По графику скорости от времени v(t) можно найти перемещение тела. Для этого нужно уметь рассчитывать площади плоских фигур.
По-английски «Square» – значит «площадь». Первая буква этого слова – буква «S». Перемещение обозначают буквой S потому, что S – это площадь фигуры, заключенной между линией скорости и горизонтальной осью времени.
Как вычислить площади плоских фигур
Рис.1. Чтобы рассчитать перемещение по графику v(t) нужно уметь вычислять площади трех плоских фигур
Площадь прямоугольника
Площадь прямоугольника (рис. 1а) можно найти, перемножив две его перпендикулярные стороны:
[ large boxed{ S_{text{прямоуг}} = a cdot b }]
Площадь трапеции
Примечание: Трапеция – это четырехугольник, две его стороны параллельные, а две другие – не параллельные. Параллельные стороны называются основаниями трапеции.
Умножив полусумму оснований трапеции на ее высоту, получим площадь (рис. 1б) трапеции:
[ large boxed{ S_{text{трапец}} = frac{1}{2} (a + b) cdot h }]
Площадь прямоугольного треугольника
Для прямоугольного треугольника (рис. 1в) площадь можно вычислить, перемножив два его катета и взяв половину от получившегося произведения:
[ large boxed{ S_{text{треуг}} = frac{1}{2} cdot a cdot b }]
Скорость не меняется
Пусть тело движется по прямой и при этом его скорость не изменяется (остается одной и той же). На языке математики «скорость не изменяется» можно записать так:
[v=const]
На графике для скорости v(t) такая скорость обозначается горизонтальной линией. На рисунке 2 эта линия обозначена синим цветом.
Рис.2. Площадь прямоугольника на графике v(t), если скорость тела не изменяется, будет численно равна перемещению тела
Примечание: Движение с постоянной (т. е. с одной и той же) скоростью называют равномерным движением.
Если скорость направлена по оси движения – линия лежит выше оси t времени (рис. 2а).
А когда скорость направлена против оси движения – линия скорости располагается ниже оси t времени (рис. 2б). Математики в таком случае говорят: «Скорость имеет отрицательную проекцию на ось».
Какую бы проекцию не имела скорость – положительную, или отрицательную, длина вектора скорости остается положительной. Поэтому, когда мы вычисляем площадь фигуры, то не учитываем знак «минус» для скорости (рис. 2б).
В обоих случаях перемещение тела можно вычислить по формуле:
[ large S = v_{0} cdot (t_{2} — t_{1}) ]
Примечание: Перемещение тела – это всегда либо нулевая, либо положительная величина S. Математики словосочетание «либо нулевая, либо положительная» заменят одним словом «не отрицательная».
Скорость увеличивается
Когда скорость тела увеличивается, то линия скорости на графике v(t) всегда располагается так, чтобы с ростом времени удаляться от оси времени. Чем больше времени пройдет, тем дальше от горизонтали располагаются точки, лежащие на линии скорости (рис. 3).
Рис.3. Так выглядит зависимость скорости от времени v(t), когда тело увеличивает свою скорость, двигаясь по оси – рис а) и против оси – рис. б)
Примечание: Движение с возрастающей скоростью называют равноускоренным движением.
Когда тело движется по направлению оси, линия скорости расположена выше горизонтальной оси времени (рис 3а).
А если тело движется против оси, линия скорости располагается ниже горизонтальной оси времени (рис. 3б).
Вычислим перемещение тела, движущегося в положительном направлении оси Ox. Для тела, движущегося противоположно оси, перемещение рассчитывается аналогично.
Выбор интервала времени влияет на то, будем ли мы вычислять площадь трапеции (рис. 4а), или прямоугольного треугольника (рис. 4б).
Рис.4. График v(t) — тело движется в положительном направлении оси и увеличивает свою скорость. От того, какой интервал времени мы выберем, зависит, будем ли мы вычислять путь, пройденный телом, с помощью площади трапеции – рис. а), или прямоугольного треугольника — рис. б)
На графике скорости v(t) для рисунка 4а перемещение с помощью трапеции вычисляется так:
[ large S = frac{1}{2} cdot (v_{1} + v_{2}) cdot (t_{2} — t_{1}) ]
А для рисунка 4б перемещение тела найдем с помощью площади треугольника:
[ large S = frac{1}{2} cdot v_{2} cdot (t_{2} — 0) ]
Скорость уменьшается
Когда тело замедляется и его скорость уменьшается, с ростом времени линия скорости приближается к горизонтальной оси t
- сверху – если тело движется по оси (рис. 5а),
- или снизу – когда тело движется против оси (рис. 5б).
Рис.5. Так выглядит зависимость скорости от времени v(t), когда тело уменьшает свою скорость, двигаясь по оси – рис а) и против оси – рис. б)
Примечание: Движение с уменьшающейся по модулю скоростью называют равнозамедленным движением.
Будем вычислять перемещение тела, движущегося в положительном направлении оси Ox. Аналогичным способом рассчитывается перемещение тела, движущегося противоположно оси.
