Как найти вес тела зная силу тяжести


Загрузить PDF


Загрузить PDF

Вес — сила, с которой тело действует на опору (или другой вид крепления), возникающая в поле силы тяжести. Масса связана с энергией и импульсом тела и эквивалентна энергии его покоя. Масса не зависит от силы тяжести (точнее от ускорения свободного падения). Поэтому тело, на Земле имеющее массу 20 кг, на Луне будет иметь массу 20 кг, но совсем другой вес (потому что ускорение свободного падения на Луне в 6 раз меньше, чем на Земле).

  1. Изображение с названием Calculate Weight from Mass Step 1

    1

    Для вычисления веса используйте формулу {displaystyle P=mg}. Вес — это сила, с которой тело действует на опору, и его можно рассчитать, зная массу тела. В физике используется формула {displaystyle P=mg}.[1]

  2. Изображение с названием Calculate Weight from Mass Step 2

    2

    Определите массу тела. Так как ускорение свободного падения — это стандартная величина, то необходимо знать массу тела, чтобы найти его вес. Масса должна быть выражена в килограммах.

  3. Изображение с названием Calculate Weight from Mass Step 3

    3

    Узнайте величину ускорения свободного падения. На Земле, как уже было сказано выше, g = 9,8 м/с2. В других местах Вселенной эта величина меняется.[3]

    • Ускорение свободного падения на поверхности Луны приблизительно равно 1,622 м/с2 (примерно в 6 раз меньше, чем на поверхности Земли). Поэтому ваш вес на Луне будет в 6 раз меньше вашего земного веса.[4]
    • Ускорение свободного падения на Солнце приблизительно равно 274,0 м/с2 (примерно в 28 раз больше, чем на Земле). Поэтому ваш вес на Солнце будет в 28 раз больше вашего земного веса (если, конечно, вы выживете на Солнце, что еще не факт!).[5]
  4. Изображение с названием Calculate Weight from Mass Step 4

    4

    Подставьте значения в формулу {displaystyle F=mg}. Теперь, когда вы знаете массу m и ускорение свободного падения g, подставьте их значения в формулу {displaystyle F=mg}. Так вы найдете вес тела (измеряется в ньютонах, Н).

    Реклама

  1. Изображение с названием Calculate Weight from Mass Step 5

    1

    Задача № 1. Найдите вес тела массой 100 кг на поверхности Земли.

  2. Изображение с названием Calculate Weight from Mass Step 6

    2

    Задача № 2. Найдите вес тела массой 40 кг на поверхности Луны.

  3. Изображение с названием Calculate Weight from Mass Step 7

    3

    Задача № 3. Найдите массу тела, которое на поверхности Земли весит 549 Н.

    Реклама

  1. Изображение с названием Calculate Weight from Mass Step 8

    1

    Не путайте массу и вес. Самая распространенная ошибка — перепутать вес и массу (что немудрено, ведь в повседневной жизни мы обычно называем массу весом). Но в физике все не так. Запомните, масса — это постоянное свойство объекта, то, сколько в нем вещества (килограммов), где бы он ни находился. Вес — это сила, с которой объект всеми своими килограммами давит на поверхность, и эта сила на разных небесных телах будет различной.

    • Масса измеряется в килограммах или граммах. Запомните, что в этих словах, как и в слове «масса», есть буква «м».
  2. Изображение с названием Calculate Weight from Mass Step 9

    2

    Используйте правильные единицы измерения. В задачах по физике вес или силу измеряют в ньютонах (Н), ускорение свободного падения — в метрах на секунду в квадрате (м/с2), а массу — в килограммах (кг). Если для какой-либо из этих величин вы возьмете не ту единицу измерения, воспользоваться формулой будет нельзя. Если масса в условиях задачи указана в граммах или тоннах, не забудьте перевести ее в килограммы.

    Реклама

Приложение: вес, выраженный в кгс

  • Ньютон — это единица измерения силы в международной системе единиц СИ. Нередко сила выражается в килограмм-силах, или кгс (в системе единиц МКГСС). Эта единица очень удобна для сравнения весов на Земле и в космосе.
  • 1 кгс = 9,8166 Н.
  • Разделите вес, выраженный в ньютонах, на 9,80665.
  • Вес космонавта, который «весит» 101 кг (то есть его масса равна 101 кг), составляет 101,3 кгс на Северном полюсе и 16,5 кгс на Луне.
  • Международная система единиц СИ — система единиц физических величин, которая является наиболее широко используемой системой единиц в мире.

