Как составить арифметическую пропорцию

Здравствуйте, уважаемые читатели! Сегодня хочу с Вами поговорить на такую замечательную тему, как пропорции. Понятия “пропорция, пропорционально” повсеместно используются не только в математике, но и в повседневной жизни. Сначала предлагаю посмотреть на пропорции с математической точки зрения, затем с точки зрения практического применения.

Пропорция
Пропорция

Итак, давайте вспомним, что же такое пропорция? Почему вспомним? – спросите Вы – все и так знают, что это такое. Да, знают и понимают это практически все, но кто сможет сходу дать ей определение? )) В самом широком смысле, пропорция – это равенство соотношений. С точки зрения математики, соотношение может быть арифметическим или геометрическим. Например числа 5, 3 и 6, 4 составляют арифметическую пропорцию, так как разность между 5 и 3 равна разности между 6 и 4. А числа 18, 3 и 24, 4 находятся в пропорции геометрической, потому что отношение 18 к 3 равно отношению 24 к 4. Это как разница между арифметической и геометрической прогрессиями. Есть ещё и пропорция, которая называется гармонической. В отличии от двух предыдущих, в ней участвуют не четыре, а два числа. Но они относятся друг к другу по правилу золотого сечения, о котором я уже писал. Двумя целыми числами, составляющими гармоническую пропорцию, могут быть достаточно большие члены ряда Фибоначчи, например, 987 и 610, так как 987/610=(987+610)/987=1,61803=Ф (с точностью до 5-го знака).

Более пристальное внимание в школьном курсе математики уделяется геометрическим пропорциям, так как у арифметических особых свойств нет, кроме того, что это просто равенство двух разностей. А поскольку о золотом сечении, как говорилось выше, я уже достаточно подробно писал, то далее речь пойдёт о свойствах геометрической пропорции. Дальше для краткости я буду писать просто пропорция, имея ввиду именно геометрическую.

Вспомним, что в пропорции a/b=c/d числа a и d называют крайними членами, b и c – средними членами пропорции. Первое свойство пропорции – это сохранение равенства при перемножении крайних и средних членов:

Свойство пропорции
Свойство пропорции

Второе, на мой взгляд, самое важное, свойство пропорции – это то, что при перемене местами крайних членов, так же как и средних, равенство пропорции сохраняется:

Свойства пропорции
Свойства пропорции

Как видно из этих свойств также следует, что равенство сохраняется и при перемене местами числителей и знаменателей. Честно признаюсь, меня это до сих пор завораживает! ))

Есть также свойство увеличения и уменьшения пропорции:

Свойство пропорции
Свойство пропорции

Но и это ещё не всё! Есть также свойство составления пропорции сложением и вычитанием:

Свойство пропорции
Свойство пропорции

По-моему, это просто поразительно! Четыре числа – и столько равенств!

Теперь о практике. Использование в жизни пропорций настолько велико, что примеры можно перечислять бесконечно. Это, в первую очередь, архитектура; а так же искусство: живопись, скульптура, музыка, и т. д. Применяют пропорции, конечно же, и в самых различных вычислениях. Вспомните мой пример из статьи о подобных треугольниках. Если ещё не читали, обязательно прочитайте. По-моему, свойства пропорций имеют огромное значение в нашей жизни. Часто мы об этом даже не догадываемся ))

Надеюсь, Вам было интересно. Спасибо, что прочитали!

Чтобы не пропустить новых интересных статей о математике, предлагаю Вам подписаться на мой канал.

P.S. Ответ на задачку о гусях из прошлой статьи. Правильное число: 36.

Предыдущая статья

Следующая статья

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 апреля 2022 года; проверки требуют 5 правок.

У этого термина существуют и другие значения, см. Пропорция.