От того, какой интервал времени нас интересует, зависит, будем ли мы вычислять площадь трапеции (рис. 6а), или треугольника (рис. 6б).
Рис.6. График v(t) — тело движется в положительном направлении оси и уменьшает свою скорость. Выбор интервала времени определяет, будем ли мы вычислять путь, пройденный телом, с помощью трапеции – рис. а), или треугольника — рис. б)
Найдем на графике v(t) перемещение с помощью площади трапеции для рисунка 6а:
[ large S = frac{1}{2} cdot (v_{1} + v_{2}) cdot (t_{2} — t_{1}) ]
А для рисунка 6б перемещение тела найдем с помощью площади треугольника:
[ large S = frac{1}{2} cdot v_{1} cdot (t_{2} — t_{1}) ]
Выводы
На графике v(t) перемещение – это:
- площадь прямоугольника, когда скорость не изменяется;
- площадь треугольника, или трапеции, когда скорость изменяется — падает, или растет.
3.2.1. Как правильно понимать условия задачи?
Скорость тела увеличилась в n раз:
Скорость уменьшилась в n раз:
Скорость увеличилась на 2 м/с:
Во сколько раз увеличилась скорость?
Во сколько раз уменьшилась скорость?
Как изменилась скорость?
На сколько увеличилась скорость?
На сколько уменьшилась скорость?
Тело достигло наибольшей высоты:
Тело прошло половину расстояния:
Тело бросают с земли: (последнее условие часто ускользает из вида — если у тела скорость равна нулю, например у ручки, лежащей на столе, оно может полететь само вверх?), начальная скорость направлена вверх.
Тело бросают вниз: начальная скорость направлена вниз.
Тело бросают вверх: начальная скорость направлена вверх.
В момент падения на землю:
Тело выпадает из аэростата (воздушного шара): начальная скорость равна скорости аэростата (воздушного шара) и направлена в ту же самую сторону.
3.2.2. Как по графику скорости определить ускорение?
Закон изменения скорости имеет вид:
Графиком этого уравнения является прямая линия. Так как — коэффициент перед t, то является угловым коэффициентом прямой.
Для графика 1:
То, что график 1 «поднимается вверх», означает — проекция ускорения положительна, т. е. вектор направлен в положительном направлении оси Ox. Пересечение графика с осью — изменение направления движения на противоположное.
Для графика 2:
То, что график 2 «опускается вниз», означает — проекция ускорения отрицательна, т. е. вектор направлен в отрицательном направлении оси Ox. Пересечение графика с осью — изменение направления движения на противоположное.
Для определения и выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.
3.2.3. Как по графику скорости определить пройденный путь и перемещение?
Как сказано в пункте 3.1.6 путь можно как площадь под графиком зависимости скорости от ускорения. Простой случай показан в пункте 3.1.6. Рассмотрим более сложный вариант, когда график скорости пересекает ось времени.
Напомним, что путь может только увеличиваться, поэтому путь, который проехало тело в примере на рисунке 9 равен:
где и — площади фигур, закрашенных на рисунке.
Для определения перемещения нужно заметить, что в точках и тело меняет направление движения. Проезжая путь тело движется в положительном направлении оси Ox, так как график лежит над осью времени. Проезжая путь тело движется в обратную сторону, в отрицательном направлении оси Ox так как график лежит под осью времени. Проезжая путь , тело движется в положительном направлении оси Ox, так как график лежит над осью времени. Таким образом, перемещение равно:
Еще раз обратим внимание:
1) пересечение с осью времени означает поворот в обратную сторону;
2) площадь графика, лежащего под осью времени положительна и входит со знаком «+» в определение пройденного пути, но со знаком «−» в определении перемещения.
3.2.4. Как из графика зависимости ускорения от времени определить зависимость скорости от времени и координаты от времени?
Для того, чтобы определить требуемые зависимости необходимы начальные условия — значения скорости и координаты в момент времени Без начальных условий решить однозначно данную задачу невозможно, поэтому, как правило, в условии задачи они даны.
В данном примере постараемся привести все рассуждения в буквах, для того, чтобы частном примере (при подстановке цифр) не потерять суть действий.
Пусть в момент времени скорость тела равна нулю и начальная координата
1) От 0 до
Начальные значения скорости и координаты определяем из начальных условий, а ускорение из графика:
следовательно, движение равноускоренное и закон изменения скорости имеет вид:
К концу данного промежутка времени () скорость () и координата () будут равны (вместо времени в формулы и нужно подставить ):
2) От до
Начальное значение скорости на этом промежутке должно быть равно конечному значению на предыдущем промежутке, начальное значение координаты равно конечному значению координаты на предыдущем промежутке, а ускорение определяем из графика:
следовательно, движение равноускоренное и закон изменения скорости имеет вид:
К концу данного промежутка времени () скорость () и координата () будут равны (вместо времени в формулы и нужно подставить ):
3) От до
Начальное значение скорости на этом промежутке должно быть равно конечному значению на предыдущем промежутке, начальное значение координаты равно конечному значению координаты на предыдущем промежутке, а ускорение определяем из графика:
следовательно, движение равноускоренное и закон изменения скорости имеет вид:
К концу данного промежутка времени () скорость () и координата () будут равны (вместо времени в формулы и нужно подставить ):
Для лучшего понимания построим полученные результаты на графике (см. рис.)