Советы

  • Самая трудная задача — уяснить разницу между весом и массой, так как в повседневной жизни слова «вес» и «масса» используются как синонимы. Вес — это сила, измеряемая в ньютонах или килограмм-силах, а не в килограммах. Если вы обсуждаете ваш «вес» с врачом, то вы обсуждаете вашу массу.
  • Ускорение свободного падения также может быть выражено в Н/кг. 1 Н/кг = 1 м/с2.
  • Плечевые весы измеряют массу (в кг), в то время как весы, работа которых основана на сжатии или расширении пружины, измеряют вес (в кгс).
  • Вес космонавта, который «весит» 101 кг (то есть его масса равна 101 кг), составляет 101,3 кгс на Северном полюсе и 16,5 кгс на Луне. На нейтронной звезде он будет весить еще больше, но он, вероятно, этого не заметит.
  • Единица измерения «Ньютон» применяется намного чаще (чем удобная «кгс»), так как можно найти множество других величин, если сила измеряется в ньютонах.

Реклама

Предупреждения

  • Выражение «атомный вес» не имеет ничего общего с весом атома, это масса. В современной науке оно заменено на выражение «атомная масса».

Реклама

Об этой статье

Эту страницу просматривали 113 683 раза.

Была ли эта статья полезной?

Сила тяжести. Вес

  1. Движение тел вблизи поверхности Земли
  2. Сила тяжести
  3. Вес тела
  4. Невесомость
  5. Задачи
  6. Лабораторная работа №7. Градуирование шкалы динамометра и измерение силы тяжести

п.1. Движение тел вблизи поверхности Земли

Вблизи поверхности Земли все тела, предоставленные самим себе, падают вниз, независимо от направления начальной скорости.

Такое движение тел называют свободным падением.

п.2. Сила тяжести

Многочисленные эксперименты показали, что в свободном падении все тела вблизи поверхности Земли падают с одинаковым ускорением (overrightarrow{g}), которое направлено вниз, к центру Земли.

В системе отсчета, связанной с Землей, на любое тело массой (m) действует сила тяжести $$ overrightarrow{F_{text{тяж}}}=m overrightarrow{g} $$

Сила тяжести Сила тяжести прямо пропорциональна массе тела.
Точка приложения силы тяжести – центр масс тела.
Сила тяжести всегда направлена вертикально вниз, к центру Земли.

Измерения показывают, что на средних географических широтах ускорение свободного падения (gapprox 9,81 text{м/с}^2). Т.е., скорость при падении увеличивается на (9,81 text{м/с}) каждую следующую секунду.

В общем случае, ускорение свободного падения зависит от широты рассматриваемого места, высоты над уровнем моря, времени суток и ещё нескольких более «тонких» факторов.
Самое низкое значение (g_{min}approx 9,7639 text{м/с}^2) зарегистрировано в Перу, на горе Уаскаран (1000 км южнее экватора).
Самое высокое значение (g_{max}approx 9,8337 text{м/с}^2) получено в 100 км от северного полюса.

В школьных задачах, если другое не оговорено, для вычислений используют приблизительное значение (gapprox 10 text{м/с}^2).
Стандартное значение, используемое для лабораторных измерений и расчетов, равно (g=9,80665 text{м/с}^2).

п.3. Вес тела

Если подвесить тело или положить его на опору, сила тяжести, действующая на тело, будет уравновешена силой, которую называют силой реакции подвеса или силой реакции опоры.

Т.к. силы уравновешивают друг друга, выполняется соотношение $$ moverrightarrow{g}=-overrightarrow{N} $$ где (moverrightarrow{g}) – сила тяжести, (overrightarrow{N}) – реакция подвеса или опоры.

По третьему закону Ньютона, если подвес или опора действуют на тело с силой (overrightarrow{N}), то и тело действует на подвес или опору с силой (overrightarrow{P}=-overrightarrow{N})

Вес тела – это сила, с которой тело действует на подвес или опору.

Получаем, что (overrightarrow{P}=moverrightarrow{g}), вес и сила тяжести равны по величине и направлению, но приложены к разным точкам: сила тяжести – к центру масс тела, вес – к подвесу или опоре.

По своей природе реакции подвеса или опоры являются силами упругости: под действием веса тела подвес или опора деформируются, и силы упругости стремятся восстановить их форму и размеры.

Равенство (overrightarrow{P}=moverrightarrow{g}) выполняется, если подвес или опора покоятся или движутся относительно Земли прямолинейно и равномерно.

Если движение подвеса или опоры равноускоренное с ускорением (overrightarrow{a}ne 0), то (overrightarrow{P}ne moverrightarrow{g}), вес будет больше (при (overrightarrow{a}) направленном вверх) или меньше (при (overrightarrow{a}) направленном вниз) силы тяжести. Подробней этот случай будет рассмотрен в курсе физики для 9 класса.