Пропо́рция (лат. proportio «соразмерность, выравненность частей; определённое соотношение частей между собой») — равенство отношений двух [и более] пар чисел a , b и c , d, т. е. равенство вида a:b=c:d, или, в других обозначениях, равенство  {frac  ab}={frac  cd}
(часто читается как: «a относится к b так же, как c относится к d»). В этом случае a и d называют крайними, b и c — средними членами пропорции. Такую пропорцию ещё называют геометрической, чтобы не путать с арифметической и гармонической пропорциями.

Основные свойства пропорций[править | править код]

 {frac  ac}={frac  bd}    (перестановка средних членов пропорции),
 {frac  db}={frac  ca}    (перестановка крайних членов пропорции).
  • Увеличение и уменьшение пропорции. Если  {frac  ab}={frac  cd}, то
 {dfrac  {a+b}{b}}={dfrac  {c+d}{d}}    (увеличение пропорции),
 {dfrac  {a-b}{b}}={dfrac  {c-d}{d}}    (уменьшение пропорции).
  • Составление пропорции сложением и вычитанием. Если  {frac  ab}={frac  cd}, то
 {dfrac  {a+c}{b+d}}={frac  ab}={frac  cd}    (составление пропорции сложением),
 {dfrac  {a-c}{b-d}}={frac  ab}={frac  cd}    (составление пропорции вычитанием).

Доказательство (составление пропорции сложением и вычитанием)

Докажем для сложения. Выразим c через остальные члены пропорции: {displaystyle c={frac {ad}{b}}}. Тогда:

{displaystyle {frac {a+c}{b+d}}={frac {a+ad/b}{b+d}}={frac {(ab+ad)/b}{b+d}}={frac {a(b+d)}{b(b+d)}}={frac {a}{b}}.}

Для вычитания доказательство аналогично.

История[править | править код]

Первое известное определение равных пропорций было дано как равенство последовательных вычитаний[1], современным языком это можно выразить как равенство цепных дробей для отношений величин.[2]
Позже Евдокс Книдский упростил определение, равенство пропорций {displaystyle a:b=c:d} им определялось как одновременное выполнение одной из трёх пар соотношений

для любой пары натуральных чисел m и n.
Это определение даётся в «Началах» Евклида.

С появлением вещественных чисел отпала необходимость в специальной теории пропорций, древние математики не рассматривали пропорции длины как числа.
Определение Евдокса, данное в несколько более абстрактном виде, использовалось далее при определении вещественных чисел Дедекиндом через сечения.

Связанные определения[править | править код]

Арифметическая пропорция[править | править код]

Равенство двух разностей a-b=c-d иногда называют арифметической пропорцией[3].

Гармоническая пропорция[править | править код]

Если у геометрической пропорции средние члены равны, а последний является разницей между первым и средним, такая пропорция называется гармонической: a:b=b:(a-b). В этом случае, разложение a на сумму двух слагаемых b и a-b называется гармоническим делением или золотым сечением[4].

Задачи на тройное правило[править | править код]

В содержание задачи на простое тройное правило входят две величины, связанные пропорциональной зависимостью, при этом даются два значения одной величины и одно из соответствующих значений другой величины, требуется же найти её второе значение.

Задачами на сложное тройное правило называют задачи, в которых по ряду нескольких (более двух) пропорциональных величин требуется найти значение одной из них, соответствующее другому ряду данных значений величин[5][6].

См. также[править | править код]

  • Пропорциональность

Примечания[править | править код]

  1. Топика Аристотеля
  2. Von Fritz, Kurt. «The discovery of incommensurability by Hippasus of Metapontum». Annals of mathematics. — 1945. — S. 242—264.
  3. Пропорции арифметические // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  4. Гармоническая пропорция // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  5. Справочник по элементарной математике. Дата обращения: 8 января 2018. Архивировано 8 января 2018 года.
  6. Решение задач на простое тройное правило. Способы решения. Дата обращения: 8 января 2018. Архивировано 8 января 2018 года.

Литература[править | править код]

  • Ван дер Варден, Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. / пер. с голл. И. Н. Веселовского. — М.: ГИФМЛ, 1959.

Определение пропорции:

Связь между четырьмя алгебраическими выражениями А, В, С и D, имеющая вид

пропорции

называется пропорцией.

