из
datasheet диодов исходя из представленных временных осциллограмм восстановления обратной проводимости.
Обычно для импульсных диодов характерное значение SF равно 1.

tB – время между моментом соответствующим максимуму обратного тока IRRM и моментом
когда ток уменьшится на 25% от максимального достигнутого значения. Учитывая связь tA и
tB через «фактор мягкости» SF получаем:

Формула

Формула

Отсюда tB может быть вычислено по соотношению:

Формула

Учитывая, что в большинстве случаев SF≈1, то в первом приближении tB может быть определено как:

Формула

Объединим в итоговое выражение для мощности динамических потерь диода
PVD_trans «на переключение»:

Формула

Упростим данное соотношение:

Формула

Результирующее выражение для мощности динамических потерь PVD_trans «на
переключение» имеет вид:

Формула

где:

QRR – заряд обратного восстановления;

VDC – обратное напряжение, (напряжения источника питания);

f – рабочая частота;

SF – «фактор мягкости» диода (в первом приближении может быть принят равным 1).

В ряде случаев в datasheet не приводится значение заряда обратного восстановления QRR, а
приводятся:

– зависимости тока восстановления обратной проводимости от IRRM от скорости спада тока di/dt;

– зависимости времени восстановления обратной проводимости tRR от скорости спада тока di/dt.

В этом случае мощности динамических потерь PVD_trans вычисляется по
соотношению:

Формула

где:

VDC – обратное напряжение, (напряжения источника питания);

IRRM(di/dt) – ток восстановления обратной проводимости от IRRM при заданной скорости
спада тока di/dt;

tRR(di/dt) – зависимости времени восстановления обратной проводимости tRR при заданной
скорости спада тока di/dt.

SF – SF – «фактор мягкости» диода (в первом приближении может быть принят равным 1);

f – рабочая частота.

Обратная ветвь ВАХ – напряжение пробоя, обратный ток

По мере увеличения прикладываемого к диоду обратного напряжения монотонно возрастает и обратный ток. При этом
для каждого диода существует обратное напряжение, при достижении которого резко возрастает обратный ток и
напряжение на диоде быстро падает. При этом пороговом напряжении происходит пробой диода – в большинстве
случаем необратимое изменение внутренней структуры диода, сопровождаемое нарушением целостности p-n
перехода. Следствием пробоя является выход диода из строя. Исключением являются лавинные диоды, пробой
которых носит обратимый характер.

Обратный ток возрастает с увеличением температуры, также с увеличением температуры снижается напряжение
пробоя.

Для кремниевых диодов, эксплуатируемых при нормальной температуре тепловой мощностью, выделяемой при
приложенном обратном напряжении можно пренебречь. Однако при более жестком температурном режиме и больших
значениях обратного напряжения эта мощность может иметь значительную величину, сопоставимую с мощностью
потерь в проводящем состоянии.

Для диодов Шоттки обратный ток существенно больше, чем для кремниевых диодов и его необходимо учитывать в
расчетах в любом случае.

Мощность, рассеиваемая на диоде при обратном смещении равна произведению напряжения приложенного к диоду
VVD_rev и протекающего под действием этого напряжения обратного тока через
него IVD_rev:

Формула

Пример:

– для диода MUR1100E при температуре 100 °С обратный ток составляет величину порядка 600 мкА, если к диоду
приложено обратное напряжение 800 В то выделяющаяся тепловая мощность равна 0,48 Вт!

– для диода серии US1 максимальный обратный ток составляет 150 мкА (при температуре 100 °С) и при обратном
напряжении 1000 В выделяющаяся тепловая мощность составляет 0,15 Вт.

Важно то, что здесь работает принцип положительной обратной связи: с ростом температуры выделяемая мощность
увеличивается, что в свою очередь приводит к росту температуры.

Итак, тепловой режим диода работающего в условиях тока переменной полярности складывается из мощности,
выделяемой при прохождении прямого тока, мощности выделяемой в диоде при смене направления тока и мощности
выделяемой при обратном смещении:

Формула

где:

PVD_total – общая мощность, рассеиваемая на диоде;

PVD_stat+ – мощность, выделяемая при прохождении прямого тока;

PVD_stat- – мощность, выделяемая при прохождении обратного тока;

PVD_trans – мощность, выделяющаяся на диоде в результате переходных
процессов.