п.4. Невесомость

Если опора свободно падает вместе с телом, то под действием силы тяжести каждая частица опоры и тела двигается вниз с одним и тем же ускорением (overrightarrow{g}). Ни в опоре, ни в теле не возникают сжатия или растяжения, нет сил упругости, а значит, вес тела равен нулю.

Состояние, при котором в свободно падающих телах исчезают деформации и взаимные давления частиц тел друг на друга, называют невесомостью.

Состояние невесомости можно испытать, если подпрыгнуть – с момента отрыва от земли до момента приземления. В первые моменты прыжка до раскрытия парашюта, парашютисты также находятся в состоянии невесомости.

Движение космического корабля по орбите вокруг Земли представляет собой непрерывное свободное падение, поэтому космонавты испытывают состояние невесомости в течение всего полета, кроме тех моментов, когда передвигаются по кораблю или включают двигатели для маневрирования.

п.5. Задачи

Задача 1. Какой вес имеет человек массой 65 кг, который стоит на земле?

Дано:
(m=65 text{кг})
(gapprox 10 text{м/с}^2)
__________________
(P-?)

Вес равен силе тяжести (P=mg) $$ Papprox 65cdot 10=650 (text{Н}) $$ Ответ: 650 Н

Задача 2. Парашютист равномерно опускается на землю. Сила сопротивления воздуха 900 Н. Масса парашюта 15 кг. Найдите массу парашютиста.

Дано:
(F_{text{сопр}}=900 text{Н})
(m_1=15 text{кг})
(gapprox 10 text{м/с}^2)
__________________
(m_2-?)

Задача 2
На раскрытый парашют действуют две силы: сила сопротивления воздуха, направленная вверх, и суммарный вес (парашюта и парашютиста), направленный вниз.
Т.к. движение равномерное, ускорение (a=0). Значит, вес равен силе тяжести, и begin{gather*} F_{text{сопр}}=P=F_{text{т}}=(m_1+m_2)g\[6pt] m_1+m_2=frac{F_{text{сопр}}}{g}Rightarrow m_2=frac{F_{text{сопр}}}{g}-m_1 end{gather*} Подставляем $$ m_2=frac{900}{10}-15=75 (text{кг}) $$ Ответ: 75 кг.

Задача 3. На сколько сантиметров растянется пружина жесткостью k=267 Н/м, если подвесить к ней медный брусок размерами 5 см х 6 см х 10 см. Плотность меди 8900 кг/м3.

Дано:
(V=5 text{см}times 6 text{см}times 10 text{см}=300 text{см}^3=3cdot 10^{-4} text{м}^3)
(rho=8900 text{кг/м}^3)
(k=1000 text{Н/м})
(gapprox 10 text{м/с}^2)
__________________
(m_2-?)

Задача 3
Вес бруска равен силе тяжести и уравновешивается силой упругости: begin{gather*} mg=F_{text{упр}}=kDelta lRightarrow Delta l=frac{mg}{k}, m=rho V\[6pt] Delta l=frac{rho Vg}{k} end{gather*} Получаем: $$ Delta l=frac{8900cdot 3cdot 10^{-4}cdot 10}{267}=0,1 (text{м}=10 (text{см}) $$ Ответ: 10 см.

Задача 4*. При подвешивании гирьки массой 450 г пружина динамометра растягивается до 8 см. А при подвешивании гирьки массой 300 г – до 6 см. Найдите длину пружины динамометра без груза (ответ запишите в см).

Дано:
(m_1=450 text{г}=0,45 text{кг})
(l_1=8 text{см}=0,8 text{м})
(m_2=300 text{г}=0,3 text{кг})
(l_2=6 text{см}=0,6 text{м})
__________________
(l_0-?)

Задача 4
Вес гирьки равен силе тяжести и уравновешивается силой упругости: begin{gather*} mg=F_{text{упр}}=kDelta lRightarrow k=frac{mg}{Delta l} end{gather*} где (Delta l=l-l_0) – растяжение пружины.
Жесткость пружины begin{gather*} k=frac{m_1g}{Delta l_1}=frac{m_1g}{l_1-l_0}, k=frac{m_2g}{Delta l_2}=frac{m_2g}{l_2-l_0}\[6pt] frac{m_1g}{l_1-l_0}=frac{m_2g}{l_2-l_0} Rightarrow frac{m_1}{l_1-l_0}=frac{m_2}{l_2-l_0} Rightarrow m_2(l_2-l_0)=m_2(l_1-l_0)\[6pt] m_1l_2-m_1l_0=m_2l_1-m_2l_0 Rightarrow m_1l_2-m_2l_1=(m_1-m_2)l_0\[6pt] l_0=frac{m_1l_2-m_2l_1}{m_1-m_2} end{gather*} Получаем $$ l_0=frac{0,45cdot 0,06-0,3cdot 0,08}{0,45-0,3}=frac{0,027-0,024}{0,15}=0,02 (text{м}=2 (text{см}) $$ Ответ: 2 см.

