Как определяется коэффициент полезного действия трансформатора?
Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.
- 1 Описание и принцип работы трансформатора
- 2 Виды потерь в трансформаторе
- 2.1 Энергетическая диаграмма и Закон сохранения энергии
- 3 Определение коэффициента полезного действия
- 4 Определение КПД методом непосредственных измерений
- 5 Определение КПД косвенным методом
- 5.1 Интересное видео: КПД трансформатора 100%
Описание и принцип работы трансформатора
Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.
Существуют следующие типы устройств:
- силовые;
- измерительные;
- малой мощности;
- импульсные;
- пик-трансформаторы.
Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.
Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.
Виды потерь в трансформаторе
Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.
В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.
Так, в аппарате присутствуют следующие потери:
- электрические, в меди обмоток;
- магнитные, в стали сердечника.
Энергетическая диаграмма и Закон сохранения энергии
Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .
Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:
P2=P1-ΔPэл1-ΔPэл2-ΔPм (1)
где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.
Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)
Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).
Определение коэффициента полезного действия
С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:
Суммарная мощность, Вт | Коэффициент полезного действия |
---|---|
10-20 | 0,8 |
20-40 | 0,85 |
40-100 | 0,88 |
100-300 | 0,92 |
Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.
Определение КПД методом непосредственных измерений
Формулу для вычисления КПД можно представить в нескольких вариантах:
(3)
Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.
Следующее выражение определяет значение полезной мощности:
P2=U2*J2*cosφ2, (4)
где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.
Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:
(5)
Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:
(6)
В свою очередь:
(7)
где rmp — активное обмоточное сопротивление.
Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:
β=J2/J2н, (8)
где J2н — номинальный ток вторичной обмотки.
Отсюда, запишем выражения для определения тока вторичной обмотки:
J2=β*J2н(9)
Если подставить данное равенство в формулу (5), то получится следующее выражение:
(10)
Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.
Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.
Определение КПД косвенным методом
Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.
Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:
η=(P2/P1)+ΔPм+ΔPэл1+ΔPэл2, (11)
Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.
Интересное видео: КПД трансформатора 100%
КПД – коэффициент полезного действия, одна из важнейших характеристик, определяющая эффективность работы устройства, относящее к трансформаторам. Рассмотрим особенности определения указанного показателя трансформатора с учётом принципа работы, конструкции данного электрооборудования и факторов, влияющих на эффективность эксплуатации.
Содержание
- Общие сведения о трансформаторах
- Что такое КПД трансформатора и от чего зависит
- Методы определения КПД
- Непосредственное измерение
- Определение косвенным методом
Общие сведения о трансформаторах
Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.
Аппарат состоит из следующих основных элементов:
- первичной и вторичной обмоток;
- сердечника, вокруг которого навиты обмотки.
Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.
Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.
Что такое КПД трансформатора и от чего зависит
Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.
Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.
Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:
- электрического – в проводниках катушек;
- магнитного – в материале сердечника.
Величина указанных потерь при проектировании устройства зависит от следующих факторов:
- габаритных размеров устройства и формы магнитной системы;
- компактности катушек;
- плотности составленных комплектов пластин в сердечнике;
- диаметра провода в катушках.
Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.
В процессе эксплуатации эффективность аппарата определяется:
- поданной нагрузкой;
- диэлектрической средой – веществом, использованным в качестве диэлектрика;
- равномерностью подачи нагрузки;
- температурой масла в агрегате;
- степенью нагрева катушек и сердечника.
Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.
Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.
Методы определения КПД
КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.
Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.
Непосредственное измерение
Формула для вычисления данного показателя может быть представлена в нескольких выражениях:
ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,
в которой:
- ɳ – значение КПД;
- Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
- ΔР – величина суммарных мощностных потерь.
Из указанной формулы видно, что значение показателя КПД не может превышать единицу.
После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:
ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,
в которой:
- U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
- Робм и Рс – величина потерь в обмотках и сердечнике.
Представленная формула содержится в ГОСТе, описывающем определение данного показателя.
Определение косвенным методом
Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.
Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.
Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14): Открыть файл
В процессе
трансформирования электрической энергии
часть энергии теряется в трансформаторе
на покрытие потерь. Потери в трансформаторе
разделяются на электрические
и магнитные.