На графике скорости:
1) От 0 до прямая линия, «поднимающаяся вверх» (т. к. );
2) От до горизонтальная прямая линия (т. к. );
3) От до : прямая линия, «опускающаяся вниз» (т. к. ).
На графике координаты:
1) От 0 до : парабола, ветви которой направлены вверх (т. к. );
2) От до : прямая линия, поднимающаяся вверх (т. к. );
3) От до : парабола, ветви которой направлены вниз (т. к. ).
3.2.5. Как из графика закона движения записать аналитическую формулу закона движения?
Пусть дан график равнопеременного движения.
Закон равнопеременного движения имеет вид:
В этой формуле три неизвестные величины: и
Для определения достаточно посмотреть на значение функции при Для определения двух других неизвестных выбираем две точки на графике, значения которых мы можем точно определить — вершины клеток. Получим систему:
При этом считаем, что нам уже известно. Умножим 1-ое уравнение системы на а 2-ое уравнение на :
Вычтем из 1-го уравнения 2-ое, после чего получаем:
Полученное из данного выражения значение подставим в любое из уравнений системы (3.67) и решим полученное уравнение относительно :
3.2.6. Как по известному закону движения определить закон изменения скорости?
Закон равнопеременного движения имеет вид:
Это его стандартный вид для данного типа движения и никак иначе он выглядеть не может, поэтому его стоит запомнить.
В данном законе коэффициент перед t — это значение начальной скорости, коэффициент пред — это ускорение, деленное пополам.
Например, пусть дан закон:
Тогда
И уравнение скорости имеет вид:
Таким образом, для решения подобных задач, необходимо точно помнить вид закона равнопеременного движения и смысл коэффициентов, входящих в это уравнение.
Однако можно пойти и иным путем. Вспомним формулу:
В нашем примере:
3.2.7. Как определить место и время встречи?
Пусть даны законы движения двух тел:
В момент встречи тела оказываются в одной координате, то есть и необходимо решить уравнение:
Перепишем его в виде:
Это квадратное уравнение, общее решение которого приводить не будем, в силу его громоздкости. Квадратное уравнение либо не имеет решений, что означает — тела не встретились; либо имеет одно решение — одна единственная встреча; либо имеет два решения — две встречи тел.
Полученные решения необходимо проверять на физическую реализуемость. Самое главное условие: и то есть время встречи должно быть положительным.
3.2.8. Как определить путь за -ую секунду?
Пусть тело начинает движение из состояния покоя и за -ую секунду проходит путь Требуется найти, какой путь проходит тело за n-ую секунду.
Для решения этой задачи необходимо воспользоваться формулой (3.25):
Обозначим Тогда
Поделим уравнение на и получим:
3.2.9. Как движется тело, брошенное вверх с высоты h?
Тело, брошено вверх с высоты h со скоростью
Уравнение координаты y в произвольный момент времени:
Уравнение проекции скорости в произвольный момент времени:
Время подъема до наивысшей точки полета определяется из условия :
Для нахождения максимальной высоты H необходимо в необходимо подставить :
Время всего полета определяется из условия Получаем уравнение:
Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:
Скорость в момент падения:
3.2.10. Как движется тело, брошенное вниз с высоты h?
Тело, брошено вверх с высоты h со скоростью
Уравнение координаты y в произвольный момент времени:
Уравнение проекции скорости в произвольный момент времени:
Время всего полета определяется из уравнения:
Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:
Скорость в момент падения:
3.2.11. Как движется тело брошенное вверх с поверхности земли?
Тело брошено вверх с поверхности земли со скоростью
Уравнение координаты y в произвольный момент времени:
Уравнение проекции скорости в произвольный момент времени:
Время подъема до наивысшей точки полета определяется из условия
Для нахождения максимальной высоты H необходимо в (3.89) необходимо подставить
Время всего полета определяется из условия Получаем уравнение:
Скорость в момент падения:
Заметьте, что что означает — время подъема равно времени падения на ту же высоту.
Также получили: то есть — с какой скоростью бросили, с такой же скоростью тело упало. Знак «−» в формуле указывает, что скорость в момент падения направлена вниз, то есть против оси Oy.
3.2.12. Тело побывало на одной высоте дважды…
При бросании тела оно может дважды оказаться на одной высоте — первый раз при движении вверх, второй — при падении вниз.
1) Когда тело оказывается на высоте h?
Для тела, брошенного вверх с поверхности земли справедлив закон движения:
Когда тело окажется на высоте h его координата будет равна Получаем уравнение:
решение которого имеет вид:
2) Известны времена и когда тело оказалось на высоте h. Когда тело окажется на максимальной высоте?
