Как найти гидроксид в химии

ЕГЭ по химии

Классификация гидроксидов и оснований

Материал по химии

Основания и гидроксиды.

Для того, чтобы разбираться в классификации, сначала нужно понять, что такое основание и чем оно отличается от других веществ. Перечислим несколько оснований:

NaOH – гидроксид натрия

Ca(OH)2 – гидроксид кальция

Fe(OH)2 – гидроксид железа

Все три примера относятся к основаниям, но в названии значится, что это гидроксиды. В чем разница между этими понятиями?

Гидроксиды – это вещества, в состав которых какой-либо элемент имеет связь с гидроксильной группой (‒ОН). Но не все гидроксиды – это основания: кислоты, например, тоже являются гидроксидами.

Классификация гидроксидов и оснований


Основные и ксилотные кидроксиды

Таким образом, все основания – это гидроксиды, но не все гидроксиды – это основания. Ввиду того, что группа гидроксидов очень разнообразна, её принято делить на три подгруппы.

Таб. «Классификация гидроксидов»

Гидроксид

Основный

Амфотерный

Кислотный

В состав входят гидроксогруппа (-ы) и металл в степени окисления «+1» или «+2» за исключением Zn(OH)2, Be(OH)2, Sn(OH)2, Pb(OH)2

В состав входят гидроксогруппы и металл в степени окисления «+3» или «+4», а также Zn(OH)2, Be(OH)2, Sn(OH)2, Pb(OH)2

В состав входят гидроксогруппа (-ы) и неметалл, либо гидроксогруппа (-ы) и металл в степени окисления «+5», «+6» или «+7»

Общий состав:

ЭОН

Общий состав:

ЭОН/НЭО

Общий состав:

НЭО

Примеры:

Cr(OH)2

KOH

Mg(OH)2

Примеры:

Cr(OH)3/HCrO2

Mn(OH)4/H2MnO3

Al(OH)3/HAlO2

Примеры:

HNO3

H3PO4

HMnO4

Э – элемент. К основным гидроксидам так же относят гидроксид аммония – NH4OH, хотя правильнее его записывать как гидрат аммония – NH3·H2O.

Амфотерные гидроксиды имеют промежуточный характер между основными и кислотными, поэтому имеют обе формы написания.

Задание в формате ЕГЭ с ответом:

Среди предложенных формул веществ, расположенных в пронумерованных ячейках, выберите формулы: амфотерного гидроксида, двухосновного основания, кислотного гидроксида. Запишите соответствующую последовательность цифр.

1) NaOH 2) NH3*H2O 3) HMnO4
4) Be(OH)2 5) KMnO4 6) Na[Al(OH)4]
7) MnO2 8) Ca(OH)2 9) KOH

Пример задания из КИМ ЕГЭ:

Среди перечисленных веществ выберите три формулы, соответствующие амфотерным гидроксидам:

  1. H2Cr2O7
  2. Be(OH)2
  3. Al(OH)3
  4. Fe(OH)2
  5. Ga(OH)3
  6. H2SO4

Задание по образцу ФИПИ:

Кислотный гидроксид может образовать следующий элемент: 

  1. натрий
  2. мышьяк
  3. алюминий
  4. хлор
  5. молибден
  6. цинк

Кислотные гидроксиды образуют неметаллы в любой степени окисления, поэтому подходит мышьяк и хлор, а также металлы в степени окисления +5 и выше, поэтому подходит молибден – он находится в шестой группе Периодической системы, значит, может образовать ион со степенью окисления +6

Перевод формулы амфотерного гидроксида из основной формы в кислотную.

Пример 1.

  1. Возьмём любой амфотерный гидроксид: Al(OH)3;

  2. Поменяем порядок элементов на кислотную форму (водород → элемент → кислород) без учета индексов основной формы: HAlO;

  3. Расставим степени окисления:

  4. Молекула должна быть электронейтральной (количество положительных и отрицательных зарядов должно быть равным), для этого кислорода должно быть в два раза больше, поэтому после него ставим индекс «2»: HAlO2

Пример 2.