Последовательное и параллельное включение диодов

s

Последовательное включение

Последовательное включение диодов используют для увеличения максимального обратного напряжения VR
(рисунок VD.11). При этом необходимо помнить, что увеличивается прямое падение напряжения на диодной сборке.

Рисунок-схема

Рисунок VD.11 – Последовательное включение диодов для увеличения максимального обратного напряжения

При приложении обратного напряжения к сборке падения напряжения на диодах распределяются в соответчики с
обратной ВАХ каждого из диодов. Из за разброса ВАХ может возникнуть ситуация в которой к некоторым диодам
сборки будет приложено напряжение превышающее максимальное и возникнет пробой одного диода сборки. После
этого общее приложенное напряжение перераспределится между оставшимися диодами и при этом напряжение на
каждом из них возрастет. Это с высокой долей вероятности может привести к постепенному выгоранию всех диодов
сборки. Для повышения надежности применяют выравнивающие резисторы, сопротивление которых выбирается таким
образом, чтобы ток через резистор был в 2-5 раз больше максимального тока утечки диода:

Формула

где:

VR – максимальная величина прикладываемого к диоду постоянного напряжения.

IRM – максимальный обратный ток через диод. В расчетах необходимо учитывать ток при температуре
соответствующей рабочей температуре эксплуатации.

Рисунок-схема

Рисунок VD.12 – Последовательное включение диодов с резисторами, выравнивающими падение обратного
напряжения
на диодах

Параллельное включение

Параллельное включение диодов можно использовать для диодов с положительным (например на основе карбида
кремния SiC) или небольшим отрицательным температурным коэффициентом более 2 мВ/К, но при условии их
термического соединения (размещение на одном радиаторе). Это необходимо для того чтобы токи, протекающие
через диоды выравнивались. На практике при параллельном соединении двух кремниевых диодов или диодов Шоттки
максимальные рабочий ток не удваивается, а увеличивается на 50-70 %. Это обусловлено разницей хода ВАХ
диодов, так что один диод будет нагружен по максимуму, а второй будет ему «помогать». Физика этого эффекта
объясняется наличием положительной обратной связи: если через какой-либо из диодов протекает несколько
больший, чем через другой, то он нагревается больше. При нагреве кремниевых диодов ВАХ изменяется таким
образом, что при постоянном приложенном напряжении ток возрастает. Это приводит еще большему увеличению доли
общего тока через этот диод. Уменьшить эту положительную обратную связь можно путем организации термической
связи между диодами, то есть разместить их на одном радиаторе охлаждения. В этом случае «лидирующий» по току
диод будет подогревать «отстающий» и увеличивать долю тока через него. В целом на практике целесообразно
параллельно соединять лишь диоды, расположенные на одном кристалле в одном корпусе.

Рисунок-схема

Рисунок VD.13 – Параллельное включение диодов для увеличения максимального рабочего тока

Некоторые популярные диоды

1N4148

1N4007

HER108

US1M

1N5819

Программирование микроконтроллеров Курсы

Разбирая на детали старые или нерабочие устройства часто можно найти светодиоды. Однако в большинстве случаем на них отсутствует какая-либо маркировка или другие опознавательные знаки. Поэтому определить их параметры по справочнику попросту невозможно. Отсюда возникает вполне естественный вопрос: как определить параметры светодиода?

Опытные электронщики таким вопросом практически не задаются, поскольку могут с достаточной точностью определить параметры такого полупроводникового прибора, ориентируясь лишь на его внешний вид и зная некоторые нюансы, присущие большинству светодиодов. Эти нюансы рассмотрим и мы.

Электрические параметры светодиодов

Первым делом заметим, что светодиод характеризуется тремя электрическими параметрами (световые характеристики мы рассматривать не будем):

1) падение напряжения, измеряемое в вольтах. Когда говорят 2-х вольтный или 3-х вольтный светодиод, то это имеется в виду данный параметр;

2) номинальный ток. Часто его значение приводится в справочниках в миллиамперах. 1 мА = 0,001 А;

3) мощность рассеяния – это мощность, которую способен рассеять (выделить в окружающую среду) полупроводниковый прибор не перегреваясь. Измеряется в ваттах. Значение данного параметра с высокой точностью можно определить самостоятельно, умножив ток на напряжение.