Электрические
потери.
Обусловлены нагревом обмоток
трансформаторов
при прохождении по этим обмоткам
электрического
тока. Мощность
электрических потерь РЭ
пропорциональна
квадрату
тока
и определяется суммой электрических
потерь в первичной
РЭ1
и
во вторичной РЭ2
обмотках:
Рэ
=
Рз1
+ Рэ2
=
mI12r1+
mI’22r’2, (1.73)
где
т
— число
фаз трансформатора (для однофазного
трансформатора
т
= 1,
для трехфазного т
=
3).
При
проектировании трансформатора величину
электрических потерь
определяют по (1.73), а для изготовленного
трансформатора эти потери определяют
опытным путем, измерив мощность к.з.
(см.
§ 1.11) при номинальных токах в обмотках
Рк.ном–
Pэ=β2Pk.ном, (1.74)
где Р — коэффициент
нагрузки (см. § 1.13).
Электрические потери
называют переменными,
так как их
величина
зависит от нагрузки трансформатора
(рис. 1.40).
Магнитные
потери.
Происходят главным образом в магнитопроводе
трансформатора. Причина этих потерь —
систематическое перемагничивание
магнитопровода переменным магнитным
полем. Это
перемагничивание вызывает в магнитопроводе
два вида магнитных
потерь: потери
от гистерезиса РГ,
связанные
с затратой энергии на
уничтожение остаточного магнетизма в
ферромагнитном материале
магнитопровода, и потери от вихревых
токов РВТ,
наводимых
переменным магнитным полем в пластинах
магнитопровода:
PМ=PГ+PВ.Т
С целью уменьшения
магнитных потерь магнитопровод
трансформатора выполняют
из магнитно-мягкого ферромагнитного
материала — тонколистовой электротехнической
стали. При
этом магнитопровод делают шихтованным
в виде пакетов из тонких пластин (полос),
изолированных с двух сторон тонкой
пленкой лака.
Коэффициент
полезного действия
трансформатора
определяется
как отношение
активной мощности на выходе вторичной
обмотки
Р2
(полезная
мощность) к активной мощности на входе
первичной
обмотки Р1
(подводимая
мощность):
η= P2/Р1=(Р1-∑P)/Р1
= l-∑P/Р1. (1.76)
Сумма
потерь ∑P=P0ном+β2Pк.ном.
Активная
мощность на выходе вторичной обмотки
трехфазного
трансформатора (Вт)
Р2
= √3U2I2cosφ2=βSномcosφ2
, (1.78)
где Sном=
√3U2HOM
I2HOM
— номинальная мощность трансформатора,
В-А; I2
и U2
— линейные значения тока, А, и напряжения
В.
Учитывая,
что Р1
= Р2
+ ∑Р,
получаем выражение для расчета КПД
трансформатора:
(1.79)
Рис.1.41.
График зависимости КПД
трансформатора от нагрузки
Анализ
выражения (1.79) показывает, что КПД
трансформатора
зависит как от величины (β), так и от
характера (cosφ2)
нагрузки.
Эта зависимость иллюстрируется графиками
(рис. 1.41). Максимальное
значение КПД соответствует нагрузке,
при которой магнитные
потери равны электрическим: Р0ном
=β’2/РК.НОМ,
отсюда значение
коэффициента нагрузки, соответствующее
максимальному
КПД,
(1.80)
Обычно
КПД трансформатора имеет максимальное
значение
при β’=0,45÷0,65.
Подставив в (1.79) вместо Р значение Р’ по
(1.80),
получим выражение максимального КПД
трансформатора:
(1.81)
Помимо
рассмотренного КПД по мощности иногда
пользуются
понятием
КПД по энергии, который представляет
собой отношение
количества энергии, отданной трансформатором
потребителю
W2
(кВт-ч) в течение
года, к энергии W1,
полученной им
от
питающей электросети за это же время:
η=W2/W1.
КПД
трансформатора по энергии характеризует
эффективность
эксплуатации трансформации.
5.