  1. Zn(OH)2;

  2. HZnO

  3. Согласно этой формуле после кислорода придется поставить индекс «1,5», но индексы могут быть выражены только целыми числами, поэтому сначала приведем количество положительных зарядов к четному значению, домножив элемент с нечетной степенью окисления (водород) на 2, получим формулу: H2ZnO, она пока всё равно не является электронейтральной, сумма её зарядов может быть выражена следующим уравнением: +2+2‒2 = +2, а должно быть = 0

+

+2

‒2

H2

Zn

O

+2

+2

‒2

+4

‒2

Чтобы количество отрицательных зарядов тоже стало равно четырем, количество кислорода нужно умножить вдвое, поставив после него индекс «2». Получается формула H2ZnO2

Таб. «Общие формулы амфотерных гидроксидов в зависимости от степени окисления металла в них»

Степень окисления

+2

+3

+4

Основная формула

Me(OH)2

Me(OH)3

Me(OH)4

Кислотная формула

H2MeO2

HMeO2

H2MeO3

Пример

H2BeO2

HCrO2

H2MnO3

Me – металл.

Классификация основных гидроксидов (оснований) по количеству гидроксо-групп.

Основания

Однокислотные

Двукислотные

LiOH

NaOH

KOH

Ca(OH)2

Fe(OH)2

Ba(OH)2

Однокислотные основания при диссоциации образуют лишь один гидроксид ион:

LiOH ↔ Li+ + OH

NaOH ↔ Na+ + OH

Двукислотные основания при диссоциации образуют два гидроксид-иона:

Ca(OH)2 ↔ Ca2+ + 2OH

Ba(OH)2 ↔ Ba2+ + 2OH

Основные гидроксиды не могут быть трёхкислотными или четырёхкислотными, так как в них металл будет иметь степень окисления «+3» или «+4», а это уже будет не основанием, а амфотерным гидроксидом.

Почему количество гидроксильных групп называется кислотностью? Потому что на нейтрализацию оснований требуется протон водорода из кислоты. Для нейтрализации однокислотных оснований потребуется один протон водорода, а на нейтрализацию двукислотного основания – два протона водорода и так далее. Например:

Молекулярное уравнение (МУ): NaOH + HCl = NaCl + H2O

Полное ионное уравнение (ПИУ): Na+ + OH + H+ + Cl = Na+ + Cl + H2O

Сокращение одинаковых ионов: Na+ + OH + H+ + Cl = Na+ + Cl + H2O

Сокращенное ионное уравнение (СИУ): OH + H+ = H2O

На нейтрализацию однокислотного основания потребовался один протон водорода из соляной кислоты.

Классификация оснований по силе

Основания также можно поделить на сильные и слабые. Сильные диссоциируют очень быстро, даже двухосновные распадаются на ионы на столько быстро, что можно не учитывать ступенчатость этого процесса:

LiOH ↔ Li+ + OH

Ba(OH)2 ↔ Ba2+ + 2OH

Слабые основания диссоциируют очень медленно, ступенчато:

Fe(OH)2 ↔ FeOH+ + OH(первая ступень)

FeOH+ ↔ Fe2+ + OH (вторая ступень)

Сильные основания растворимы или малорастворимы (исключение: гидроксид аммония будучи растворимым остаётся слабым основанием) и называются щелочами. Слабые основания нерастворимы.

Таб. «Сильные и слабые основания»

Основания

Сильные (щелочи)

Слабые

Растворимы

Нерастворимы (искл. NH4OH)

Гидроксиды металлов IA-подгруппы, а также кальция, стронция и бария

Все остальные

Примеры:

LiOH, NaOH, KOH, CsOH, FrOH, Ca(OH)2, Sr(OH)2, Ba(OH)2

Примеры:

Mg(OH)2, Fe(OH)2, CuOH, Cr(OH)2, Mn(OH)2, Cu(OH)2

Сегодня поговорим об очень большой группе соединений, которые называются гидроксиды. Как говорит учебник химии,

гидроксид – это химическое соединение, в котором есть группа –ОН.

Собственно, именно по этому признаку и можно определить, что перед нами гидроксид: в нём всегда есть одна или несколько гидроксильных групп –ОН.

Фото: fb.ru
Фото: fb.ru

Также запомните, что есть понятие «щёлочь». К щелочам относят гидроксиды металлов щелочных (то есть стоящих в первой группе таблицы Менделеева в основной подгруппе), щёлочноземельных (то есть стоящих во второй группе таблицы Менделеева в основной подгруппе) и аммония NH4+.