п.6. Лабораторная работа №7. Градуирование шкалы динамометра и измерение силы тяжести

Цель работы
Исследовать зависимость силы упругости от величины деформации. Изготовить шкалу динамометра. Измерить силу тяжести для двух тел неизвестной массы; рассчитать их массу.

Теоретические сведения

Лабораторная работа №7 При подвешивании груза на пружину, его вес уравновешивается силой упругости. Для неподвижной пружины вес равен силе тяжести.
Получаем $$ P=F_{text{т}}=mg=F_{text{упр}} =kDelta l $$ Удлинение пружины $$ Delta l=frac gk m $$ При постоянном ускорении свободного падения (g) и постоянной жесткости (k), удлинение прямо пропорционально массе подвешенного груза.

В данной работе считаем, что грузу массой 100 г соответствует показание динамометра (F=1 text{Н}), т.е. (overline{g}=frac{1 text{Н}}{100 text{г}}=10frac{text{Н}}{ text{кг}}=10frac{ text{м}}{ text{с}^2}). Более точное стандартное значение (g_0=9,80665frac{ text{м}}{ text{с}^2})

Ошибка метода, связанная с величиной (g) $$ delta_g=frac{|overline{g}-g_0|}{g_0}approx 0,02=2text{%} $$ Тогда грузу массой 200 г соответствует показание 2 Н, 300 г – 3 Н и т.д.

После градуирования в целых значениях Н на динамометре наносятся промежуточные деления с ценой деления (d=0,1 text{Н}).

Ошибка градуирования определяется как степень отклонения от равномерности шкалы, (delta_{text{шк}}).

Теперь с помощью полученного прибора можно непосредственно измерять силу тяжести, действующую на тела. Ошибка метода при определении сил равна сумме (delta=delta_g+delta_{text{шк}}).

Т.к. шкала изготовлена для (overline{g}=10frac{ text{м}}{ text{с}^2}), массу тел находим по формуле (m=frac{F}{overline{g}}), где (F) – показание динамометра. При этом ошибка метода равна (delta=delta_{text{шк}}), т.к. ошибка (delta_g) нивелируется за счет пропорциональности массы и растяжения пружины.

Таким образом, за счет сокращения (overline{g}), полученный прибор позволяет точнее измерять массы по сравнению с измерениями сил.

Приборы и материалы
Лабораторный динамометр на 5Н со шкалой, закрытой чистой бумагой; набор грузиков по 100 г; линейка; карандаш; 2 тела неизвестной массы.

Ход работы
1. Закрепите динамометр в штативе.
2. Подвесьте грузик массой 100 г, сделайте отметку 1Н на шкале.
3. Сделайте отметки 2Н, 3Н, 4Н и 5Н для грузов 200 г, 300 г, 400 г и 500 г соответственно.
4. Снимите динамометр со штатива и проверьте с помощью линейки, насколько равномерной получилась шкала. Оцените относительную ошибку (delta_{text{шк}})
5. С помощью линейки нанесите по 10 промежуточных делений между основными делениями шкалы.
6. Снова закрепите динамометр в штативе и проведите измерения силы тяжести для двух тел неизвестной массы. Найдите абсолютную и относительную погрешность измерений.
7. Рассчитайте массы для обоих тел. Найдите абсолютную и относительную погрешность расчетов. 8. Сделайте выводы.

Результаты измерений и вычислений

Расчетная таблица для оценки равномерности шкалы

Отрезок шкалы Длина отрезка, мм (|x-x_{text{ср}}|)
0-1 Н 25 0
1-2 Н 25 0
2-3 Н 26 1
3-4 Н 24 1
4-5 Н 25 0
Всего 125 2

Средняя длина отрезка $$ x_{text{ср}}=frac{125}{5}=25 (text{мм}) $$ Среднее линейное отклонение $$ Delta =frac 25=0,4 (text{мм}) $$ Цена деления линейки (d_{text{л}}=1 text{мм}), абсолютная погрешность измерений (Delta_{text{л}}=0,5 text{мм})
Т.к. (Delta_{text{л}}gt Delta), принимаем погрешность равномерности шкалы (Delta=Delta_{text{л}}=0,5 text{мм})
Относительная погрешность равномерности шкалы $$ delta_{text{шк}}=frac{0,5}{25}=0,02=2text{%} $$

Относительная погрешность равномерности шкалы

Показание динамометра
(F, text{Н})
Ошибка метода
(delta=delta_g+delta_{text{шк}}, text{%})
Абсолютная погрешность
(Delta F=deltacdot F, text{Н})
1-е тело 2,7 4% 0,11 ≈ 0,1
2-е тело 1,9 4% 0,08 ≈ 0,1

Цена деления динамометра (d=0,1 text{Н}); погрешность прямых измерений (Delta_0=frac d2=0,05 text{Н})

Полученные абсолютные погрешности больше (Delta_0).