Регулирование
напряжения трансформатора. Перенапряжения
в трансформаторах и защита их от
перенапряжений.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Как известно, преобразование электрической энергии в трансформаторе сопровождается потерями. Эти потери можно выразить через КПД – коэффициент полезного действия.
Где Sпотерь – это мощность потерь, S100% – это полная мощность трансформатора, Sполезная – это эффективная мощность трансформатора.
КПД – это коэффициент полезного действия, т.е. отношение преобразованной активной мощности к потребляемой. Соответственно по этому утверждению запишем формулу определения КПД трансформатора:
На самом деле, когда речь идёт о трансформаторе, формулы преобразования мощности всегда записывают через S, т.е. полную мощность P+Q (где P – активная мощность, Q – реактивная). В инженерных расчётах сумму активной и реактивной энергии всегда представляют в виде комплексного числа, в виде P+jQ, так как в действительности векторы Q и P отличаются друг от друга на определённый угол, а решение таких уравнений через комплексные числа полностью удовлетворяет ход и результаты расчётов.
Для практического определения КПД необходимо измерить мощности в первичной и вторичной обмотках, а в нагрузку подключить активное сопротивление, для обеспечения максимально коэффициента мощности (cosφ=1). Данная методика справедлива при измерении КПД тр-ра методом двух ваттметров, или методом непосредственных измерений. Так как если уменьшить значение коэффициента мощности, то измерение соотношений будет несколько не точным.
На что же тратиться энергия в трансформаторе при преобразовании? Потери в трансформаторе бывают двух видов. Первый – потери в меди трансформатора, т.е. в обмотках. Это потери на активном сопротивлении обмоток трансформатора. Энергия потерь рассеивается в виде тепла в окружающую среду. Второй вид потерь – это потери на перемагничивание сердечника трансформатора. Их ещё называют потерями в стали трансформатора. Т.е. это ничто иное, как потери на гестерезис и на вихревые токи, которые возникают в магнитопроводе. Для уменьшения влияния вихревых токов сердечник трансформатора шихтуют, то есть разделяют на изолированные друг от друга пластины, направленные вдоль протекания магнитного потока.
Благодаря шихтованному сердечнику современные промышленные трансформаторы имеют КПД 90%. КПД бытовых трансформаторов меньше, в зависимости от качества трансформаторной стали и правильности обмотки рознится от 60% и более.
Для определения потерь в стали трансформатора необходимо провести опыт холостого хода. На первичную обмотку подаётся номинальное напряжение, а вторичная остаётся не подключенной к нагрузке. Если измерить потребляемый ток, то можно вычислить мощность потерь. Так как на вторичной обмотке нет нагрузки, а сталь сердечника не насыщена, для переменного тока первичная обмотка будет представлять большое индуктивное сопротивление, влияние активного сопротивления при таком токе ничтожно мало, поэтому мы считаем, что весь потребляемый ток трансформатором в таком режиме будет током потерь в стали сердечника.
А для определения потерь в меди трансформатора необходимо провести опыт короткого замыкания. Для этого вторичная обмотка закорачивается, в разрыв цепи устанавливается амперметр. Напрямую или через трансформатор тока – зависит от величины протекающего тока. К первичной обмотке подключается регулируемый источник переменного тока, например ЛАТР (лабораторный автотрансформатор). Постепенно повышая значение напряжения на первичке, добиваются значения номинального тока во вторичной. Напряжение на первичной обмотке, при котором на вторичной устанавливается номинальный ток, называется напряжением короткого замыкания. Соответственно, через это значение находят действительный ток короткого замыкания трансформатора, определяют точный коэффициент трансформации, а так же вычисляют потери трансформатора в обмотках, так как сталь сердечника не насыщена, то в стали протекает малый магнитный поток, потерями в котором можно пренебречь.