В большинстве случае достаточно знать два первых параметра, а то и вовсе только номинальный ток.

Условно я выделил два основных способа, с помощью которых можно с высокой долей вероятности узнать или определить указанные параметры. Первый способ – информационный. Это наиболее быстрый и простой способ. Одна он не всегда дает положительный результат. Второй способ, нам – электронщикам, более интересный. Я назвал его «электрический», так как ток и напряжение будут определяться с помощью мультиметра (тестера). Рассмотрим подробно оба варианта.

Как определить параметры светодиода по внешнему виду?

Самый легкий путь – это узнать характеристики светодиода по его внешнему виду. Для этого достаточно набрать в строке поисковой системы такую фразу: «купить светодиод». Далее из предоставленного списка следует выбрать наиболее крупный интернет магазин и найти соответствующий раздел каталога. После чего внимательно просмотреть все имеющиеся позиции и если вам улыбнется удача, то вы найдете то, что ищете. Как правило, в серьёзных интернет-магазинах, где продаются радиоэлектронные элементы, на каждую позицию имеется соответствующая документация, даташит или приводятся основные характеристики. Сопоставив по внешнему виду имеющийся светодиод с тем, что в каталоге, можно таким образом узнать его характеристики.

Следующим подходом пользуются более опытные электронщики. Однако в нем нет ничего сложного. Преимущественное большинство светодиодов разделяется на индикаторные и общего назначения. Индикаторные, как правило, менее ярко светят, чем остальные. Это и понятно, ведь для индикации очень яркий свет не нужен. Индикаторные светодиоды применяются для сигнализации работы различных электронных устройств. Например, при включении в розетку, они показывают, что устройство находится под напряжением. Они встречаются в чайниках, ноутбуках, выключателях, зарядных устройствах, компьютерах и т.п. Электрические параметры их вне зависимости от внешнего вида следующие: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Светодиоды индикаторные

Светодиоды общего назначения светят ярче предыдущих, поэтому могут использоваться в качестве осветительных приборов. Однако для индикации тоже пойдут, если снизить ток. Как ни странно, но преобладающее большинство и таких светодиодов имеют значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

В целом светодиоды подобного типа имеют стандартный размерный ряд, основным параметром которого есть диаметр круга линзы или ширина и толщина стороны, если линза прямоугольной формы.

Диаметр линзы, мм: 3; 4,8; 5; 8 и 10.

Светодиоды с линзами разных диаметров

Стороны прямоугольника, мм: 3×2; 5×2.

Светодиоды прямоугольной формы

Как определить параметры светодиода мультиметром?

Теперь, когда мы знаем, что номинальный ток многих светодиодов 20 мА, то достаточно просто определить их напряжение опытным путем. Для этого нам понадобится блок питания с регулировкой напряжения и мультиметр. Соединяем последовательно блок питания со светодиодом и мультиметром, предварительно установленным в режим измерения тока.

Как определить характеристики светодиода

Блок питания изначально должен быть установлен на минимальное значение. Далее, изменяя величину подводимого к светодиоду напряжения, устанавливаем по показанию мультиметра ток 20 мА. После этого фиксируем значение величины подводимого напряжения либо по штатному вольтметру блока питания либо с помощью мультиметра, установленного в режим измерения напряжения.

Для страховки светодиода лучше последовательно к нему подсоединить резистор ом на 300. Но в этому случае напряжение необходимо фиксировать непосредственно на нем.

Как узнать характеристики светодиода

Поскольку не у всех есть блок питания с регулировкой напряжения, то можно определять параметры и исправность маломощных светодиодов с помощью следующих элементов:

  1. Крона (батарейка на 9 В).
  2. Резистор ом на 200.
  3. Переменный резистор, он же потенциометр на 1 кОм.
  4. Мультиметр.

Набор для определения параметров светодиода

Испытуемый светодиод соединяем последовательно с постоянным резисторов, потом с переменным, далее с кроной и щупами мультиметра, установленного в режим измерения постоянного тока.