Время полета с высоты h назад до высоты h равно Как уже было показано, время подъема равно времени падения до той же высоты, поэтому время полета от высоты h до максимальной высоты равно:
Тогда время полета от начала движения до максимальной высоты:
3) Известны времена и когда тело оказалось на высоте h. Чему равно время полета тела?
Все время полета равно:
4) Известны времена и когда тело оказалось на высоте h. Чему равна максимальная высота подъема?
3.2.13. Как движется тело, брошенное горизонтально с высоты h?
Тело, брошено горизонтально с высоты h со скоростью
Проекции начальной скорости на оси:
Проекции ускорения:
Проекции скорости в произвольный момент времени t:
Модуль скорости в произвольный момент времени t:
Координаты тела в произвольный момент времени t:
Время полета определяется из условия
Для определения дальности полета необходимо в уравнение для координаты x вместо t подставить
Для определения скорости тела в момент падения необходимо в уравнение вместо t подставить
Угол, под которым падает тело на землю:
3.2.14. Как движется тело, брошенное под углом α к горизонту с высоты h?
Тело, брошено под углом α к горизонту с высоты h со скоростью
Проекции начальной скорости на оси:
Проекции ускорения:
Проекции скорости в произвольный момент времени t:
Модуль скорости в произвольный момент времени t:
Координаты тела в произвольный момент времени t:
Время полета до наивысшей точки определяется из условия
Скорость в наивысшей точке полета
Максимальная высота H определяется при подстановке в закон изменения координаты y времени
Все время полета находится из условия получаем уравнение:
Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:
Если подставим в закон изменения координаты x время то получим дальность полета L:
Скорость в момент падения
Угол, который образует вектор скорости с горизонталью в произвольный момент времени:
Угол падения:
3.2.15. Как движется тело, брошенное под углом α к горизонту земли?
Тело, брошено под углом α к горизонту с поверхности земли со скоростью
Проекции начальной скорости на оси:
Проекции ускорения:
Проекции скорости в произвольный момент времени t:
Модуль скорости в произвольный момент времени t:
Координаты тела в произвольный момент времени t:
Время полета до наивысшей точки определяется из условия
Скорость в наивысшей точке полета
Максимальная высота H определяется при подстановке в закон изменения координаты y времени
Все время полета находится из условия получаем уравнение:
Получаем
Снова получили, что то есть еще раз показали, что время подъема равно времени падения.
Если подставим в закон изменения координаты x время то получим дальность полета L:
Скорость в момент падения
Угол, который образует вектор скорости с горизонталью в произвольный момент времени:
Угол падения:
то есть
3.2.16. Что такое настильная и навесная траектории?
Решим следующую задачу: под каким углом нужно бросить тело с поверхности земли, чтобы тело упало на расстоянии L от точки броска?
Дальность полета определяется формулой:
Отсюда
Из физических соображений ясно, что угол α не может быть больше 90°, поэтому, из серии решений уравнения подходят два корня:
Траектория движения, для которой называется настильной траекторией. Траектория движения, для которой называется навесной траекторией.
3.2.17. Как пользоваться треугольником скоростей?
Как было сказано в 3.6.1 треугольник скоростей в каждой задаче будет иметь свой вид. Рассмотрим на конкретном примере.
Тело бросили с вершины башни со скорость так, что дальность полета максимальна. К моменту падения на землю скорость тела равна Сколько длился полет?
Построим треугольник скоростей (см. рис.). Проведем в ней высоту, которая, очевидно, равна Тогда площадь треугольника скоростей равна:
Здесь мы воспользовались формулой (3.121).
Найдем площадь этого же треугольника по другой формуле:
Так как это площади одного и того же треугольника, то приравняем формулы и :
Откуда получаем
Как видно из формул для конечной скорости, полученных в предыдущих пунктах, конечная скорость не зависит от угла, под которым бросили тело, а зависит только значения начальной скорости и начальной высоты. Поэтому дальность полета по формуле зависит только от угла между начальной и конечной скоростью β. Тогда дальность полета L будет максимальной, если примет максимально возможное значение, то есть
Таким образом, если дальность полета максимальна, то треугольник скоростей будет прямоугольным, следовательно, выполняется теорема Пифагора:
Откуда получаем
Свойством треугольника скоростей, который только что был доказан, можно пользоваться при решении других задач: треугольник скоростей является прямоугольным в задаче на максимальную дальность полета.
3.2.18. Как пользоваться треугольником перемещений?
Как было сказано в 3.6.2, треугольник перемещений в каждой задаче будет иметь свой вид. Рассмотрим на конкретном примере.
Тело бросают под углом β к поверхности горы, имеющей угол наклона α. С какой скоростью нужно бросить тело, чтобы оно упало ровно на расстоянии L от точки бросания?
Построим треугольник перемещений — это треугольник ABC (см. рис. 19). Проведем в нем высоту BD. Очевидно, что угол DBC равен α.