В чём разница между гидроксидами и щелочами

Щёлочь – понятие более узкое, гидроксид – более широкое. То есть щёлочь – всегда гидроксид, но гидроксид – не всегда щёлочь.

Например, гидроксид натрия NaOH. Натрий находится в первой группе периодической таблицы, это щелочной металл. Поэтому NaOH – это щёлочь. Но если вы назовёте его гидроксидом, ошибкой это не будет.

Другой пример. Гидроксид меди (II) Сu(OH)2 – это гидроксид, но никак не щёлочь (посмотрите в таблицу Менделеева. Медь находится в первой группе, но не в основной, а в побочной! Медь – не щелочной металл!). То есть назвать Сu(OH)2 щёлочью будет ошибкой, это гидроксид.

Как составить формулу гидроксида

Первым делом вспоминаем про валентность, без неё в химии никуда. Далее нужно понять, что группа ОН – это цельная структурная единица. Составляя формулу, мы всегда заключаем её в скобки (если ОН группа одна, то скобки не нужны), а индекс, маленькая цифра внизу справа, относится ко всей гидроксильной группе.

Также сразу запомните, что

группа –ОН всегда имеет валентность I.

Чтобы этот факт навсегда врезался вам в память, запомните следующее. Группа –ОН образуется из воды. Формула воды Н2О, это всем известно. Выглядит молекула воды так: Н-О-Н. То есть в ней две части Н– и –ОН. Каждая из этих частей имеет валентность I, это видно и из формулы:

Что такое гидроксиды

Нам здесь важно, что гидроксильная группа имеет валентность I. Это надо запомнить.

Теперь переходим к практике и решению химии.

Пример 1.

Составьте формулу гидроксида калия.

Это очень просто. Калий в таблице Менделеева находится в первой группе в основной подгруппе, он имеет валентность I. Группа –ОН также имеет валентность I. Следовательно, формула гидроксида калия КОН.

Пример 2.

Составьте формулу гидроксида кальция.

Кальций находится в периодической таблице во второй группе в основной подгруппе, его валентность II. Тогда:

Что такое гидроксиды

Здесь надо припомнить, как составляется формула вещества, если известна валентность. Нужно, чтобы произведение валентности и индекса у каждого элемента совпадало. Поэтому формула гидроксида кальция выглядит так:

Что такое гидроксиды

Напоминаю, что если гидроксильных групп больше одной, то мы из заключаем в скобки. Обратите внимание, что такое написание (ОН)2 означает, что в формуле не два атома водорода, а две группы ОН!

Итак, формула гидроксида кальция – Ca(ОН)2.

Пример 3.

Составьте формулу гидроксида железа (III).

Валентность железа задана условиями, поэтому:

Что такое гидроксиды

Отсюда следует:

Что такое гидроксиды

Таким образом, формула гидроксида железа (III) – Fe(OH)3.

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.

Гидроксид хромаЕщё со школы нам известно, что основаниями называют соединения, где атомы металла связаны с одной или несколькими гидроксогруппами — KOH, Ca(OH)2 и т. п. Однако понятие «основания» на самом деле шире, и существует две теории оснований — протонная (теория Брёнстеда — Лоури) и электронная (теория Льюиса). Основания и кислоты Льюиса мы рассмотрим в отдельной статье, поэтому возьмём определение из теории Брёнстеда (далее в данной статье — только основания Брёнстеда): Основания (гидроксиды) — это вещества или частицы, способные принимать (отщеплять) протон от кислоты. Согласно такому определению, свойства основания зависят от свойств кислоты — например, вода или уксусная кислота ведут себя как основания в присутствии более сильных кислот:

H2SO4 + H2O ⇄ HSO4 + H3O+(катион гидроксония)

H2SO4 + CH3COOH ⇄ HSO4 + CH3COOH2+

Номенклатура оснований

Названия оснований образуются весьма просто — сначала идёт слово «гидроксид», а затем название металла, который входит в данное основание. Если металл имеет переменную валентность, это отражают в названии.