( 1 оценка, среднее 5 из 5 )
Содержание
- Что такое КПД трансформатора и от чего зависит
- Зависимость КПД трансформатора от нагрузки
- Описание и принцип работы трансформатора
- Разные виды трансформаторов и их коэффициенты
- Методы определения КПД
- Непосредственное измерение
- Определение косвенным методом
- Виды потерь в трансформаторе
- Энергетическая диаграмма и Закон сохранения энергии
- Как рассчитать силовой трансформатор по формулам за 5 этапов
- Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
- Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
- Этап №3. Как вычислить диаметры медного провода для каждой обмотки
- Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
- Этап №5. Учет свободного места внутри окна магнитопровода
- Общие сведения о трансформаторах
- Определение коэффициента полезного действия
- Определение КПД методом непосредственных измерений
- Падения напряжения и сопротивления обмоток трансформатора
- Определение КПД косвенным методом
- Расчет номинальной мощности трансформатора
- Самостоятельный расчет обмотки мощности трансформатора
- Как определяется коэффициент полезного действия трансформатора?
- Как определяется коэффициент полезного действия трансформатора?
- Интересное видео: КПД трансформатора 100%
Что такое КПД трансформатора и от чего зависит
Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.
Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.
Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:
- электрического – в проводниках катушек;
- магнитного – в материале сердечника.
Величина указанных потерь при проектировании устройства зависит от следующих факторов:
- габаритных размеров устройства и формы магнитной системы;
- компактности катушек;
- плотности составленных комплектов пластин в сердечнике;
- диаметра провода в катушках.
Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.
В процессе эксплуатации эффективность аппарата определяется:
- поданной нагрузкой;
- диэлектрической средой – веществом, использованным в качестве диэлектрика;
- равномерностью подачи нагрузки;
- температурой масла в агрегате;
- степенью нагрева катушек и сердечника.
Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.
Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.
Зависимость КПД трансформатора от нагрузки
Для построения графика ή =f ( β ) при сosφ2 = 1,0 и сosφ2 = 0,8 определяют КПД трансформатора для ряда значений коэффициента нагрузки β , равного 0,25; 0,5; 0,75; 1,0 и 1,2, воспользовавшись для этого выражением
ή = Р2 /Р1 = Р2 / ( Р2 + Р + β 2 Рк ) | (30) |
ή = 1 — (Р0 ном + β 2 Рк ном ) / (β Sном сosφ2 + Р0 ном + β 2 Рк ном ) | (32) |
где Sном – номинальная мощность трансформатора, ВА.
По результатам вычислений строят графики КПД (рис. 6).
Максимальное значение КПД трансформатора соответствует нагрузке, при которой электрические потери трансформатора равны магнитным потерям. Коэффициент нагрузки, соответствующий максимальному значению КПД вычисляется по формуле (28)
На оси абсцисс отмечают значение β и, проведя в этой точке ординату, определяют максимальные значения КПД. Эти значения можно получить по (31), подставив в это выражение β :
ήmax = 1 — Р0 ном / (0,5 Sном сosφ2 + Р0 ном) | (32) |
Порядок выполнения работы
5.1. На основании паспортных и вычисленных данных заполнить таблицу1
Паспортные данные | Вычислено и определено | ||||||||
Sном, ВА | f, Гц | U1ном, В | U2ном, В | I1ном, А | I2ном, А | i, % | Uкз, % | ΔРст, Вт | ΔРм, Вт |
Значения I1ном и I2ном рассчитываются по формуле I ном = (они необходимы при проведении опыта КЗ), значения Uкз, ΔРст, и ΔРм вписываются в таблицу по результатам опытов.
5.2. Провести опыт ХХ.
Для этого в соответствии с принципиальной схемой рис.7а собрать электрическую цепь для проведения опыта по монтажной схеме рис.7б. Питание цепи осуществить от регулируемого источника однофазного напряжения. Измерения I10,.U10, P, производить измерительным комплектом К505, а напряжение U20– цифровым вольтметром. Сделать не менее пяти замеров через приблизительно одинаковые интервалы тока холостого хода, изменяя подводимое к трансформатору напряжение от 0,5 U1ном до 1,15 U1ном . Показания измерительных приборов занести в табл. 2.
№ п/п | Измерения | Вычисления | |||||||
U10, В | I10, А | P, Вт | U20, В | Zm, Ом | Rm, Ом | Xm, Ом | i, % | cosφ | K |
Расчеты вести по формулам 14-18.
5.3. Провести опыт короткого замыкания.