Выразим сторону BD из треугольника BCD:
Выразим сторону BD из треугольника ABD:
Приравняем и :
Откуда находим время полета:
Выразим AD из треугольника ABD:
Выразим сторону DC из треугольника BCD:
Но Получаем
Подставим в это уравнение, полученное выражение для времени полета :
Окончательно получаем
3.2.19. Как решать задачи с помощью закона движения? (по горизонтали)
Как правило, в школе при решении задач на равнопеременное движение применяются формулы
Однако такой подход к решению трудно применить к решению многих задач. Рассмотрим конкретный пример.
Опоздавший пассажир подошёл к последнему вагону поезда в тот момент, когда поезд тронулся, начав движение с постоянным ускорением Единственная открытая дверь в одном из вагонов оказалась от пассажира на расстоянии Какую наименьшую постоянную скорость он должен развить, чтобы успеть сесть в поезд?
Введем ось Ox, направленную вдоль движения человека и поезда. За нулевое положение примем начальное положение человека («2»). Тогда начальная координата открытой двери («1») L:
Дверь («1»), как и весь поезд, имеют начальную скорость равную нулю. Человек («2») начинает движение со скоростью
Дверь («1»), как и весь поезд, движется с ускорением a. Человек («2») движется с постоянной скоростью:
Закон движения и двери и человека имеет вид:
Подставим условия и в уравнение для каждого из движущихся тел:
Мы составили уравнение движения для каждого из тел. Теперь воспользуемся уже известным алгоритмом для нахождения места и времени встречи двух тел — нам нужно приравнять и :
Откуда получаем квадратное уравнение для определения времени встречи:
Это квадратное уравнение. Оба его решения имеют физический смысл — наименьший корень, это первая встреча человека и двери (человек с места может побежать быстро, а поезд не сразу наберет большую скорость, так что человек может обогнать дверь), второй корень — вторая встреча (когда уже поезд разогнался и догнал человека). Но наличие обоих корней означает — человек может бежать и медленнее. Скорость будет минимальна, когда уравнение будет иметь один единственный корень, то есть
Откуда находим минимальную скорость:
В таких задачах важно разобрать в условиях задачи: чему равны начальная координата, начальная скорость и ускорение. После этого составляем уравнение движения и думаем как дальше решать задачу.
3.2.20. Как решать задачи с помощью закона движения? (по вертикали)
Рассмотрим пример.
Свободно падающее тело прошло последние 10 м за 0,5 с. Найти время падения и высоту, с которой упало тело. Сопротивлением воздуха пренебречь.
Для свободного падения тела справедлив закон движения:
В нашем случае:
начальная координата:
начальная скорость:
Подставим условия в закон движения:
Подставляя в уравнение движения нужные значения времени, будем получать координаты тела в эти моменты.
В момент падения координата тела
За с до момента падения, то есть при координата тела
Уравнения и составляют систему уравнений, в которой неизвестны H и Решая эту систему, получим:
Итак, зная вид закона движения (3.30), и используя условия задачи для нахождения и получаем закон движения для данной конкретной задачи. После чего, подставляя нужные значения времени, получаем соответствующие значения координаты. И решаем задачу!
Путь при неравномерном движении.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Сейчас мы будем рассматривать неравномерное движение – то есть движение, при котором абсолютная величина скорости меняется со временем. Оказывается, существует простая геометрическая интерпретация пути, пройденного телом при произвольном движении.
Начнём с равномерного движения. Пусть скорость тела постоянна и равна . Возьмём два момента времени: начальный момент и конечный момент . Длительность рассматриваемого промежутка времени равна .
Очевидно, что за промежуток времени тело проходит путь:
(1)
Давайте построим график зависимости скорости от времени. В данном случае это будет прямая, параллельная оси абсцисс (рис. 1).
Рис. 1. Путь при равномерном движении |
Нетрудно видеть, что пройденный путь равен площади прямоугольника, расположенного под графиком скорости. В самом деле, первый множитель в формуле (1) есть вертикальная сторона этого прямоугольника, а второй множитель – его горизонтальная сторона.
Теперь нам предстоит обобщить эту геометрическую интерпретацию на случай неравномерного движения.
Пусть скорость тела зависит от времени, и на рассматриваемом промежутке график скорости выглядит, например, так (рис. 2):
Рис. 2. Неравномерное движение |
Дальше мы рассуждаем следующим образом.
1. Разобьём наш промежуток времени на небольшие отрезки величиной .
2. Предположим, что на каждом таком отрезке тело движется с постоянной скоростью . То есть, плавное изменение скорости заменим ступенчатой аппроксимацией*: в течение каждого небольшого отрезка времени тело движется равномерно, а затем скорость тела мгновенно и cкачком меняется.
На рис. 3 показаны две ступенчатые аппроксимации. Ширина ступенек на правом рисунке вдвое меньше, чем на левом.
Рис. 3. Ступенчатая аппроксимация |
Путь, пройденный за время равномерного движения – это площадь прямоугольника, расположенного под ступенькой. Поэтому путь, пройденный за всё время такого “ступенчатого” движения – это сумма площадей всех прямоугольников на графике.