KOH — гидроксид калия
Ca(OH)2 — гидроксид кальция
Fe(OH)2 — гидроксид железа (II)
Fe(OH)3 — гидроксид железа (III)

Существует также основание NH4OH (гидроксид аммония), где гидроксогруппа связана не с металлом, а катионом аммония NH4+.

Классификация оснований

Основания можно классифицировать по следующим признакам:

  1. По растворимости основания делят на растворимые — щёлочи (NaOH, KOH) и нерастворимые основания (Ca(OH)2, Al(OH)3).
  2. По кислотности (количеству гидроксогрупп) основания делят на однокислотные (KOH, LiOH) и многокислотные (Mg(OH2), Al(OH)3).
  3. По химическим свойствам их делят на оснóвные (Ca(OH)2, NaOH) и амфотерные, то есть проявляющие как основные свойства, так и кислотные (Al(OH)3, Zn(OH)2).
  4. По силе (по степени диссоциации) различают:
    а) сильные (α = 100 %) – все растворимые основания NaOH, LiOH, Ba(OH)2, малорастворимый Ca(OH)2.
    б) слабые (α < 100 %) – все нерастворимые основания Cu(OH)2, Fe(OH)3 и растворимое NH4OH.

Сила оснований

Для оснований можно количественно выразить их силу, то есть способность отщеплять протон от кислоты. Для этого используют константу основности Kb — константу равновесия для реакции между основанием и кислотой, причём в качестве кислоты выступает вода. Чем выше значение константы основности, тем выше сила основания и тем сильнее его способность отщеплять протон. Также вместо самой константы часто используют показатель константы основности pKb. Например, для аммиака NH3 имеем:

{mathsf {NH_{3}+H_{2}O}}rightleftharpoons {mathsf {NH_{4}^{+}+OH^{-}}}

K_{b}={frac {[{mathsf {NH_{4}^{+}}}]cdot [{mathsf {OH^{-}}}]}{[{mathsf {NH_{3}}}]}}=1{,}79cdot 10^{{-5}};

 {mathrm {p}}K_{b}=-log K_{a}=4{,}75.

Получение

  1. Взаимодействие активного металла с водой:

2Na + 2H2O → 2NaOH + H2

Ca + 2H2O → Ca(OH)2 + H2

Mg + 2H2O  Mg(OH)2 + H2

  1. Взаимодействие основных оксидов с водой (только для щелочных и щелочноземельных металлов):

Na2O + H2O → 2NaOH,

CaO + H2O → Ca(OH)2.

  1. Промышленным способом получения щелочей является электролиз растворов солей:

2NaCI + 4H2O 2NaOH + 2H2 + CI2

  1. Взаимодействие растворимых солей со щелочами, причем для нерастворимых оснований это единственный способ получения:

Na2SO4 + Ba(OH)2 → 2NaOH + BaSO4

MgSO4 + 2NaOH → Mg(OH)2 + Na2SO4.

Физические свойства

Все основания являются твердыми веществами, имеющими различную окраску. В воде нерастворимы, кроме щелочей.Осторожно!

Внимание! Щёлочи являются очень едкими веществами. При попадании на кожу растворы щелочей вызывают сильные долгозаживающие ожоги, при попадании в глаза могут вызвать слепоту. При работе с ними следует соблюдать технику безопасности и пользоваться индивидуальными средствами защиты.

Внешний вид оснований. Слева направо: гидроксид натрия, гидроксид кальция, метагидроксид железа

Химические свойства

Химические свойства оснований с точки зрения теории электролитической диссоциации обусловлены наличием в их растворах избытка свободных гидроксид – ионов ОН.

  1. Изменение цвета индикаторов:

фенолфталеин – малиновый

лакмус – синий

метиловый оранжевый – желтый

Фенолфталеин в щелочной среде

Фенолфталеин придаёт раствору щёлочи малиновую окраску

  1. Взаимодействие с кислотами с образованием соли и воды (реакция нейтрализации):

2KOH + H2SO4 → K2SO4 + 2H2O,

растворимое

Mg(OH)2 + 2HCI → MgCI2 + 2H2O.

нерастворимое

  1. Взаимодействие с кислотными оксидами:

2KOH + SO3 → K2SO4 + H2O

  1. Взаимодействие с амфотерными оксидами и гидроксидами:

а) при плавлении:

2NaOH + AI2O3 → 2NaAIO2 + H2O,

NaOH + AI(OH)3 → NaAIO2 + 2H2O.