Как узнать параметры светодиода

Очередность соединения всех элементов не имеет никакого значения, поскольку цепь последовательная, а это значит, что через все компоненты протекает один и тот же ток.

Изначально переменным резистором следует установить минимальное напряжение, а потом постепенно увеличивать до тех пор, пока ток не достигнет 20 мА. После этого выполняется измерение напряжения.

Как определить параметры светодиода

С помощью рассмотренного способа не получится определить параметры мощного светодиода вследствие протекания значительного тока через резисторы. В результате чего последние могут перегреться. Однако определить исправность его вполне возможно.

Электроника для начинающих

На чтение 6 мин Просмотров 19.6к. Опубликовано 08.09.2021 Обновлено 01.09.2021

Диод применяют почти во всех блоках питания электронных приборов. В комбинации с конденсаторами используют для низкочастотного изменения параметров несущего модулирующего сигнала. Детекторы на основе диодов ставят в телевизорах, радиоприемниках, других аналогичных устройствах. Элементы защищают приборы от перегрузки на входе, ложной полярности подключения, предохраняет ключи от пробоя электродвижущей силы самоиндукции при выключении. Чтобы выбрать необходимый тип, используется маркировка диодов.

Содержание

  1. Определение и разновидности диодов
  2. Материал изготовления
  3. Площадь перехода
  4. Технические параметры
  5. Буквенно-цифровое обозначение диодов
  6. Новая система
  7. Старая система
  8. Цветовая маркировка
  9. Отечественные диоды
  10. Импортные диоды
  11. SMD диоды
  12. Условное обозначение на схеме

Определение и разновидности диодов

Диод — электронная двухэлектродная деталь, проводимость которой изменяется в зависимости от полярности подающегося напряжения. Вольтамперная характеристика нелинейная, несимметричная, в отличие от терморезисторов и ламп накаливания.

Элемент состоит из деталей:

  • коробка в форме вакуумной колбы из металла, керамики, стекла;
  • катод для эмиссии свободных электронов;
  • анод для приемки носителей;
  • нагреватель — раскаляющаяся нить;
  • кристалл из кремния или германия с границей (р-n переходом).

По технологическим свойствам и строению выделяют виды:

  • точечные (плоскостные);
  • импульсные;
  • выпрямители;
  • универсальные;
  • в отдельной категории: тиристоры, фотодиодные и светодиодные.

Различают газонаполненные, электровакуумные группы, стабилизаторы разряда, полупроводниковые приборы. Последние используют чаще всего.

Материал изготовления

При производстве применяют германий, кремний, арсенид галлия, фосфид индия, селен. Первые три вида используют чаще всего.

Особенности материалов:

  • Кристаллы из германия имеют большой коэффициент проводимости при малом вольтаже, материал дорогой и редкий.
  • Кремний имеет повышенное напряжение смещения, равное 0,7 В (у германия 0,3 В), он более простой в обработке и распространенный.
  • Химическая комбинация мышьяка и галлия отличается высокой напряженностью электрополя пробоя, работает при повышенной мощности, приборы более радиационностойкие.

Германий используют, если кремниевые диоды не справляются с задачей, например, в прецизионных и маломощных цепях.

Площадь перехода

Левый слой (n) пропускает отрицательные электроны, а правый (p) характеризуется дырочной проводимостью. Ток возникает при изменении положения дырок. При касании пластов с разной проводимостью из-за диффузии электроны перемещаются в p-область, а дырки — в n-зону. В итоге граничный слой n-зоны получает положительный заряд, а аналогичный слой p-области — отрицательный.

Типы диодов по размеру перехода:

  • плоскостные в форме одной пластины с двумя зонами примесной проводимости;
  • точечные с малой площадью перехода для слабых токов;
  • микросплавные с соединенными монокристаллами n и p типа.

Между границами появляется электрополе — барьер для токовых носителей, а в p-n переходе возникает участок малой концентрацией зарядов. При изменении направления наружного электрополя преображаются потенциальные барьеры и величина сопротивления, поэтому p-n переход характеризуется вентильными качествами.