Для этого в схеме опыта ХХ заменить вольтметр во вторичной обмотке на амперметр согласно схеме электрической принципиальной рис 8. Использовать амперметр с пределом измерения 1А на вертикальной части стенда. С помощью ЛАТРа повысить напряжение от 0 до значения, при котором ток в первичной обмотке достигнет номинального значения (I1к = I1ном).
Показания измерительных приборов занести в табл. 3.
№ п/п | Измерения | Вычисления | ||||||||
U1к, В | I1к, А | I2к, А | Pк, Вт | Uк, % | Zк, Ом | Rк, Ом | Xк, Ом | cosφк | R1, Ом | X1, Ом |
Расчеты вести по формулам 21-24, 27.
5.4. Провести опыт нагрузки трансформатора, собрав схему по рис. 9
В качестве нагрузки к зажимам вторичной обмотки подключить резисторы с переменными и постоянными параметрами, суммарное сопротивление которых рассчитать с учетом того, что ток во вторичной обмотке должен изменяться от I2 = 0,1 I2ном до I2 = (1,2…1,25) I2ном; U1 = U1ном = const. При этом сosφ2 = 1. Изменяя нагрузочное сопротивление провести 5-6 измерений.
Для изменения сosφ2 в качестве нагрузки использовать катушку индуктивности (сosφ2 = 0,8).
Показания измерительных приборов занести в табл. 4.
№ п/п | Измерения | Вычисления | |||||||||
U1н , В | I1, А | P1, Вт | U2, В | I2, А | сosφ1 | η | P2, Вт | ΔU2, % опыт | ΔU2, % расчет | β | сosφ2 |
Расчеты вести по формулам:
Построить по этим данным внешние характеристики U2 = f (β) и зависимости η = f (β)
Описание и принцип работы трансформатора
Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.
Существуют следующие типы устройств:
- силовые;
- измерительные;
- малой мощности;
- импульсные;
- пик-трансформаторы.
Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.
Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.
Разные виды трансформаторов и их коэффициенты
Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:
Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.
Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель – это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.
Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.
Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.
Номинальная вторичная нагрузка, В | 3 | 5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 75 | 100 |
Коэффициент, n | Номинальная предельная кратность | ||||||||||
3000/5 | 37 | 31 | 25 | 20 | 17 | 13 | 11 | 9 | 8 | 6 | 5 |
4000/5 | 38 | 32 | 26 | 22 | 20 | 15 | 13 | 11 | 10 | 8 | 6 |
5000/5 | 38 | 29 | 25 | 22 | 20 | 16 | 14 | 12 | 11 | 10 | 8 |
6000/5 | 39 | 28 | 25 | 22 | 20 | 16 | 15 | 13 | 12 | 10 | 8 |
8000/5 | 38 | 21 | 20 | 19 | 18 | 14 | 14 | 13 | 12 | 11 | 9 |
10000/5 | 37 | 16 | 15 | 15 | 14 | 12 | 12 | 12 | 11 | 10 | 9 |
12000/5 | 39 | 20 | 19 | 18 | 18 | 12 | 15 | 14 | 13 | 12 | 11 |
14000/5 | 38 | 15 | 15 | 14 | 14 | 12 | 13 | 12 | 12 | 11 | 10 |
16000/5 | 36 | 15 | 14 | 13 | 13 | 12 | 10 | 10 | 10 | 9 | 9 |
18000/5 | 41 | 16 | 16 | 15 | 15 | 12 | 14 | 14 | 13 | 12 | 12 |
Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:
Коэффициентом трансформации трансформаторов называется отношение напряжения обмотки высшего напряжения (ВН) к напряжению обмотки низшего напряжения (НН) при холостом ходе:
Где: Кл- коэффициент трансформации линейных напряжений;
U1 — линейное напряжение обмотки ВН;
U2 — линейное напряжение обмотки НН.
При определении коэффициента трансформации однородных трансформаторов или фазного коэффициента трансформации трехфазных
трансформаторов отношение напряжения можно приравнять к отношению чисел витков обмотки
где: Кф — фазный коэффициент трансформации;
U1ф,U2ф — фазные напряжения обмоток ВН и НН соответственно;
При измерении линейного коэффициента трансформации трехфазного трансформатора равенство отношения высшего и низшего линейных напряжения обмоток и соответственно числа витков ВН и НН сохраняется лишь при одинаковых группах соединения этих обмоток.