(Равенство пропорции теряет смысл и перестает быть пропорцией как при В = О, так и при D = 0. Оно теряет смысл и перестает быть пропорцией и тогда, когда В и D равны нулю одновременно.)

Примеры пропорции:

пропорции

В пропорции пропорции величины А и D называются крайними, а В и С средними членами. Далее выражение пропорции называется первым отношением, а пропорции вторым; А и С называются предыдущими членами этих отношений, а В и Dпоследующими.

Главное свойство пропорции

Умножив левую и правую части пропорции

пропорции

на произведение bd, получим ad = be, т. е. во всякой пропорции произведение крайних членов равно произведению средних.

Составление пропорции по данному равенству двух произведений

Пусть pq = ху. Разделив левую и правую части этого равенства на qx, получим

пропорции

Этот результат можно сформулировать следующим образом.

Если произведение двух чисел равно произведению двух других, то из этих четырех чисел можно составить пропорцию, беря множители одного произведения за крайние, а множители другого произведения за средние члены пропорции. (При этом дополнительно требуется, чтобы оба последующих члена пропорции не оказались равными нулю.)

Перестановка членов пропорции

Пусть ad = be и числа а, b, с, d — все отличны от нуля. Разделив левую и правую части равенства ad = bc первый раз на bd, второй на ab, третий на ас и четвертый на cd, получим соответственно четыре пропорции:

пропорции

Поменяв местами отношения в этих равенствах, получим еще четыре пропорции:

пропорции

Этот результат показывает, что в пропорции можно менять местами средние и крайние члены и ставить оба крайних члена на места средних, а оба средних на места крайних.

Производные пропорции

1. Прибавив к левой и правой частям пропорции пропорции по единице, получим

пропорции

или

пропорции

т. е. во всякой пропорции сумма членов первого отношения так относится к своему последующему, как сумма членов второго отношения — к своему последующему.

2. Вычтя из левой и правой частей пропорции пропорции по единице, получим:

пропорции

или

пропорции

т. е. во всякой пропорции разность членов первого отношения так относится к своему последующему, как разность членов второго отношения — к своему последующему.

3. Разделив левую часть равенствапропорции на левую часть равенства пропорции и правую на правую, получим:

пропорции

т. е. во всякой пропорции сумма членов первого отношения так относится к своему предыдущему, как сумма членов второго отношения — к своему предыдущему.

4. Разделив левую часть равенства пропорции на левую часть равенства пропорции и правую на правую, получим:

пропорции

т. е. во всякой пропорции разность членов первого отношения так относится к своему предыдущему, как разность членов второго отношения —к своему предыдущему.

5. Разделив левую часть равенства пропорции на левую часть равенствапропорции и правую на правую, получим:

пропорции

т. е. во всякой пропорции сумма членов первого отношения так относится к их разности, как сумма членов второго отношения — к их разности.

Из пропорции пропорции мы вывели пять производных пропорций. Однако надо иметь в виду, что из пропорции пропорции можно было бы получить сколько угодно производных пропорций.

Например, умножив обе части пропорции пропорции на число а, получим пропорции. Прибавив к левой и правой частям последнего равенства число пропорции, будем иметь, что

пропорции

или

пропорции

т. е. получим новую производную пропорцию.

Определение неизвестного члена пропорции

Пусть в пропорции пропорции числа а, с, d известны, a х изображает число неизвестное. Тогда по свойству пропорции cx = ad, откуда пропорции, т. е. неизвестный средний член пропорции равен произведению крайних членов, деленному на известный средний. Аналогично определяется и неизвестный крайний член.

Примеры:

1. Найти неизвестное число х из пропорции пропорции, где а, b и с числа известные.

Составим производную пропорцию по правилу: сумма членов первого отношения так относится к своему последующему члену, как сумма членов второго отношения к своему последующему:

пропорции

т. е.