Технические параметры

Рабочий температурный интервал показывает зависимость сопротивления диода от изменения температуры. Для германиевых кристаллов диапазон составляет -60° — +70°С, а кремниевых — -60° — +125°С. При снижении температуры увеличивается опасность механического повреждения, и повышается обратное и прямое сопротивление диода.

Допустимое обратное напряжение означает величину, когда p-n переход получает пробой. Показатель зависит от удельного сопротивления, ширины перехода и температуры проводника. Повышают допустимое обратное напряжение последовательным подключением диодов.

Буквенно-цифровое обозначение диодов

В обозначении показывают номер партии и день выпуска, что помогает отслеживать более современные модели. Помимо этого, указывают технические характеристики, чтобы собрать ответственные схемы.

В СССР система маркировки претерпевала множественные изменения, на сегодняшний день она основывается на классификационных свойствах:

  • первая литера означает материал, например, К означает кремний, Г — германий, 3 или А — галлий, И — индий;
  • вторая буква — подкласс элементов: Д — термодиоды разных типов, Ц — выпрямители, В — варикапы, Н — диодные тиристоры;
  • третий элемент обозначают цифрой, которая определяет признак прибора;
  • четвертым идет число, показывающее номер разработки;
  • на пятом месте индекс классификации по показателям одной разновидности.

Предусмотрены дополнительные знаки для выделения конструктивных особенностей.

Новая система

По современным нормам диоды делят на группы по частоте усиления передачи электричества.

Различают диоды по работе в среде частотности тока:

  • среднего;
  • высокого;
  • сверхвысокого.

По мощности также разделяют категории: средней, низкой, высокой. Катодные и анодные выводы сопровождаются стрелкой и знаком плюс или минус.

Старая система

Распространенные схемы включают обозначения в виде GD-серии диодов из германия, например, GD-9 — это старая система кодировки.

Крупные организации или производственные концерны создали свои схемы обозначения диодов:

  • JEDEC 1N4148 — например, HP диод 1901-0044;
  • военный диод CV448 Mullard типа OA81 (Великобритания) — тип GEX230151 GEC.

OA-серия также означает аналогичные диоды, например, OA48 — такие кодировки были в разработках британского концерна Mallard. Схема кодирования JIS предназначена для полупроводников, обозначение начинается с IS.

Цветовая маркировка

Для диодов применяют стандартный тип коробки под обозначением SOD123. На одном конце есть тиснение или цветная калибровочная полоса. Колер говорит о коде, при котором есть отрицательная полярность для расширения р-п-перехода.

Цветовая маркировка диодов учитывает:

  • показатели обратного и рабочего вольтажа;
  • значение предельного тока сквозь р-п-переход;
  • мощность передачи и другие показатели.

Тип коробки не оказывает решающего значения при эксплуатации диода. При этом важная характеристика — степень рассеивания объема тепла с плоскости элемента.

Отечественные диоды

Российские производители применяют кодировочную цветовую надпись, включающую точки и полосы. Расшифровать комбинацию можно, обратившись к специализированным справочникам. В таком случае находят материал производства, назначение диода, эксплуатационные показатели.

Современные производители диодов на схеме обозначают продукцию с учетом требований ГОСТ 20.859.1 – 1989. Для отечественной цветовой маркировки есть нормированная таблица.

В ней есть обозначение материала, причем по нормам букву К (кремний) можно менять цифрой 1. Вторая литера говорит о том, что изделие — выпрямитель (Д) на базе варикапа (В), стабилитрона (С), туннельного диода (И).

Импортные диоды

Изготовленные за рубежом диоды также имеют цветовую шкалу в качестве разметки. Для считывания употребляют цифровые и буквенные обозначения, которые расшифровывают по специальной таблице.

Используют при выпуске условное обозначение диода:

  • JEDEC — американская база;
  • PRO-ELECTRON 1 европейские изготовители.

В Европе первая литера свидетельствует о типе производственного сырья, далее идут сведения о предназначении и виде элемента.

Номер серии говорит о способе применения:

  • для общего использования;
  • в специальных системах.