Сила тяжести для первого тела (F_1=(2,7pm 0,1) text{Н}, delta=4text_%)

Сила тяжести для второго тела (F_2=(1,9pm 0,1) text{Н}, delta=4text_%)

Расчет массы $$ m=frac{F}{10} (text{кг})=100F (text{г}) $$

Масса
(m=100F, text{г})
Ошибка метода
(delta=delta_{text{шк}}, text{%})
Абсолютная погрешность
(Delta m=deltacdot m, text{г})
1-е тело 270 2% 5
2-е тело 190 2% 4

Масса первого тела (m_1=(270pm 5) text{г}, delta=2text{%})

Масса второго тела (m_2=(190pm 4) text{г}, delta=2text{%})

Выводы
На основании проделанной работы можно сделать следующие выводы.

Для градуирования динамометра в ньютонах использовалось значение $$ overline{g}=10 frac{text{м}}{text{с}^2} $$

По сравнению со стандартным значением (g_0=9,80665 text{м/с}^2) это приводит к вкладу в ошибку метода (delta_gapprox 2text{%}).

При градуировании равномерность шкалы дала составляющую ошибки метода (delta_{text{шк}}=2text{%}).

При определении силы тяжести с помощью полученного динамометра ошибка метода равна сумме (delta+delta_g+delta_{text{шк}}=4text{%}).

Для двух тел неизвестной массы были получены следующие значения сил тяжести: $$ F_1=(2,7pm 0,1) text{Н}, F_2=(1,9pm 0,1) text{Н}, delta=4text{%} $$

При расчете массы по формуле (m=frac Fg), ошибка (delta_g) нивелируется за счет пропорциональности растяжения пружины. Ошибка метода уменьшается (delta=delta_{text{шк}}=2text{%}).

Получаем следующие значения масс: $$ m_1=(270pm 5) text{г}, m_2=(190pm 4) text{г}, delta=2text{%} $$ Таким образом, полученный в ходе работы динамометр позволяет измерять силы тяжести в интервале от 0 до 5 Н с погрешностью 4% и рассчитывать массы тел в интервале от 0 до 500 г с погрешностью 2%.

В окружающем нас мире на различные тела действуют множество сил. Вы уже познакомились с несколькими из них: весом тела, силой тяжести и силой упругости.

  • Сила тяжести действует на все тела находящиеся на Земле и всегда направлена вертикально вниз:
    $F_{тяж} = gm$,
    где $m$ — масса тела, $g$ — ускорение свободного падения ($g = 9.8 frac{Н}{кг}$)
  • Вес тела — это сила, с которой тело вследствие притяжения к Земле действует на опору или подвес. Вес тела приложен всегда к опоре или подвесу.
    Если тело и опора/подвес неподвижны или движутся прямолинейно и равномерно, то вес будет численно равен силе тяжести, действующей на это тело:
    $P = F_{тяж}$
  • Сила упругости возникает в теле в результате его деформации и стремится вернуть тело в исходное положение.
    Закон Гука определяет зависимость этой силы от деформации тела:
    $F_{упр} = k Delta l$,
    где $k$ — коэффициент упругости (жесткость тела), $Delta l$ — изменение длины тела

В данном уроке мы рассмотрим задачи и их подробные решения, чтобы вы научились уверенно использовать новые понятия и вычислять изученные силы.

Задача №1

Вычислите силу тяжести, действующую на тело массой: $1.5 space кг$; $500 space г$; $2.5 space т$; $20 space г$.

Дано:
$m_1 = 1.5 space кг$
$m_2 = 500 space г$
$m_3 = 2.5 space т$
$m_4 = 20 space г$
$g = 9.8 frac{Н}{кг}$

СИ:

$m_2 = 0.5 space кг$
$m_3 = 2500 space кг$
$m_4 = 0.02 space кг$

$F_{тяж1}, F_{тяж2}, F_{тяж3}, F_{тяж4} — ?$

Показать решение и ответ

Скрыть

Решение:

Сила тяжести рассчитывается по формуле $F_{тяж} = gm$.