Если первичная и вторичная обмотки соединены по одинаковой схеме, например, обе в звезду, обе в треугольник и так далее, фазный и линейный коэффициенты трансформации равны друг другу. При различных схемах соединений обмоток, например, одной в звезду, а другой в треугольник, линейньй и фазный коэффициенты трансформации неодинаковы (они в данном случае отличаются друг от друга в 3 раз).
Определение коэффициента трансформации производится на всех ответвлениях обмоток и для вех фаз. Эти измерения, кроме проверки самого коэффициента трансформации дают возможность проверить также правильность установки переключателя напряжения на соответствующих ступенях, а также целостность обмоток.
Для определения коэффициента трансформации применяют метод двух вольтметров (рис.2)
Рис.2 Определение коэффициента трансформации.
Со стороны высокого напряжения (ВН) подводится трехфазовое напряжение 220 В и измеряется напряжение на вторичной обмотке.
Внимание! Напряжение подводится только к обмоткам ВН (А, В, С). Результаты измерений заносятся в таблицу 2
Пределы измерения вольтметров: PV1-250 В,PV2-15В
Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В.
Примечание: В данной работе трансформатор имеет одно положение переключателя.
Коэффициент трансформации отдельных фаз, замеренных на одних и тех же ответвлениях не должен отличаться друг от друга более чем на 2%.
Методы определения КПД
КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.
Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.
Непосредственное измерение
Формула для вычисления данного показателя может быть представлена в нескольких выражениях:
ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,
в которой:
- ɳ – значение КПД;
- Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
- ΔР – величина суммарных мощностных потерь.
Из указанной формулы видно, что значение показателя КПД не может превышать единицу.
После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:
ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,
в которой:
- U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
- Робм и Рс – величина потерь в обмотках и сердечнике.
Представленная формула содержится в ГОСТе, описывающем определение данного показателя.
Расчёты КПД
Определение косвенным методом
Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.
Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.
Виды потерь в трансформаторе
Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.
В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.
Так, в аппарате присутствуют следующие потери:
- электрические, в меди обмоток;
- магнитные, в стали сердечника.
Энергетическая диаграмма и Закон сохранения энергии
Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .
Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:
P2=P1-ΔPэл1-ΔPэл2-ΔPм (1)
где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.
Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)
Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).
Как рассчитать силовой трансформатор по формулам за 5 этапов
Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.
По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.
Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.
Потери мощности во вторичной обмотке оценивают по статистической таблице.
Мощность трансформатора, ватты | Коэффициент полезного действия ŋ |
15÷50 | 0,50÷0,80 |
50÷150 | 0,80÷0,90 |
150÷300 | 0,90÷0,93 |
300÷1000 | 0,93÷0,95 |
>1000 | 0.95÷0,98 |
Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.
Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:
- для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
- у сердечника из Ш-образных пластин Qc=0,7√S1.
Таким образом, первый этап расчета позволяет: зная необходимую величину первичной или вторичной мощности подобрать магнитопровод по форме и поперечному сечению сердечника;или по габаритам имеющегося магнитопровода оценить электрические мощности, которые сможет пропускать проектируемый трансформатор.
Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.
Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.
На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.
Этап №3. Как вычислить диаметры медного провода для каждой обмотки
При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.
Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.
Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.
Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.
Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.
При выборе диаметра провода добиваются оптимального соотношения между его нагревом при эксплуатации и габаритами свободного пространства внутри сердечника, позволяющими разместить все обмотки.
Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.
Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.
Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).
В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.
Этап №5. Учет свободного места внутри окна магнитопровода
На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.
Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.
Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.
Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.
Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.
Общие сведения о трансформаторах
Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.
Аппарат состоит из следующих основных элементов:
- первичной и вторичной обмоток;
- сердечника, вокруг которого навиты обмотки.
Принцип работы трансформатора
Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.
Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.
Определение коэффициента полезного действия
С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:
Суммарная мощность, Вт | Коэффициент полезного действия |
10-20 | 0,8 |
20-40 | 0,85 |
40-100 | 0,88 |
100-300 | 0,92 |
Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.