Расшифровка символов европейской системы:

SMD диоды

Элементы чаще имеют иностранное производство. Их строение выполнено в форме платы, на поверхностной плоскости которой есть зафиксированный чип. Изделия настолько маленькие, что не позволяют обозначить цифрами и буквами маркировку (нанести обозначение на поверхность). Если модели более крупные, все параметры указаны буквами, цифрами и цветом.

SMD модели представлены электронными деталями микроскопических габаритов. Их при сборке припаивают к медному боку платы, при этом диоды снабжены только короткими выводными контактами. Сравнительные характеристики буквенного и цифрового обозначения находят в таблицах.

Условное обозначение на схеме

Полярность диода иногда трудно определить маркировкой, при этом нелегко вывить правильные полюсы элемента.

Для этого на схемах предусмотрены варианты маркировки полярности:

  • показывают треугольник, вершина которого направлена к катоду;
  • упрощают символ, показывая его горизонтальной чертой, направленной к катоду;
  • одна полоска говорит об отрицательном полюсе, двойная — наоборот.

Содержание материала

  1. Виды диодов
  2. Принцип работы и основные сведения о диодах
  3. Буквенно-цифровое обозначение диодов
  4. Новая система
  5. Старая система
  6. Как работает диод
  7. Диоды иностранных производителей
  8. Как определить параметры светодиода по внешнему виду?
  9. Маркировка светодиодов
  10. Из чего состоит диод
  11. Маркировка
  12. Маркировка импортных диодов
  13. Нюансы
  14. Виды диодов по размеру перехода
  15. SMD-диоды
  16. Полярность SMD-диода
  17. Характеристики диода

Виды диодов

Светодиодные элементы делятся на 2 объёмных вида: полупроводниковые и неполупроводниковые. Устройство первого подразумевает небольшую ёмкость с выкачанным воздухом и двумя электродами внутри:

  • Плюсовым, обладающим электропроводностью P.
  • Минусовым, обладающим электропроводностью N.

Неполупроводниковые диоды делятся в свою очередь ещё на 2 группы:

  • Вакуумные (кенотроны), построенные по принципу лампы, имеющей 2 электрода, где один из них представлен как нить накаливания. В приоткрытом положении движение электронов осуществляется в сторону от полюса к минусу. В закрытом положении траектория перемещения изменяется в противоположную сторону или приостанавливается.
  • Наполненные газом (стабилитроны с тлеющим либо коронным зарядом игнитронов и газотронов). Из объёмного списка элементов наибольшая популярность присуща газотронам с дуговым зарядом (стабилитронам). Внутрь них закачивается инертный газ, помещаются оксидные термокатоды. Ключевой особенностью таких светодиодов является возможность к выдаче высокого напряжения на выходе и способность функционировать с напряжением, значение которого может достигать нескольких десятков ампер.

Важно! Величина сопротивления в закрытом положении непосредственно связана со значением прямого тока. Если оно высокое, то сопротивление будет низким.

Принцип работы и основные сведения о диодах

Диод имеет два электрода — анод и катод. Если анод обладает положительным потенциалом по отношению к катоду, то диод становится открытым. То есть, ток проходит и имеет малое сопротивление диода.

Если же на катоде находится положительный потенциал, то значит диод не раскрыт, обладает большим сопротивлением и не пропускает электрический ток.

Буквенно-цифровое обозначение диодов

В обозначении показывают номер партии и день выпуска, что помогает отслеживать более современные модели. Помимо этого, указывают технические характеристики, чтобы собрать ответственные схемы.

В СССР система маркировки претерпевала множественные изменения, на сегодняшний день она основывается на классификационных свойствах:

  • первая литера означает материал, например, К означает кремний, Г — германий, 3 или А — галлий, И — индий;
  • вторая буква — подкласс элементов: Д — термодиоды разных типов, Ц — выпрямители, В — варикапы, Н — диодные тиристоры;
  • третий элемент обозначают цифрой, которая определяет признак прибора;
  • четвертым идет число, показывающее номер разработки;
  • на пятом месте индекс классификации по показателям одной разновидности.

Предусмотрены дополнительные знаки для выделения конструктивных особенностей.

Новая система

По современным нормам диоды делят на группы по частоте усиления передачи электричества.

Различают диоды по работе в среде частотности тока:

  • среднего;
  • высокого;
  • сверхвысокого.