пропорции

откуда

пропорции

2. Найти неизвестное х из пропорции пропорции Составим производную пропорцию по правилу: сумма членов первого отношения так относится к их разности, как сумма членов второго отношения к их разности, т. е.

пропорции

или

пропорции

отсюда

пропорции

Ряд равных отношений

Иногда бывает удобно вместо различных букв употреблять для обозначения чисел одну и ту же букву, снабженную дополнительными значками — индексами. Например пропорции Эти обозначения читаются так: икс нулевое, икс первое, икс второе, икс третье, … , икс энное.

Основное свойство ряда равных отношений

Пусть имеется ряд равных отношений:

пропорции

Обозначим общее значение всех этих отношений буквой k. Тогда

пропорции

Отсюда

пропорции

Складывая левые и правые части этих равенств, получим:

пропорции

или

пропорции

или

пропорции

т.е.

пропорции

Итак, доказано следующее:

если несколько отношений равны друг другу, то отношение суммы их предыдущих членов к сумме последующих равно каждому из этих отношений.

Пример:

Пусть длины пропорции сторон одного многоугольника (рис. 53) пропорциональны длинам пропорции сторон другого многоугольника, т. е.

пропорции

По свойству ряда равных отношений получим:

пропорции

или

пропорции

где Р и Q периметры многоугольников.

Прямая пропорциональность

Сначала рассмотрим несколько примеров.

Пример:

Пусть буква х обозначает в годах возраст сына, а буква у — возраст отца и пусть в данный момент сыну один год, а отцу 25 лет.

Составим таблицу значений х и соответствующих им значений буквы у. В третьей строке этой таблицы выпишем значения отношения пропорции:

пропорции

В этом примере отношение пропорции (отношение возраста отца к возрасту сына) не остается неизменным. Оно с течением времени убывает.

Пример:

Пусть буква х обозначает в сантиметрах длину стороны квадрата, а буква у — площадь квадрата в квадратных сантиметрах.

Составим таблицу, подобную предыдущей.

пропорции

Отношение пропорции и здесь не остается неизменным. Оно возрастает при возрастании х.

Пример:

Пусть буква х обозначает в кубических сантиметрах объем ртути при температуре 0°, а буква у — вес этой ртути в граммах. Известно, что 1 куб. см ртути при температуре 0° весит 13,6 г.

Опять составим таблицу значений х, у и пропорции.

пропорции

Этот третий пример существенно отличается от двух предыдущих. Здесь отношение пропорции сохраняет неизменное значение.

Определение:

Две величины у и х называются прямо пропорциональными (или просто пропорциональными), если при всех их возможных изменениях отношение пропорции остается равным одному и тому же числу и если при х = 0 значение у также равно нулю.

Значит, вес ртути и объем ртути при постоянной температура являются величинами пропорциональными.

Возраст отца и возраст сына не пропорциональны.

Также не пропорциональны сторона квадрата и его площадь.

Пусть изменяющиеся величины у и х пропорциональны. Тогда отношение пропорции будет равно некоторому постоянному числу.

Обозначая это постоянное число буквой k, получим:

пропорции

или

пропорции

Следовательно, если величины у и х пропорциональны и отношение пропорции равно k, то у выражается в зависимости от х формулой

пропорции

Число k называется коэффициентом пропорциональности (величины у по отношению к величине х).

Теперь докажем обратное положение. Пусть

пропорции

где k — постоянное число.

Отсюда следует, что при х = 0 и у = 0 и что пропорции А это и означает, что величины у и х пропорциональны.

Из того что пропорции следует, что пропорции, или что пропорции Отсюда можно сделать следующий вывод:

Если коэффициентом пропорциональности величины у по отношению к величине х служит постоянное число k, то коэффициентом пропорциональности величины х по отношению к величине у будет служить число пропорции.

Приведем еще один пример пропорциональных величин. Путь s, пройденный при равномерном движении, пропорционален. времени t, т. е.

пропорции

Здесь постоянное число v есть коэффициент пропорциональности величины s по отношению к величине t (v есть скорость равномерного движения).