Определение КПД методом непосредственных измерений
Формулу для вычисления КПД можно представить в нескольких вариантах:
(3)
Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.
Следующее выражение определяет значение полезной мощности:
P2=U2*J2*cosφ2, (4)
где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.
Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:
(5)
Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:
(6)
В свою очередь:
(7)
где rmp — активное обмоточное сопротивление.
Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:
β=J2/J2н, (8)
где J2н — номинальный ток вторичной обмотки.
Отсюда, запишем выражения для определения тока вторичной обмотки:
J2=β*J2н(9)
Если подставить данное равенство в формулу (5), то получится следующее выражение:
(10)
Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.
Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.
Падения напряжения и сопротивления обмоток трансформатора
Относительные активные падения напряжения в первичной и вторичной обмотках однофазного трансформатора при номинальной нагрузке:
В случае трехфазного трансформатора нужно правые части этих формул разделить на √3. Активные сопротивления обмоток однофазного трансформатора:
В случае трехфазного трансформатора нужно правые части этих формул разделить на 3 при соединении обмоток звездой.
Активное сопротивление короткого замыкания двухобмоточного трансформатора, приведенное к первичной обмотке:
где U1 и U2 берутся из задания, I1 и I2 – из позиции 1, W1 и W2 – из позиции 4, Pм и Pм2 – из позиции 7.
Относительные индуктивные падения напряжения в отдельных обмотках двухобмоточного трансформатора:
eS [%] = eS1 [%] + eS2 [%] .
Индуктивное сопротивление короткого замыкания двухобмоточного трансформатора, приведенное к первичной обмотке:
где
U1 и f берутся из задания; I1 и I2 – из позиции 1; E1, W1 и W2 – из позиции 4; δ1, δ2, δ12 и H – из позиции 6, lω1 и lω2 – из позиции 7.
Полное сопротивление короткого замыкания двухобмоточного трансформатора:
Напряжение короткого замыкания двухобмоточного трансформатора:
В случае трехфазного трансформатора нужно правую часть выражения для xк поделить, а для eк [%] – умножить на √3.
Относительное изменение напряжения двухобмоточного трансформатора при нагрузке может быть определено по следующей приближенной формуле:
где cos φ2 берется из задания, cos φ1 – из позиции 1.
Определение КПД косвенным методом
Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.
Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:
η=(P2/P1)+ΔPм+ΔPэл1+ΔPэл2, (11)
Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.
Расчет номинальной мощности трансформатора
Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения
Для сетевых подстанций, где примерно до 25 % потребителей из числа малоответственных в аварийном режиме может быть отключено, обычно принимается равным 0,75…0,85. При отсутствии потребителей III категории К 1-2 = 1 Для производств (потребителей) 1й и особой группы известны проектные решения, ориентирующиеся на 50%ю загрузку трансформаторов.
Рекомендуется широкое применение складского и передвижного резерва трансформаторов, причем при аварийных режимах допускается перегрузка трансформаторов на 40 % на время максимума общей суточной продолжительностью не более 6 ч в течение не более 5 сут.
При этом коэффициент заполнения суточного графика нагрузки трансформаторов кн в условиях его перегрузки должен быть не более 0,75, а коэффициент начальной нагрузки кпн — не более 0,93.
Так как К1-2 1 их отношение К = К 1-2 / К пер. всегда меньше единицы и характеризует собой ту резервную мощность, которая заложена в трансформаторе при выборе его номинальной мощности. Чем это отношение меньше, тем меньше будет закладываемый в трансформаторы резерв установленной мощности и тем более эффективным будет использование трансформаторной мощности с учетом перегрузки.
Завышение коэффициента к приводит к завышению суммарной установленной мощности трансформаторов на подстанции.
Уменьшение коэффициента возможно лишь до такого значения, которое с учетом перегрузочной способности трансформатора и возможности отключения неответственных потребителей позволит покрыть основную нагрузку одним оставшимся в работе трансформатором при аварийном выходе из строя второго трансформатора.
Таким образом, для двухтрансформаторной подстанции
В настоящее время существует практика выбора номинальной мощности трансформатора для двух трансформаторной подстанции с учетом значения к = 0,7, т.е.