3. Теперь устремляем к нулю. Ясно, что в пределе наша ступенчатая аппроксимация перейдёт в исходный график скорости на рис. 2. Сумма площадей прямоугольников перейдёт в площадь под графиком скорости; следовательно, эта площадь и есть путь, пройденный телом за время от до . (рис. 4
Рис. 4. Путь при неравномерном движении |
В итоге мы приходим к нужному нам обобщению геометрической интерпретации пути, полученной выше для случая равномерного движения.
Аппроксимация – это приближённая замена достаточно сложного объекта более простой моделью, которую удобнее изучать. |
Геометрическая интерпретация пути.Путь, пройденный телом при любом движении, равен площади под графиком скорости на заданном промежутке времени.
Посмотрим, как работает эта геометрическая интерпретация в важном частном случае равноускоренного движения.
Задача. Тело, имеющее скорость в начальный момент , разгоняется с постоянным ускорением . Найти путь, пройденный телом к моменту времени .
Решение. Зависимость скорости от времени в данном случае имеет вид:
(2)
График скорости – прямая, изображённая на рис. 5. Искомый путь есть площадь трапеции, расположенной под графиком скорости.
Рис. 5. Путь при равноускоренном движении |
Меньшее основание трапеции равно . Большее основание равно . Высота трапеции равна . Поскольку площадь трапеции есть произведение полусуммы оснований на высоту, имеем:
Эту формулу можно переписать в более привычном виде:
Она, разумеется, вам хорошо известна из темы “Равноускоренное движение”.
Задача. График скорости тела является полуокружностью диаметра (рис. 6). Максимальная скорость тела равна . Найти путь, пройденный телом за время .
Решение. Как вы знаете, площадь круга радиуса равна . Но в данной задаче необходимо учесть, что радиусы полуокружности имеют разные размерности: горизонтальный радиус есть время , а вертикальный радиус есть скорость .
Поэтому пройденный путь, вычисляемый как площадь полукруга, равен половине произведения на горизонтальный радиус и на вертикальный радиус:
Рис. 6. К задаче |
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Путь при неравномерном движении.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.05.2023
1. Нахождение пути по графику зависимости скорости от времени
Покажем, как можно найти пройденный телом путь с помощью графика зависимости скорости от времени.
Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.
Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении
путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.
Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.
Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.
Разобьем мысленно все время движения на столь малые промежутки, чтобы в течение каждого из них движение тела можно было считать практически равномерным (это разбиение показано штриховыми линиями на рисунке 6.2).
Тогда путь, пройденный за каждый такой промежуток, численно равен площади фигуры под соответствующим ком графика. Поэтому и весь путь равен площади фигур заключенной под всем графиком. (Использованный нами прием лежит в основе интегрального исчисления, основы которого вы будете изучать в курсе «Начала математического анализа».)
2. Путь и перемещение при прямолинейном равноускоренном движении
Применим теперь описанный выше способ нахождения пути к прямолинейному равноускоренному движению.
Начальная скорость тела равна нулю
Направим ось x в сторону ускорения тела. Тогда ax = a, vx = v. Следовательно,
v = at. (1)
На рисунке 6.3 изображен график зависимости v(t).
? 1. Используя рисунок 6.3, докажите, что при прямолинейном равноускоренном движении без начальной скорости путь l выражается через модуль ускорения a и время движения t формулой
l = at2/2. (2)
Главный вывод:
при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату времени движения.
Этим равноускоренное движение существенно отличается от равномерного.
На рисунке 6.4 приведены графики зависимости пути от времени для двух тел, одно из которых движется равномерно, а другое – равноускоренно без начальной скорости.
? 2. Рассмотрите рисунок 6.4 и ответьте на вопросы.
а) Каким цветом изображен график для тела, движущегося равноускоренно?
б) Чему равно ускорение этого тела?
в) Чему равны скорости тел в тот момент, когда они прошли одинаковый путь?
г) В какой момент времени скорости тел равны?
? 3. Тронувшись с места, автомобиль за первые 4 с проехал расстояние 20 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какое расстояние проедет автомобиль:
а) за 8 с? б) за 16 с? в) за 2 с?
Найдем теперь зависимость проекции перемещения sx от времени. В данном случае проекция ускорения на ось x положительна, поэтому sx = l, ax = a. Таким образом, из формулы (2) следует:
sx = axt2/2. (3)
Формулы (2) и (3) очень похожи, что приводит порой к ошибкам при решении простых задач. Дело в том, что значение проекции перемещения может быть отрицательным. Так будет, если ось x направлена противоположно перемещению: тогда sx < 0. А путь отрицательным быть не может!
? 4. На рисунке 6.5 изображены графики зависимости от времени пути и проекции перемещения для некоторого тела. Какой цвет у графика проекции перемещения?
Начальная скорость тела не равна нулю
Напомним, что в таком случае зависимость проекции скорости от времени выражается формулой
vx = v0x + axt, (4)
где v0x – проекция начальной скорости на ось x.