Сделаем еще два замечания.

Замечание:

Если имеется два ряда чисел:

пропорции

и

пропорции

и если

пропорции

то числа одного из этих рядов называются пропорциональными числам другого ряда.

Замечание:

Если имеются только два постоянных числа а и b, то бессмысленно говорить о них, что они пропорциональны или не пропорциональны.

В этом случае можно интересоваться либо характером этих чисел, либо их разностью, либо их отношением и т. д.

В заключение решим две простые задачи на пропорциональные величины.

Задача:

На карте в масштабе пропорции расстояние между двумя пунктами равно 42,5 см. Определить, чему равно это расстояние на карте в масштабе пропорции

Решение:

Длина на карте прямо пропорциональна масштабу. Поэтому.

пропорции

Задача:

С помощью непосредственного измерения установили, что при повышении температуры рельса на 24°С его длина увеличивается на 1,5 мм. Требуется вычислениями определить изменение длины рельса при понижении его температуры на 40°С. (Считать изменение длины рельса величиной, прямо пропорциональной изменению температуры.)

Решение:

Обозначив искомое изменение (в мм) буквой х, получим:

пропорции

откуда

пропорции

т. е. при понижении температуры рельса на 40°С его длина сократится на 2,5 мм.

Обратная пропорциональность

Сначала приведем примеры.

1. Рассмотрим изменяющийся прямоугольный параллелепипед с квадратным основанием, имеющий неизменный объем, равный 3600 куб. см (рис. 54).

Пусть буква х обозначает в сантиметрах изменяющуюся сторону основания, а буква у — изменяющуюся высоту параллелепипеда.

Рассматривая таблицу:

пропорции

легко видеть, что произведение ху не остается неизменным при постоянстве объема.

2. Рассмотрим изменяющийся прямоугольник, имеющий неизменную площадь, равную 100 кв. см.

Пусть буква х обозначает одно изменяющееся измерение (например, длину прямоугольника), а буква у — другое изменяющееся измерение (ширину). Пусть х и у выражены в сантиметрах.

Так как произведение измерений прямоугольника равно его площади, то величины х и у при всех своих возможных изменениях будут давать в своем произведении число 100, т. е. произведение изменяющихся величин х и у будет оставаться неизменным.

Существенное отличие второго примера от первого заключается в том, что в нем произведение ху остается неизменным, в то время как в первом оно изменяется.

Определение:

Две величины х и у называются обратно пропорциональными, если при всех их возможных изменениях произведение ху остается равным одному и тому же числу.

Обозначая это число буквой k, получим

пропорции

или

пропорции

Следовательно, если величины х и у обратно пропорциональны, то величина у выражается через величину х по формуле следующего вида:

пропорции

Число k называется коэффициентом обратной пропорциональности.

Длина прямоугольника и ширина прямоугольника при заранее заданной площади прямоугольника являются величинами обратно пропорциональными. Коэффициентом обратной пропорциональности служит как раз эта площадь.

Сторона основания прямоугольного параллелепипеда с квадратным основанием и высота параллелепипеда при заранее заданном объеме не являются величинами обратно пропорциональными.

Задача:

Зал освещается m лампами по а свечей каждая. Сколькими лампами в b свечей можно получить ту же освещенность зала?

Число ламп и число свечей каждой лампы при данной освещенности зала являются величинами обратно пропорциональными. Поэтому, обозначая число ламп в b свечей буквой x, получим

пропорции

откуда

пропорции

Пропорциональное деление

Задача:

Число А разделить на n слагаемых прямо пропорционально числам пропорции

Обозначим искомые слагаемые буквами пропорции Тогда по условию задачи

пропорции

Пользуясь свойством ряда равных отношений, получим

пропорции

Но

пропорции

Поэтому

пропорции

Задача:

Число А разделить на n слагаемых обратно пропорционально числам пропорции

Обозначим искомые слагаемые буквами пропорции Тогда согласно условию задачи

пропорции

или

пропорции

По свойству ряда равных отношений получим

пропорции

Но

пропорции

Поэтому

пропорции

Пропорции и пропорциональная зависимость

  1. Отношением числа а к числу b называется частное пропорции, а называется предыдущим, bпоследующим членом отношения.
  2. Пропорцией называется равенство, каждая часть которого является отношением двух чисел. В пропорции
пропорции

члены а и d называются крайними, а b и с средними.