Формально выражение (3.14) выглядит ошибочно: действительно, единица измерения активной мощности — Вт; полной (кажущейся) мощности — ВА. Есть различия и в физической интерпретации S и Р. Но следует подразумевать, что осуществляется компенсация реактивной мощности на шинах подстанции 5УР, ЗУР и что коэффициент мощности cos ф находится в диапазоне 0,92… 0,95.
Тогда ошибка, связанная с упрощением выражения (3.13) до (3.14), не превышает инженерную ошибку 10%, которая включает в себя и приблизительность значения 0,7, и ошибку в определении фиксированного Рмах
Таким образом, суммарная установленная мощность двухтрансформаторной подстанции.
При этом значении к в аварийном режиме обеспечивается сохранение около 98 % Рмах без отключения неответственных потребителей. Однако, учитывая принципиально высокую надежность трансформаторов, можно считать вполне допустимым отключение в редких аварийных режимах какойто части неответственных потребителей.
При двух и более установленных на подстанции трансформаторах при аварии с одним из параллельно работающих трансформаторов оставшиеся в работе трансформаторы принимают на себя его нагрузку. Эти аварийные перегрузки не зависят от предшествовавшего режима работы трансформатора, являются кратковременными и используются для обеспечения прохождения максимума нагрузки.
Далее приведены значения кратковременных перегрузок масляных трансформаторов с системами охлаждения М, Д, ДЦ, Ц сверх номинального тока (независимо от длительности предшествующей нагрузки, температуры окружающей среды и места установки).
Аварийные перегрузки масляных трансформаторов со всеми видами охлаждения:
Для трехобмоточных трансформаторов и автотрансформаторов указанные перегрузки относятся к наиболее нагруженной обмотке.
Самостоятельный расчет обмотки мощности трансформатора
Расчет намотки сварочного трансформатора.
Воспользовавшись книгами по радиотехнике и электронике, мы можем самостоятельно рассчитать обмотку и мощность трансформатора со стандартным Ш-образным сердечником. Для того чтобы рассчитать мощность такого устройства, как трансформатор, необходимо правильно рассчитать сечение магнитопровода. Что касается стандартных трансформаторов с Ш-образным сердечником, размер сечения магнитопровода будет измеряться длиной поставленных пластин, выполненных из специальной электротехнической стали. Итак, для того чтобы определить сечение магнитопровода, необходимо перемножить два таких показателя, как толщина набора пластин и ширина центрального лепестка Ш-образной пластины.
Взяв линейку, мы сможем измерить ширину набора излучаемого трансформатора. Очень важно, что лучше всего все измерения проводить в сантиметрах, как и вычисления. Это сможет исключить появления ошибок в формулах и избавит вас от ненужных вычислений в переводы с сантиметров на метры. Итак, образно возьмем ширину рядов, равную трем сантиметрам.
Дальше необходимо измерить ширину его центрального лепестка. Данная задача может стать проблемной, так как многие трансформаторы могут по своим технологическим особенностям быть закрыты пластиковым каркасом. В таком случае вам будет нельзя, предварительно не видя реальной ширины, сделать какие-либо расчеты, которые хотя бы близко будут походить на реальные. Для того чтобы измерить данный параметр, вам понадобится поискать такие места, где это было бы возможно сделать. В ином случае можно аккуратно разобрать его корпус и измерить данный параметр, но стоит делать это с ювелирной точностью.
Как определяется коэффициент полезного действия трансформатора?
Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.
Как определяется коэффициент полезного действия трансформатора?
Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.
Интересное видео: КПД трансформатора 100%
Источники
- https://TokMan.ru/osnovy/transformator-kpd.html
- https://stroi-s-ka.ru/novosti/kak-opredelit-kpd-transformatora.html
- https://LedModa.ru/v-dele/kak-opredelit-koefficient-nagruzki-transformatora.html
- https://aspektcenter.ru/kpd-transformatora-ot-moshchnosti-tablitsa/
- https://OFaze.ru/teoriya/kpd-transformatora
- https://NiceSpb.ru/elektroshkola/kak-najti-kpd-transformatora.html
- https://aspektcenter.ru/tablitsa-kpd-dlya-transformatorov/