Мы рассмотрим далее случай, когда v0x > 0, ax > 0. В этом случае снова можно воспользоваться тем, что путь численно равен площади фигуры под графиком зависимости скорости от времени. (Другие комбинации знаков проекции начальной скорости и ускорения рассмотрите самостоятельно: в результате получится та же общая формула (5).
На рисунке 6.6 изображен график зависимости vx(t) при v0x > 0, ax > 0.
? 5. Используя рисунок 6.6, докажите, что при прямолинейном равноускоренном движении с начальной скоростью проекция перемещения
sx = v0x + axt2/2. (5)
Эта формула позволяет найти зависимость координаты x тела от времени. Напомним (см. формулу (6), § 2), что координата x тела связана с проекцией его перемещения sx соотношением
sx = x – x0,
где x0 — начальная координата тела. Следовательно,
x = x0 + sx, (6)
Из формул (5), (6) получаем:
x = x0 + v0xt + axt2/2. (7)
6. Зависимость координаты от времени для некоторого тела, движущегося вдоль оси x, выражается в единицах СИ формулой x = 6 – 5t + t2.
а) Чему равна начальная координата тела?
б) Чему равна проекция начальной скорости на ось x?
в) Чему равна проекция ускорения на ось x?
г) Начертите график зависимости координаты x от времени.
д) Начертите график зависимости проекции скорости от времени.
е) В какой момент скорость тела равна нулю?
ж) Вернется ли тело в начальную точку? Если да, то в какой момент (моменты) времени?
з) Пройдет ли тело через начало координат? Если да, то в какой момент (моменты) времени?
и) Начертите график зависимости проекции перемещения от времени.
к) Начертите график зависимости пути от времени.
3. Соотношение между путем и скоростью
При решении задач часто используют соотношения между путем, ускорением и скоростью (начальной v0, конечной v или ими обеими). Выведем эти соотношения. Начнем с движения без начальной скорости. Из формулы (1) получаем для времени движения:
t = v/a. (8)
Подставим это выражение в формулу (2) для пути:
l = at2/2 = a/2(v/a)2 = v2/2a. (9)
Главный вывод:
при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату конечной скорости.
? 7. Тронувшись с места, автомобиль набрал скорость 10 м/с на пути 40 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какой путь от начала движения проехал автомобиль, когда его скорость была равна: а) 20 м/с? б) 40 м/с? в) 5 м/с?
Соотношение (9) можно получить также, вспомнив, что путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени (рис. 6.7).
Это соображение поможет вам легко справиться со следующим заданием.
? 8. Используя рисунок 6.8, докажите, что при торможении с постоянным ускорением тело проходит до полной остановки путь lт = v02/2a, где v0 – начальная скорость тела, a – модуль ускорения.
В случае торможения транспортного средства (автомобиль, поезд) путь, пройденный до полной остановки, называют тормозным путём. Обратите внимание: тормозной путь при начальной скорости v0 и путь, пройденный при разгоне с места до скорости v0 с тем же по модулю ускорением a, одинаковы.
? 9. При экстренном торможении на сухом асфальте ускорение автомобиля равно по модулю 5 м/с2. Чему равен тормозной путь автомобиля при начальной скорости: а) 60 км/ч (максимальная разрешенная скорость в городе); б) 120 км/ч? Найдите тормозной путь при указанных скоростях во время гололеда, когда модуль ускорения равен 2 м/с2. Сравните найденные вами значения тормозного пути с длиной классной комнаты.
? 10. Используя рисунок 6.9 и формулу, выражающую площадь трапеции через ее высоту и полусумму оснований, докажите, что при прямолинейном равноускоренном движении:
а) l = (v2 – v02)/2a, если скорость тела увеличивается;
б) l = (v02 – v2)/2a, если скорость тела уменьшается.
? 11. Докажите, что проекции перемещения, начальной и конечной скорости, а также ускорения связаны соотношением
sx = (vx2 – v0x2)/2ax (10)
? 12. Автомобиль на пути 200 м разогнался от скорости 10 м/с до 30 м/с.
а) С каким ускорением двигался автомобиль?
б) За какое время автомобиль проехал указанный путь?
в) Чему равна средняя скорость автомобиля?
Лютый опыт
Дополнительные вопросы и задания
13. От движущегося поезда отцепляют последний вагон, после чего поезд движется равномерно, а вагон – с постоянным ускорением до полной остановки.
а) Изобразите на одном чертеже графики зависимости скорости от времени для поезда и вагона.
б) Во сколько раз путь, пройденный вагоном до остановки, меньше пути, пройденного поездом за то же время?
14. Отойдя от станции, электричка какое-то время ехала равноускоренно, затем в течение 1 мин – равномерно со скоростью 60 км/ч, после чего снова равноускоренно до остановки на следующей станции. Модули ускорений при разгоне и торможении были различны. Расстояние между станциями электричка прошла за 2 мин.
а) Начертите схематически график зависимости проекции скорости электрички от времени.
б) Используя этот график, найдите расстояние между станциями.
