Как найти угол между градиентами поля

Как найти угол между градиентами функции в точках

&nbsp &nbsp &nbsp &nbsp Вариант 1 &nbsp &nbsp Вариант 2 &nbsp &nbsp Вариант 3 &nbsp &nbsp Вариант 4 &nbsp &nbsp Вариант 5 &nbsp &nbsp Вариант 6

&nbsp &nbsp &nbsp &nbsp Вариант 7 &nbsp &nbsp Вариант 8 &nbsp &nbsp Вариант 9 &nbsp &nbsp Вариант 10 &nbsp &nbsp Вариант 11 &nbsp &nbsp Вариант 12

&nbsp &nbsp Вариант 13 &nbsp &nbsp Вариант 14 &nbsp &nbsp Вариант 15 &nbsp &nbsp Вариант 16 &nbsp &nbsp Вариант 17 &nbsp &nbsp Вариант 18

&nbsp &nbsp Вариант 19 &nbsp &nbsp Вариант 20 &nbsp &nbsp Вариант 21 &nbsp &nbsp Вариант 22 &nbsp &nbsp Вариант 23 &nbsp &nbsp Вариант 24

&nbsp &nbsp Вариант 25 &nbsp &nbsp Вариант 26 &nbsp &nbsp Вариант 27 &nbsp &nbsp Вариант 28 &nbsp &nbsp Вариант 29 &nbsp &nbsp Вариант 30

&nbsp &nbsp &nbsp &nbsp 2.29 Найти угол между градиентами скалярных полей U(x,y,z) и V(x,y,z) в точке M.

Задачка по математике

Найти угол между градиентами в двух точках.
функция z=arcsin(x/(x+y))
Точки: (1,1) и (3,4).
Проверьте пожалуйста решение. В нем явно есть ошибка. Или предложите другой ход решения.
Частные производные и градиенты получились такие:

Повторно перерешал и нашел частные производные. Сам ошибок не нашел — примелькались уже. Вот подробный ход решения:

Высшая математика и экономика

Задача 1.
Найти производную скалярного поля в точке по направлению проходящей через эту точку нормали к поверхности , образующей острый угол с положительным направлением оси .




Задача 2.
Найти угол между градиентами скалярных полей и в точке М.

*— искомый угол.






Найдём градиент скалярного поля [math]U[/math] в точке [math]M[/math] и модуль:

[math]mathbf{grad}U=frac{partial{U}}{partial{x}},mathbf{i}+frac{partial{U}}{partial{y}},mathbf{j}+frac{partial{U}}{partial{y}},mathbf{k}=frac{3}{2}x^2,mathbf{i}+18y^2,mathbf{j}+9sqrt{6},z^2,mathbf{k}[/math]

[math]left.{mathbf{grad}U}right|_M=frac{3}{2}{!left(sqrt2right)!}^2,mathbf{i}+18{!left(frac{1}{sqrt2}right)!}^2,mathbf{j}+9sqrt6{left(frac{1}{sqrt3}right)!}^2,mathbf{k}=3,mathbf{i}+9,mathbf{j}+3sqrt6,mathbf{k}[/math]

[math]left|left.{mathbf{grad}U}right|_Mright|=sqrt{3^2+9^2+{!left({3sqrt6}right)!}^2}=sqrt{9+81+54}=sqrt{144}=12[/math]

Найдём градиент скалярного поля [math]V[/math] в точке [math]M[/math] и модуль:

[math]mathbf{grad}V=frac{partial{V}}{partial{x}},mathbf{i}+frac{partial{V}}{partial{y}},mathbf{j}+frac{partial{V}}{partial{y}},mathbf{k}=frac{2x}{yz^2},mathbf{i}-frac{x^2}{y^2z^2},mathbf{j}-frac{2x^2}{yz^3},mathbf{k}[/math]

[math]left.{mathbf{grad}V}right|_M=frac{2sqrt2}{frac{1}{sqrt2}left(frac{1}{sqrt3}right)^2},mathbf{i}-frac{left(sqrt2right)^2}{left(frac{1}{sqrt2}right)^2left(frac{1}{sqrt3}right)^2},mathbf{j}-frac{2left(sqrt2right)^2}{frac{1}{sqrt2}left(frac{1}{sqrt3}right)^3},mathbf{k}=12,mathbf{i}-12,mathbf{j}-12sqrt6,mathbf{k}[/math]

[math]left|left.{mathbf{grad}V}right|_Mright|=sqrt{12^2+{!left(-12right)!}^2+{!left(-12sqrt6right)!}^2}=sqrt{12^2cdot8}=24sqrt2[/math]

Вычислим скалярное произведение градиентов полей [math]U[/math] и [math]V[/math] в точке [math]M[/math]

[math]leftlangle{left.{mathbf{grad}U}right|_M,,left.{mathbf{grad}V}right|_M}rightrangle=3cdot12+9cdot(-12)+3sqrt6cdotleft(-12sqrt6right)=36-108-216=-288[/math]

Вычислим значение косинуса угла между градиентами

[math]cosalpha=frac{leftlangle{left.{mathbf{grad}U}right|_M,,left.{mathbf{grad}V}right|_M}rightrangle}{left|left.{mathbf{grad}U}right|_Mright|cdotleft|left.{mathbf{grad}V}right|_Mright|}=frac{-288}{12cdot24sqrt2}=-frac{1}{sqrt2}[/math]

Следовательно, искомый угол [math]alpha[/math] есть

[math]alpha=arccos!left(-frac{1}{sqrt2}right)=pi-arccosfrac{1}{sqrt2}=pi-frac{pi}{4}=frac{3pi}{4}=135^circ[/math]

Также смотрите ещё примеры

viewtopic.php?f=35&t=313

viewtopic.php?f=35&t=3289

Задачка по математике

Никита Ершов



Профи

(709),
на голосовании



13 лет назад

Найти угол между градиентами в двух точках.
функция z=arcsin(x/(x+y))
Точки: (1,1) и (3,4).
Проверьте пожалуйста решение. В нем явно есть ошибка. Или предложите другой ход решения.
Частные производные и градиенты получились такие:

Дополнен 13 лет назад

Повторно перерешал и нашел частные производные. Сам ошибок не нашел – примелькались уже. Вот подробный ход решения:

Дополнен 13 лет назад

Добавляю итоговый ответ. Вновь прошу проверить.

Голосование за лучший ответ

Добавить комментарий