По мощности также разделяют категории: средней, низкой, высокой. Катодные и анодные выводы сопровождаются стрелкой и знаком плюс или минус.

Старая система

Распространенные схемы включают обозначения в виде GD-серии диодов из германия, например, GD-9 — это старая система кодировки.

Крупные организации или производственные концерны создали свои схемы обозначения диодов:

  • JEDEC 1N4148 — например, HP диод 1901-0044;
  • военный диод CV448 Mullard типа OA81 (Великобритания) — тип GEX230151 GEC.

OA-серия также означает аналогичные диоды, например, OA48 — такие кодировки были в разработках британского концерна Mallard. Схема кодирования JIS предназначена для полупроводников, обозначение начинается с IS.

Как работает диод

Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов. Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод. Схема подключения электродов к источнику может работать следующим образом: подача напряжения с батарейки к электроду N обеспечивает притяжение позитронов, соответственно к P электроду – электронов; отсутствие напряжения все возвращает в исходное состояние; смена полярности подаваемого напряжения обеспечивает притяжение электронов в обратном направлении к плюсовой пластине, а позитронов – к минусовой. В последнем случае избыточные заряды скапливаются на металлических обкладках, тогда как в центре самого материала образуется мертвая изолирующая зона.

Диоды иностранных производителей

Диод Шоттки

Похожий принцип с некоторыми отличиями используется в системе маркировки диодов импортного образца. Отличают три стандарта:

  1. JEDEC – американский. Каждый диод представлен в виде набора обозначений в виде 1NXY, где X – это серийный номер, а Y – модификация. Первые два символа есть у всех приборов, поэтому в цветовой маркировке их не учитывают. Каждой цифре или литере соответствует свой цвет, согласно таблице.
  2. PRO-ELECTRON – европейский. Две буквы в начале – материал и подкатегория диода. Серийный номер может иметь вид значения от 100 до 999 (бытовые приборы) либо с добавлением литер (Z10-A99), подразумевающих промышленное применение. Каждое из значений кодируется в цветовой элемент.
  3. JIS – японский. Заметно отличается от предыдущих – в начале указывается функциональный тип: фотодиод, обычный диод, транзистор или тиристор. Затем идет S – обозначение полупроводника; следующая литера – тип прибора внутри категории, затем серийный номер и буква модификации (одна или две).


Цветовая маркировка по зарубежным системам

Запомнить все сочетания практически невозможно. Если усвоить хотя бы основные соответствия, разобраться в назначении диода удастся гораздо быстрее.

Как определить параметры светодиода по внешнему виду?

Самый легкий путь – это узнать характеристики светодиода по его внешнему виду. Для этого достаточно набрать в строке поисковой системы такую фразу: «купить светодиод». Далее из предоставленного списка следует выбрать наиболее крупный интернет магазин и найти соответствующий раздел каталога. После чего внимательно просмотреть все имеющиеся позиции и если вам улыбнется удача, то вы найдете то, что ищете. Как правило, в серьёзных интернет-магазинах, где продаются радиоэлектронные элементы, на каждую позицию имеется соответствующая документация, даташит или приводятся основные характеристики. Сопоставив по внешнему виду имеющийся светодиод с тем, что в каталоге, можно таким образом узнать его характеристики.

Следующим подходом пользуются более опытные электронщики. Однако в нем нет ничего сложного. Преимущественное большинство светодиодов разделяется на индикаторные и общего назначения. Индикаторные, как правило, менее ярко светят, чем остальные. Это и понятно, ведь для индикации очень яркий свет не нужен. Индикаторные светодиоды применяются для сигнализации работы различных электронных устройств. Например, при включении в розетку, они показывают, что устройство находится под напряжением. Они встречаются в чайниках, ноутбуках, выключателях, зарядных устройствах, компьютерах и т.п. Электрические параметры их вне зависимости от внешнего вида следующие: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Светодиоды общего назначения светят ярче предыдущи

Светодиоды общего назначения светят ярче предыдущих, поэтому могут использоваться в качестве осветительных приборов. Однако для индикации тоже пойдут, если снизить ток. Как ни странно, но преобладающее большинство и таких светодиодов имеют значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

В целом светодиоды подобного типа имеют стандартный размерный ряд, основным параметром которого есть диаметр круга линзы или ширина и толщина стороны, если линза прямоугольной формы.