в) Какое расстояние проехала бы электричка, если бы на первом участке пути она разгонялась, а на втором – тормозила? Какова была бы при этом ее максимальная скорость?
15. Тело движется равноускоренно вдоль оси x. В начальный момент оно находилось в начале координат, а проекция его скорости была равна 8 м/с. Через 2 с координата тела стала равной 12 м.
а) Чему равна проекция ускорения тела?
б) Постройте график зависимости vx(t).
в) Напишите формулу, выражающую в единицах СИ зависимость x(t).
г) Будет ли скорость тела равна нулю? Если да, то в какой момент времени?
д) Побывает ли тело второй раз в точке с координатой 12 м? Если да, то в какой момент времени?
е) Вернется ли тело в начальную точку? Если да, то в какой момент времени, и чему будет равен пройденный при этом путь?
16. После толчка шарик вкатывается вверх по наклонной плоскости, после чего возвращается в начальную точку. На расстоянии b от начальной точки шарик побывал дважды через промежутки времени t1 и t2 после толчка. Вверх и вниз вдоль наклонной плоскости шарик двигался с одинаковым по модулю ускорением.
а) Направьте ось x вверх вдоль наклонной плоскости, выберите начало координат в точке начального положения шарика и напишите формулу, выражающую зависимость x(t), в которую входят модуль начальной скорости шарика v0 и модуль ускорения шарика a.
б) Используя эту формулу и тот факт, что на расстоянии b от начальной точки шарик побывал в моменты времени t1 и t2 составьте систему двух уравнений с двумя неизвестными v0 и a.
в) Решив эту систему уравнений, выразите v0 и a через b, t1 и t2.
г) Выразите весь пройденный шариком путь l через b, t1 и t2.
д) Найдите числовые значения v0, a и l при b = 30 см, t1 = 1с, t2 = 2 с.
е) Постройте графики зависимости vx(t), sx(t), l(t).
ж) С помощью графика зависимости sx(t) определите момент, когда модуль перемещения шарика был максимальным.
Представьте обыкновенную кружку. Предположим, что в ней находится чай, и по какой-то причине вам не хочется его пить (может быть, вы не доверяйте людям, которые вам его принесли, или просто недавно выпили шесть стаканов сока). Поэтому вы, действуя на чашку с силой в пять ньютонов, медленно отодвигайте ее от себя на один метр.
Вопрос звучит так: чему равна работа силы, с которой вы двигали чай?
Что ж, в данном случае векторы перемещения и силы сонаправлены, поэтому работа будет равна произведению двух этих величин:
A=Fs=5thickspaceН×1thickspaceм=5thickspaceДж
Да, все так, но в этой статье мы с вами рассмотрим другой способ нахождения работы. Для этого давайте начертим график зависимости силы, действовавшей на тело, от перемещения объекта.
Вы действовали на чашку с постоянной силой, и график зависимости – это прямая, параллельная горизонтальной оси. Наверное, вы уже заметили, что в случае, когда сила воздействия на объект постоянна, площадь под графиком зависимости силы от перемещения равна механической работе.
S_Box=ab=5thickspaceед×1thickspaceед=5thickspaceед^2
И вы можете сказать: «Ну и для чего нам графический способ нахождения работы? Мы и формулой прекрасно обходились».
Верно. Но бывают случаи, когда аналитический способ работает плохо. Например, можно запросто представить, что сила, с которой вы двигали чашку, не была постоянной, а менялась вот таким образом:
И как нам теперь найти работу? Вот тут как раз и можно воспользоваться геометрическим лайфхаком и найти работу как площадь под имеющимся графиком.
Вы можете возразить: «В случае, когда сила постоянна, мы действительно можем найти работу как площадь под графиком, но тут совершенно другая история, разве можно использовать графический способ нахождения работы?»
Да, можно. Есть способ, к которому мы уже прибегали в некоторых статьях кинематики, если помните. Мы можем разбить треугольник, находящийся под графиком функции, на ряд небольших прямоугольников.
Все вместе они немного отличаются от большого треугольника, но можно нарисовать четырехугольники поменьше, а затем еще меньше. В конце концов их сумма будет неотличима от фигуры, внутри которой они находятся.
Каждый прямоугольник обозначает крошечный участок постоянной силы, значит, его площадь будет равна механической работе за совсем небольшой промежуток времени. Сумма площадей всех прямоугольников будет численно совпадать с итоговой работой. Но эта сумма также совпадает с площадью фигуры, которая находится под графиком (в нашем случае это треугольник). Значит, площадь под графиком зависимости силы от перемещения всегда численно совпадает с механической работой.
S_triangle=dfrac{1}{2}ab=dfrac{1}{2}×5thickspaceед×1thickspaceед=2,5thickspaceед^2
Соответственно, работа равна: A=2,5thickspaceДж.
Кратко повторим все.
Помимо аналитического способа нахождения работы (через формулу) существует еще и графический способ ее нахождения.
Чтобы им воспользоваться, достаточно начертить зависимость приложенной силы от перемещения тела и найти площадь фигуры, ограниченной графиком функции и осями координат.