При изложении свойств пропорции будем считать, что ни один из членов пропорции не равен нулю.

Пример:

пропорции отношение числа 7 к числу 2. Предыдущий член здесь 7, последующей 2.

Пример:

пропорции пропорция. Крайние члены здесь 10 и 2, средние— 4 и 5.

Главное свойство пропорции

Теорема:

Во всякой пропорции произведение крайних
членов равно произведению средних.

Доказательство:

Дана пропорция

пропорции

Умножим обе части равенства (1) на bd, получим

пропорции

Теорема доказана.

Теорема:

Если произведение двух чисел
равно произведению двух других чисел, то из этих четырех чисел можно составить пропорцию^ крайними членами которой являются сомножители одного из двух произведений, а средними—сомножители другого.

При этом предполагается, что ни один из сомножителей не равен нулю.

Доказательство:

Пусть

пропорции

a, b, с, d все отличны от нуля. Разделим обе части равенства на bd, получим

пропорции

Теорема доказана.

Пример:

пропорции— пропорция. Произведение крайних ее членов равно 20, произведение средних ее членов также равно 20.

Пример:

8 • 9 = 3 • 24 — равенство двух произведений.
Разделим обе части этого равенства на 9 • 24, получим пропорцию

пропорции

Определение неизвестного члена пропорции

Теорема:

Средний член пропорции равен произведению крайних, деленному на другой средний. Крайний член пропорции равен произведению средних, деленному на другой крайний.

Пусть

пропорции

Покажем, что

пропорции

На основании теоремы 1 имеем

пропорции

Разделим обе части равенства (4) на с, получим равенство (2). Разделим обе части равенства (4) на d, получим равенство (3). Теорема доказана.

Пример:

Найти х, если пропорции

Решение:

пропорции

Пример:

Найти х, если пропорции

Решение:

пропорции

Перестановка членов пропорции

Теорема:

Во всякой пропорции можно переставить
средние члени, переставить крайние члени, переставить и средние члени и крайние, средние поставить на место крайних, а крайние на место средних.

Иными словами, если

пропорции

то

пропорции

(переставлены средние члены),

пропорции

(в (1) переставлены крайние члены),

пропорции

(в (1) переставлены и средние и крайние члены),

пропорции

(средние поставлены на место крайних, крайние — на место средних).

Доказательство:

В пропорций (1)

пропорции

Разделим обе части равенства (6) на cd, получим равенство (2). Точно так же, разделив обе части равенства (6) на аb, а затем на ас, получим равенства (3) и (4). Равенство (5) получается из равенства (4) посредством перестановки отношений. Теорема доказана.

Следствие:

Переставим отношения в равенствах (I), (2), (3), получим еще три пропорции

пропорции

Таким образом, всякую пропорцию посредством перестановки ее членов можно представить в восьми различных видах.

Производные пропорции

Теорема:

1) Во всякой пропорции сумма членов первого отношения так относится к последующему члену этого отношения, как сумма членов второго отношения относится к своему последующему.
2) Во всякой пропорции разность членов первого отношения так относится к последующему члену этого отношения, как разность членов второго отношения относится к своему последующему.

Иными словами, если

пропорции

то

пропорции

Доказательство:

Прибавим к каждой части равенства (1)
по 1, получим равенство (2). Вычтем из каждой части равенства (1) по 1, получим равенство (3). Теорема доказана.

Теорема:

1) Во всякой пропорции сумма членов первого отношения так относится к предыдущему члену этого отношения, как сумма членов второго отношения относится к своему предыдущему.
2) Во всякой пропорции разность членов первого отношения так относится к предыдущему члену этого отношения, как разность членов второго отношения относится к своему предыдущему.