Диаметр линзы, мм: 3; 4,8; 5; 8 и 10.

Стороны прямоугольника, мм: 3×2; 5×2.

Стороны прямоугольника, мм: 3×2; 5×2.

Маркировка светодиодов

В идентификации светодиодов сложностей меньше. Каждый тип обладает характерными внешними отличительными признаками. Различают две категории:

  1. Цвет SMD-светодиода. В свою очередь, делят на группы по излучению: многоцветные диоды, нейтральный, теплый и холодный белый.
  2. Размер элемента. По аналогии с зарубежной кодировкой используют 4 цифры, которые обозначают размер в миллиметрах. 3014 – размер 3 х 1.4 мм.

Число перед типом светодиода означает количество на 1 метр ленты. Для устройств с длинными выводами, заключенными в пластмассовый или стеклянный корпус, применяют систему цветовых элементов, ознакомиться с которой можно в таблице.


Пример цветовой маркировки светодиодов

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток — фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа — катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

PN-переход диода

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

На первом месте - буква или цифра, означающая мате

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте. 
В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса. 
Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2. 
Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Нюансы

В дополнение к таким обозначениям диодов используются также некоторые графические показатели. Благодаря им, можно решить задачу и понять, насколько высокой является рабочая точка устройства. Иногда на диоды наносятся данные о том, какая техника производства выбрана, какой имеется материал корпуса, масса устройства. В принципе, такая информация будет полезна тому, кто создает аппаратуру, любителям такие данные не нужны.

Нужно заметить, что импортные производители работают по другой схеме. Маркировка диода такого типа будет довольно простой, ее значение можно посмотреть в специальной таблице. Именно поэтому аналоги будет отыскать очень легко.

Виды диодов по размеру перехода

По размерам и характеру p-n перехода различают три вида приборов – плоскостные, точечные и микросплавные.

Плоскостные детали представляют одну полупроводниковую пластину, в которой имеются две области с различной примесной проводимостью. Наиболее популярны изделия из германия и кремния. Преимущества таких моделей – возможность эксплуатации при значительных прямых токах, в условиях высокой влажности. Из-за высокой барьерной емкости они могут работать только с низкими частотами. Их главные области применения – выпрямители переменного тока, устанавливаемые в блоках питания. Эти модели называются выпрямительными.

Точечные диоды имеют крайне малую площадь p-n перехода и приспособлены для работы с малыми токами. Называются высокочастотными, поскольку используются в основном для преобразования модулированных колебаний значительной частоты.

Микросплавные модели получают путем сплавления монокристаллов полупроводников p-типа и n-типа. По принципу действия такие приборы – плоскостные, но по характеристикам они аналогичны точечным.

SMD-диоды

Маркировка SMD резисторов

Особенность SMD-диодов, монтирующихся прямо на поверхность плат, – невозможность полноценной маркировки из-за небольших размеров. Отсюда – своеобразная система идентификации. Несколько способов различить такие диоды:

  1. Обратить внимание на форму исполнения корпуса. У каждого типа есть характерный внешний вид, например, электролитические конденсаторы цилиндрические, керамические – в форме параллелепипеда.
  2. Свериться с таблицей типоразмеров. Обычно это четыре цифры, которые обозначают габариты резистора в дюймах.

Для каждого типа корпуса и назначения предусмотрена своя система обозначений, что делает расшифровку неудобной.

SMD-диоды – маркировка отличается в зависимости от

SMD-диоды – маркировка отличается в зависимости от корпуса

Полярность SMD-диода

Малый размер также не позволяет разместить привычные различимые обозначения полярностей. При определении катода руководствуются следующим:

  • маркировка в виде цветных колец наносится на его сторону;
  • некоторые корпуса без цветовых символов имеют паз на стороне катода;
  • если на корпусе изображен треугольник, его вершина указывает на отрицательный полюс.

Это помогает избежать путаницы. Чаще всего во всех системах маркировки символы наносят на сторону катода, это справедливо и для SMD-элементов.

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр — это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр — это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Теги

Добавить комментарий