Для того чтобы получить верный ответ при таких простых вычислениях, всегда обращайте внимание на единицы измерения данных величин. Мы уже перевели единицы массы в $кг$. Если бы мы этого не сделали, то получили бы неверные ответы.

Рассчитаем силу тяжести, действующую на каждое тело:

  1. $F_{тяж1} = gm_1$,
    $F_{тяж1} = 9.8 frac{Н}{кг} cdot 1.5 space кг = 14.7 space Н$
  2. $F_{тяж2} = gm_2$,
    $F_{тяж2} = 9.8 frac{Н}{кг} cdot 0.5 space кг = 4.9 space Н$
  3. $F_{тяж3} = gm_3$,
    $F_{тяж3} = 9.8 frac{Н}{кг} cdot 2500 space кг = 24 space 500 space Н = 24.5 space кН$
  4. $F_{тяж4} = gm_4$,
    $F_{тяж4} = 9.8 frac{Н}{кг} cdot 0.02 space кг = 0.196 space Н$

Ответ: $F_{тяж1} = 14.7 space Н$, $F_{тяж2} = 4.9 space Н$, $F_{тяж3} = 24.5 space кН$, $F_{тяж1} = 0.196 space Н$.

Задача №2

Банка объемом $5 space дм^3$ заполнена водой. Какой вес имеет вода?

Дано:
$V = 5 space дм^3$
$rho = 1000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

СИ:
$V = 5 cdot 10^{-3} space м^3$

Показать решение и ответ

Скрыть

Решение:

У нас в задаче не сказано, что банка каким-либо образом движется, поэтому мы будем считать, что она неподвижна. Если банка неподвижна, то и вода в ней тоже. Тогда вес воды мы можем рассчитать следующим способом:
$P = F_{тяж} = gm$.

Массу воды выразим через ее плотность и объем банки, который она заполняет:
$m = rho V$.

Подставим в нашу формулу и рассчитаем вес воды:
$P = g rho V$,
$P = 9.8 frac{Н}{кг} cdot 1000 frac{кг}{м^3} cdot 5 cdot 10^{-3} space м^3 = 49 space Н$.

Ответ: $P = 49 space Н$.

Задача №3

Два кубика изготовлены из одного материала. Объем первого кубика в 12.2 раза больше, чем второго. На какой кубик действует большая сила тяжести и во сколько раз?

Дано:
$V_1 = 12.2 V_2$
$rho_1 = rho_2 = rho$

$frac{F_{тяж1}}{F_{тяж2}} — ?$

Показать решение и ответ

Скрыть

Решение:

Сила тяжести рассчитывается по формуле:
$F_{тяж} = gm$.

Выразим массу кубиков через их объем и плотность:
$m_1 = rho V_1 = rho 12.2 V_2$,
$m_2 = rho V_2$.

Мы видим, что масса первого кубика в 12.2 раза больше массы второго. Это означает, что и сила тяжести, действующая на него, будет в 12.2 раза больше, чем сила тяжести, действующая на второй кубик:
$frac{F_{тяж1}}{F_{тяж2}} = frac{rho 12.2 V_2}{rho V_2} = 12.2$.

Ответ: на первый, в 12.2 раза.

Задача №4

Какой вес имеет человек, имеющий массу $65 space кг$ и находящийся на Земле?

Дано:
$m = 65 space кг$
$g = 9.8 frac{Н}{кг}$

$P — ?$

Показать решение и ответ

Скрыть

Решение:

Если человек находится на Земле неподвижно или движется равномерно и прямолинейно, то его вес будет равен силе тяжести, действующей на него:
$P = F_{тяж} = gm$,
$P = 9.8 frac{Н}{кг} cdot 65 space кг = 637 space Н$.

Ответ: $P = 637 space Н$.

Задача №5

Стальная проволока удлиняется на $2 space мм$ при действии на нее груза в $320 space Н$. Вычислите коэффициент жесткости проволоки.

Дано:
$Delta l = 2 space мм$
$F_{упр} = 320 space Н$

СИ:
$Delta l = 2 cdot 10^{-3} space м$

$k — ?$

Показать решение и ответ

Скрыть

Решение:

Запишем закон Гука:

$F_{упр} = k Delta l$.

Выразим отсюда коэффициент жесткости проволоки и рассчитаем его:

$k = frac{F_{упр}}{Delta l}$,

$k = frac{320 space Н}{2 cdot 10^{-3} space м} = 160 cdot 10^3 frac{Н}{м} = 160 frac{кН}{м}$.

Ответ: $k = 160 frac{кН}{м}$.