Иными словами, если

пропорции

то

пропорции

Доказательство:

Разделим равенство (2) почленно на
равенство (1), т. е., левую часть равенства (2) разделим на левую часть равенства (1), а правую часть равенства (2) на правую часть равенства (1). Получим равенство (4). Разделив равенство (3) почленно на равенство (1), получим равенство 5). Теорема доказана.

Теорема:

Во всякой пропорции сумма членов первого
отношения так относится к их разности, как сумма членов второго отношения относится к их разности, если только эти разности отличны от нуля.

Иными словами, если

пропорции

то

пропорции

Доказательство:

Разделив почленно равенство (4) на
равенство (5), получим равенство (6).

Ряд равных отношений

Теорема:

Если даны несколько равных отношений* то
сумма всех предыдущих членов отношений относится к сумме всех последующих как любой из предыдущих к своему последующему.

Доказательство:

Пусть имеется несколько равных отношений

пропорции

Обозначим результат деления пропорциина пропорции буквой q. Так как все отношения ряда (1) равны между собой, каждое из них также равно q. Таким образом,

пропорции

Отсюда

пропорции

Сложив почленно все равенства (2), имеем

пропорции

откуда

пропорции

Теорема доказана.

Задача:

Дано, что

пропорции

Доказать, что при любых пропорцииотличных от нуля,

пропорции

Решение:

Умножим каждый, член первого отношения на пропорцииполучим пропорцию

пропорции

Точно так же

пропорции

Значит,

пропорции

На основании теоремы 8 имеем

пропорции

Задача:

Решить уравнение пропорции

Решение:

Пользуясь теоремой 7 § 5, имеем

пропорции

Пропорциональная зависимость

Мы много раз составляли уравнения, выражающие зависимость между величинами, и могли наблюдать, что. зависимости эти бывают весьма разнообразны.

При решении многих задач мы встречаемся с двумя величинами, зависимость между которыми такова, что при изменении этих величин их отношение остается неизменным. Такие величины называются прямо пропорциональными, а зависимость между ними — пропорциональной зависимостью.

Для примера приведем несколько задач, в которых мы встретимся с величинами, находящимися в пропорциональной зависимости.

Задача:

Скорость течения реки 3 км в час. Плот за t часов прошел вниз по реке S км. Составить уравнение, выражающее зависимость между S и t.

Ответ. S = 3t.

Задача:

С каждого гектара собрано 30 ц ржи и, таким образом, с k га собрано А ц. Составить уравнение, выражающее зависимость между А и k.

Ответ. А = 30k

Задача:

Основание прямоугольника 2 см, высота h см, площадь Q пропорции. Составить уравнение, выражающее зависимость между Q и h.

Ответ. Q = 2h.

Задача:

1 м материи стоит 20 руб. За m м этой материи
уплатили N pyб. Составить уравнение, выражающее зависимость между N и m.

Ответ. N=20m.

Мы рассмотрели четыре задачи, которые по своему содержанию относятся к различным областям практической деятельности. Нетрудно убедиться, что в каждой из этих задач мы действительно имеем дело с прямо пропорциональными величинами.

пропорции

Так, в первой задаче отношение расстояния (в ), пройденного плотом, к времени (в часах), в течение которого плот находился в пути, всегда одно и то же и равно 3. Поэтому расстояние, которое проходит плот вниз по реке, пропорционально времени, в течение которого плот находится в пути, при условии, что скорость течения реки повсюду одна и та же.

Точно так же во второй задаче количество ржи, собранной с нескольких гектаров, пропорционально количеству ржи, собранной с одного гектара, при условии, что с каждого гектара собрано по одному и тому же количеству ржи и т. д.

Заметим, что уравнения, к которым мы пришли в рассмотренных задачах, имеют один и тот же вид. В этих уравнениях одна, из величин равна произведению некоторого числового множителя на другую величину. Этот множитель называется коэффициентом пропорциональности. В первой задаче коэффициент
пропорциональности равен 3, во второй задаче он равен 30, в третьей задаче он равен 2, в четвертой задаче он равен 20.