б) в растворе:

2NaOH + AI2O3 +3H2O → 2Na[AI(OH)4],

NaOH + AI(OH)3 → Na[AI(OH)4].

  1. Взаимодействие с некоторыми простыми веществами (амфотерными металлами, кремнием и другими):

2NaOH + Zn + 2H2O → Na2[Zn(OH)4] + H2

2NaOH + Si + H2O → Na 2SiO3 + 2H2

  1. Взаимодействие с растворимыми солями с образованием осадков:

2NaOH + CuSO4 → Cu(OH)2 + Na2SO4,

Ba(OH)2 + K2SO4 → BaSO4 + 2KOH.

  1. Малорастворимые и нерастворимые основания разлагаются при нагревании:

Ca(OH)2 → CaO + H2O,

Cu(OH)2  → CuO  + H2O.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 июня 2022 года; проверки требует 1 правка.

Гидрокси́ды (гидроо́киси, водокиси) — неорганические соединения, содержащие гидроксильную группу {displaystyle {ce {-OH}}}. Известны гидроксиды почти всех химических элементов; некоторые из них встречаются в природе в виде минералов.

Аналогичные по структуре органические соединения называются спиртами.

Классификация[править | править код]

Классификация гидроксидов совпадает с классификацией соответствующих солеобразующих оксидов.

В зависимости от проявляемых свойств различают:

  • Основные гидроксиды (основания) — гидроксиды, проявляющие основные свойства. Включают в себя только гидроксиды металлов со степенями окисления +1 и +2, например, гидроксид кальция {displaystyle {ce {Ca(OH)2}}}, гидроксид калия {displaystyle {ce {KOH}}}, гидроксид марганца(II) {displaystyle {ce {Mn(OH)2}}}. При реакциях и диссоциации от них отщепляется гидроксильная группа (гидроксид-ион).
    • Щёлочи — хорошо растворимые в воде основания. Включают в себя гидроксиды щелочных и щёлочноземельных (кроме магния и бериллия) металлов, а также аммония и одновалентного таллия.
  • Амфотерные гидроксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства. Включают в себя гидроксиды металлов со степенями окисления +3, +4, например, гидроксид алюминия {displaystyle {ce {Al(OH)3}}}, и нескольких металлов со степенью окисления +2, например, гидроксид цинка {displaystyle {ce {Zn(OH)2}}}.
  • Кислотные гидроксиды (неорганические кислородсодержащие кислоты), проявляющие кислотные свойства. Включают гидроксиды неметаллов и металлов со степенями окисления +5, +6, +7, например, серная кислота (структурная формула {displaystyle {ce {SO2-(OH)2}}}), борная кислота (структурная формула {displaystyle {ce {B(OH)3}}}), марганцевая кислота (структурная формула {displaystyle {ce {MnO3-OH}}}). При реакциях и диссоциации от них отщепляются атомы (катионы) водорода, поэтому в химических формулах кислот принято записывать атомы водорода отдельно от кислорода в начале формулы: {displaystyle {ce {H2SO4}}}, {displaystyle {ce {H3BO3}}}, {displaystyle {ce {HMnO4}}}.

Термин «гидроксиды» часто применяют только по отношению к основным и амфотерным гидроксидам.

Воду также иногда называют гидроксидом водорода.

Химические свойства[править | править код]

Щелочи[править | править код]

При взаимодействии с кислотами образуют соли и воду:

{displaystyle {ce {NaOH + HCl -> NaCl + H2O}}},

При взаимодействии с кислотными оксидами образуют соли и воду:

{displaystyle {ce {2NaOH + CO2 -> Na2CO3 + H2O}}}

Взаимодействуют с солями при условии выхода одного из продуктов реакции из системы (газ, осадок):

{displaystyle {ce {2NaOH + FeCl2 -> Fe(OH)2v +2NaCl}}}

Нерастворимые основания[править | править код]

Взаимодействие с кислотами:

{displaystyle {ce {Fe(OH)2 + H2SO4 -> FeSO4 + 2H2O}}}

С кислотными оксидами не взаимодействуют.