Задача №6

Под действием груза в $200 space Н$ пружина динамометра удлинилась на $0.5 space см$. Каково удлинение пружины под действием груза в $700 space Н$?

Дано:
$Delta l_1 = 0.5 space см$
$F_{упр1} = 200 space Н$
$F_{упр2} = 700 space Н$

$Delta l_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Закон Гука описывает силу упругости, возникающую в пружине при ее удлинении:
$F_{упр1} = k Delta l_1$.

Выразим отсюда жесткость пружины и рассчитаем ее:
$k = frac{F_{упр1}}{Delta l_1}$,
$k = frac{200 space Н}{0.5 space см} = 400 frac{Н}{см}$.

Используя тот же закон Гука рассчитаем удлинение пружины при другой силе упругости, измерений динамометром:
$F_{упр2} = k Delta l_2$,
$Delta l_2 = frac{F_{упр2}}{k}$,
$Delta l_2 = frac{700 space Н}{400 frac{Н}{см}} = 1.75 space см$.

Ответ: $Delta l_2 = 1.75 space см$.

Под действием силы давления вагона $50 space кН$ буферные пружины между вагонами сжимаются на $1 space см$. С какой силой давит вагон, если пружины сжались на $4 space см$?

Дано:
$F_{упр1} = 50 space кН$
$Delta l_1 = 1 space см$
$Delta l_2 = 4 space см$

$F_{упр2} — ?$

Показать решение и ответ

Скрыть

Решение:

Вследствие давления вагона, буферные пружины сжимаются и в них возникает сила упругости, равная $50 space кН$. Найдем жесткость этих пружин:
$F_{упр1} = k Delta l_1$,
$k = frac{F_{упр1}}{Delta l_1}$,
$k = frac{50 space кН}{1 space см} = 50 frac{кН}{см}$.

Рассчитаем силу, с которой давит вагон, (силу упругости, возникающую в пружинах под таким давлением), если изменение длины пружин составило $4 space см$:
$F_{упр2} = k Delta l_2$,
$F_{упр2} = 50 frac{кН}{см} cdot 4 space см = 200 space кН$.

Ответ: $F_{упр2} = 200 space кН$.

Задача №8

Пружина без нагрузки длиной $20 space см$ имеет коэффициент жесткости $20 frac{Н}{м}$. Какой станет длина растянутой пружины под действием силы $2 space Н$?

Дано:
$l = 20 space см$
$k = 20 frac{Н}{м}$
$F_{упр1} = 2 space Н$

СИ:
$l = 0.2 space м$

$F_{упр2} — ?$

Показать решение и ответ

Скрыть

Решение:

Для того чтобы узнать длину растянутой пружины, нам нужно вычислить ее изменение длины — длину, на которую она растянется:
$l_1 = l + Delta l$.

Если бы пружина сжималась под действием силы, то мы бы отнимали удлинение от первоначальной длины.

Рассчитаем удлинение пружины:
$F_{упр} = k Delta l$,
$Delta l = frac{F_{упр}}{k}$,
$Delta l = frac{2 space Н}{20 frac{Н}{м}} = 0.1 space м$.

Теперь рассчитаем длину растянутой пружины:
$l_1 = 0.2 space м + 0.1 space м = 0.3 space м = 30 space см$.

Ответ: $l_1 = 30 space см$.

Задача №9

На рисунке 1 изображен график зависимости модуля силы упругости от удлинения пружины. Найдите жесткость пружины.

Рисунок 1. Зависимость удлинения пружины от силы упругости

Показать решение и ответ

Скрыть

Решение:

Для того чтобы определить коэффициент жесткости нам нужно силу упругости разделить на удлинение пружины:
$k = frac{F_{упр}}{Delta l}$.

Пользуясь графиком, вы можете выбрать любую удобную для вас точку. График демонстрирует линейную зависимость силы упругости от удлинения, коэффициент жесткости при этом — величина постоянная.

Мы выберем точку, в которой сила упругости равна $4 space Н$. Этому значению силы соответствует удлинение пружины, равное $0.4 space м$.

Рассчитаем коэффициент жесткости:
$k = frac{4 space Н}{0.4 space м} = 10 frac{Н}{м}$.

Ответ: $k = 10 frac{Н}{м}$.

Задача №10

Круглый стальной брус диаметром $2 space см$, длиной $16 space м$ растягивается силой, равной $36 space кН$. Найдите удлинение этого бруса.

Дано:
$d = 2 space см$
$l = 16 space м$
$F_{упр} = 36 space кН$
$E = 200 cdot 10^9 space Па$

$Delta l — ?$

Модуль упругости $E$ — это физическая величина, характеризующая способность материала сопротивляться растяжению или сжатию. 