Таким образом, пропорциональная зависимость между величинами всегда выражается уравнением y = kx, где k коэффициент пропорциональности. Известно, что зависимость между двумя величинами может быть наглядно представлена таблицей, а затем и графиком.

Для примера представим таблицей зависимость, выражаемую уравнением S = 3/ (первая задача):

пропорции

Построим график зависимости S = 3t (рис. 19). Обратим внимание на следующие обстоятельства:

  1. Отношение чисел, находящихся в одном столбце таблицы, повсюду одно и то же и равно коэффициенту пропорциональности:
пропорции

и т. д. (для первого столбца это отношение не имеет смысла; так как на нуль делить нельзя).

2, График представляет собой луч, выходящий из начала координат (при t= 0, S = 0). (Доказательство этого утверждения здесь провести нельзя, так как для этого требуются некоторые сведения из геометрии.)

То же самое можно наблюдать и при графическом представлении любой другой пропорциональной зависимости между двумя величинами.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Пропорции, формула

Что такое пропорция?

Определение

Пропорция – это верное равенство двух отношений.

пропорция

Где a ? 0, b ? 0, c ? 0, d ? 0.

a и d – называют крайними членами пропорции;

b и c – называют средними членами пропорции.

Пример

3  =  18   или 3 : 5 = 18 : 30;
5 30
7  =  21   или 7 : 3 = 21 : 9;
3 9
12  =  48   или 12 : 15 = 48 : 60.
15 60

Основное свойство пропорции

Свойство

Основное свойство пропорции

Произведение крайних членов пропорции равно произведению ее средних членов.

Пример

12  =  24 , значит 12 • 8 = 4 • 24;
4 8
11  =  33 , значит 11 • 21 = 7 • 33;
7 21
23  =  69 , значит 23 • 42 = 14 • 69.
14 42

Обратное свойство

Свойство
Обратное свойство

Пример

11 • 4 = 2 • 22 значит,  11  =  22 ;
2 4
21 • 6 = 42 • 3 значит,  21  =  42 ;
3 6
33 • 21 = 7 • 99 значит,  33  =  99 .
7 21

Производные пропорции

Правило

Производные пропорции

Пример

4  =  8  или  7  =  14  или  8  =  17  или  4  =  7 ;
7 14 4 8 4 7 8 14
5  =  10  или  6  =  12  или  10  =  12  или  5  =  6 ;
6 12 5 10 5 6 10 12
9  =  18  или  3  =  6  или  6  =  18  или  9  =  3 .
3 6 9 18 3 9 18 6

Правило

! По трем известным членам пропорции всегда можно найти
ее неизвестный член.

Пример

15  =  x , значит x = 15 • 14  = 15 • 2 = 30;
7 14 7
21  =  x , значит x = 21 • 9  = 21 • 3 = 63;
3 9 3
33  =  99 , значит x = 4 • 99  = 4 • 3 = 12.
4 x 33

Отношения

Определение

Отношением двух чисел a и b называется их частное a : b.

Показывает во сколько раз a больше b или какую часть число a составляет от b.1

Примеры отношений

Пример 1

Отношение числа 16 к числу 4 равно 16 : 4 = 4, т.е. 16 в 4 раза больше чем,
чем 4.

Пример 2

Отношение числа 4 к числу 12 равно 4 : 12 = 13, т.е. 4 составляет треть
от числа 12.

Пример 3

Масса стакана с жидкостью равна 440г. Стакан весит 40г. Какую часть
всей массы составляет масса стакана? Во сколько раз масса стакана с
жидкостью больше массы жидкости?

Решение:

Масса стакана составляет 40 : 440 =  1 11 часть полной массы.

Масса жидкости равна 440 – 40 = 400г; масса стакана с жидкостью больше массы самой жидкости в 440 : 400 = 1,1 раза.

Добавить комментарий