Нерастворимые основания при нагревании, как правило, разлагаются на оксид и воду, например:

{displaystyle {ce {Fe(OH)2 ->[{t}] FeO + H2O}}}
{displaystyle {ce {2Fe(OH)3 -> Fe2O3 + 3H2O}}},
{displaystyle {ce {Cu(OH)2 -> CuO + H2O}}}.

Амфотерные гидроксиды[править | править код]

К амфотерным гидроксидам принадлежат: {displaystyle {ce {Al(OH)3, Zn(OH)2, Fe(OH)3, Cr(OH)3.}}}

С кислотами:

{displaystyle {ce {Al(OH)3 + 3HCl -> AlCl3 + 3H2O}}}

Со щелочами:

{displaystyle {ce {Zn(OH)2 + 2NaOH -> Na2[Zn(OH)_4]}}} (в водном растворе),

{displaystyle {ce {Al(OH)3 + NaOH -> Na3AlO3 + H2O}}} (при сплавлении).

Получение[править | править код]

Оксиды щелочных и некоторых щёлочноземельных металлов взаимодействуют с водой, образуя щёлочи:

{displaystyle {ce {Na2O + H2O -> 2NaOH}}},
{displaystyle {ce {CaO + H2O -> Ca(OH)2}}}.

Щелочные и щёлочноземельные металлы, взаимодействуя с водой, образуют щёлочи:

{displaystyle {ce {Na + H2O -> NaOH + H2 ^}}}

При взаимодействии соли амфотерного элемента со щёлочью образуется амфотерный гидроксид и соль:

{displaystyle {ce {FeCl3 + NaOH -> Fe(OH)3 v + NaCl}}}

См. также[править | править код]

  • Слоистые двойные гидроксиды

Примечания[править | править код]

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Основания сложные вещества, которые состоят из катиона металла Ме+ (или металлоподобного катиона, например, иона аммония NH4+) и гидроксид-аниона ОН.

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания. Также есть неустойчивые основания, которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например, оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II)  с водой не реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий), кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например, калий реагирует с водой очень бурно:

2K0 + 2H2+O →  2K+OH + H20

3. Электролиз растворов некоторых солей щелочных металлов. Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

либо

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами  (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например, гидроксид меди (II) взаимодействует с сильной соляной кислотой:

 Cu(OH)2 + 2HCl = CuCl2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH)2 + CO2

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например, гидроксид железа (III) разлагается на оксид железа (III)  и воду при прокаливании:

2Fe(OH)3 = Fe2O3 + 3H2O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид  ≠

нерастворимое основание + амфотерный гидроксид  ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например, гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe+2(OH)2 + O20 + 2H2O → 4Fe+3(O-2H)3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H3PO4  → NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H3PO4 → Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H3PO4 → Na3PO4 + 3H2O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли, а в растворе – комплексные соли.

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например, при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH)3 = NaAlO2 + 2H2O

А в растворе образуется комплексная соль:

NaOH + Al(OH)3 = Na[Al(OH)4]

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь(избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид(избыток) = кислая соль

Например, при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO2 = Na2CO3 + H2O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3 

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе, при условии, что в продуктах образуется газ или  осадок. Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например, гидроксид натрия взаимодействует с сульфатом меди в растворе:

Cu2+SO42- + 2Na+OH = Cu2+(OH)2↓ + Na2+SO42-

Также щёлочи взаимодействуют с растворами солей аммония.

Например, гидроксид калия взаимодействует с раствором нитрата аммония:

NH4+NO3 + K+OH = K+NO3 + NH3↑ + H2O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид, взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла.

Например, избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO4 + 2KOH = Zn(OH)2↓ + K2SO4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей. Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO4 + 4KOH = K2[Zn(OH)4] + K2SO4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например, гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO3 + KOH = K2SO3 + H2O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например, железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H2+O = 2Na[Al+3(OH)4] + 3H20

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например, хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl20 = NaCl + NaOCl+ + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl20 = 5NaCl + NaCl+5O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например, в растворе:

2NaOH + Si0 + H2+O=  Na2Si+4O3 + 2H20

Фтор окисляет щёлочи:

2F20 + 4NaO-2H = O20 + 4NaF + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li2O + H2O

Добавить комментарий