Модуль упругости является характеристикой материала, для стали он равен $200 cdot 10^9 space Па$.
Он связан с коэффициентом упругости $k$:

$k = frac{ES}{l}$,

где $S$ — площадь поперечного сечения,
$l$ — длина.

Показать решение и ответ

Скрыть

Решение:

Запишем закон Гука:
$F_{упр} = k Delta l$.

Выразим отсюда удлинение стального бруса:
$Delta l = frac{F_{упр}}{k}$.

Коэффициент упругости $k$ мы можем выразить через модуль упругости $E$:
$k = frac{ES}{l}$.

Площадь поперечного сечения $S$ выразим через диаметр:
$S = frac{pi d^2}{4}$.

Подставим эти формулы в закон Гука:
$Delta l = frac{F_{упр}}{frac{ES}{l}} = frac{F_{упр} l}{E frac{pi d^2}{4}} = frac{4 F_{упр} l}{E pi d^2}$.

Рассчитаем удлинение бруса:
$Delta l = frac{4 cdot 36 cdot 10^3 space Н cdot 16 space м}{200 cdot 10^9 space Па cdot 3.14 cdot 0.02^2 space м^2} = frac{2304 cdot Н cdot м}{251 space 200 space Н} approx 0.009 space м approx 9 space мм$.

Ответ: $Delta l = 9 space мм$.

Вес тела — это сила, с которой тело, вследствие притяжения к Земле, действует на опору или подвес.

Вес тела

P=N = mg

В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес – это упругая сила, приложенная к опоре или подвесу (т.е. к связи).

Вес тела

Вес тела в различных условиях движения.

1) опора покоится или движется равномерно

N=mg – сила реакции опоры

P=N значит P=mg Вес тела равен действующей на тело силе тяжести.

2) опора движется с ускорением a вверх.

N–mg=ma – второй закон Ньютона

N=mg+ma

P=N=m·(g+a)

P>mg  Вес тела, движущегося с ускорением направленным вверх больше силы тяжести.

Увеличение веса тела, вызванное его ускоренным движением, называется перегрузкой.

3) опора движется с ускорением а вниз.

mg-N=ma – второй закон Ньютона

N=mg-ma

P=N=m·(g-a)

P<mg Вес тела, движущегося с ускорением вниз уменьшается.

Падение тел в вакууме без начальной скорости называется свободным падением. При свободном падении a=g из P=m·(g-a) следует, что P=0, т.е. вес отсутствует.

Если тела движутся только под действием силы тяжести, т.е. свободно падают, то они находятся в состоянии невесомости – состояние, при котором вес тела отсутствует (НО! масса у тела есть всегда).

Обозначения:

N – сила реакции опоры

P – вес тела

m – масса тела

g – ускорение свободного падения

a – ускорение, с которым движется тело

Сила тяжести – это проявление закона всемирного тяготения, т. е. силы притяжения тел к Земле вблизи ее поверхности:

F = mg

Сила тяжести приложена к телу, направлена к центру Земли, и ее нужно отличать от веса тела.

Вес тела – сила, с которой тело действует на опору или подвес. Вес тела приложен к опоре.

Если тело неподвижно лежит на горизонтальной опоре, то вес тела по величине равен силе тяжести, но эти силы приложены к разным телам.

Если тело имеет вертикальную составляющую ускорения, то вес тела отличается по величине от силы тяжести.

Пример. Определить силу тяжести и вес тела массы m при движении лифта вниз (а) и вверх (б).

Сила тяжести и вес тела

На тело действуют сила тяжести (mg) и сила нормальной реакции опоры (N). На опору действует вес тела (P).

При движении лифта вниз с ускорением а, уравнение движения тела, в соответствии со 2-м законом Ньютона, можно записать:

mg – N = ma,

N = m (g – a).

В соответствии с 3-м законом Ньютона:

N = P = m (g – a)

Т.е., при ускоренном движении лифта вниз вес тела меньше силы тяжести:

P < mg.

Если ускорение лифта (опоры) равно ускорению свободного падения, то

а = g, значит, тело свободно падает вместе с опорой и вес тела равен нулю (P = 0).

При движении лифта вверх с ускорением а уравнение движения тела, в соответствии со 2-м законом Ньютона, можно записать:

N – mg = ma,

N = m (g + a)

В соответствии с 3-м законом Ньютона:

N = P = m (g + a)

Т.е., при ускоренном движении лифта вверх вес тела больше силы тяжести: P > mg.

Спасибо за внимание, ставьте лайки и подписывайтесь 🙂

Добавить комментарий