Арктангенс — обратная тригонометрическая функция. Общепринятое обозначение арктангенса — arctg x. При этом довольно часто, особенно в зарубежной литературе можно встретить иное обозначение — arctan x.
Арктангенс калькулятор
Калькулятор арктангенса
Как пользоваться калькулятором арктангенса
Введите значение тангенса угла и нажмите кнопку посчитать. В результате вы получите значение арктангенса выраженное в градусах и радианах.
Что такое арктангенс
Арктангенс числа x — это значение угла в радианах, для которого справедливо равенство tg a = m.
К примеру, что такое arctg 1? Это угол в радианах, тангенс которого равен 1.
Ваша оценка
[Оценок: 9104 Средняя: 3.8]
Арктангенс Автор admin средний рейтинг 3.8/5 – 9104 рейтинги пользователей
- Определение
- График арктангенса
-
Свойства арктангенса
- Таблица арктангенсов
Определение
Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.
Арктангенс x определяется как функция, обратная к тангенсу x, где x – любое число (x∈ℝ).
Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y:
arctg x = tg-1 x = y, причем -π/2<y<π/2
Примечание: tg-1x означает обратный тангенс, а не тангенс в степени -1.
Например:
arctg 1 = tg-1 1 = 45° = π/4 рад
График арктангенса
Функция арктангенса пишется как y = arctg (x). График в общем виде выглядит следующим образом:
Свойства арктангенса
Ниже в табличном виде представлены основные свойства арктангенса с формулами.
Таблица арктангенсов
arctg x (°) | arctg x (рад) | x |
-90° | -π/2 | -∞ |
-71.565° | -1.2490 | -3 |
-63.435° | -1.1071 | -2 |
-60° | -π/3 | -√3 |
-45° | -π/4 | -1 |
-30° | -π/6 | -1/√3 |
-26.565° | -0.4636 | -0.5 |
0° | 0 | 0 |
26.565° | 0.4636 | 0.5 |
30° | π/6 | 1/√3 |
45° | π/4 | 1 |
60° | π/3 | √3 |
63.435° | 1.1071 | 2 |
71.565° | 1.2490 | 3 |
90° | π/2 | ∞ |
microexcel.ru
Арксинус, арккосинус, арктангенс и арккотангенс – начальные сведения
Задача, обратная нахождению значения синуса, косинуса, тангенса и котангенса данного угла (числа), подразумевает нахождение угла (числа) по известным значениям тригонометрических функций. Она приводит к понятиям арксинуса, арккосинуса, арктангенса и арккотангенса числа.
В этой статье мы дадим определения арксинуса, арккосинуса, арктангенса и арккотангенса числа, введем принятые обозначения, а также приведем примеры арксинуса, арккосинуса, арктангенса и арккотангенса. В заключение упомянем про аркфункции и покажем, как арксинус, арккосинус, арктангенс и арккотангенс связаны с единичной окружностью.
Навигация по странице.
Определения, обозначения, примеры
Арксинус, арккосинус, арктангенс и арккотангенс можно определить как угол и как число. Это связано с тем, что мы определили синус, косинус, тангенс и котангенс как угла, так и числа (смотрите синус, косинус, тангенс и котангенс в тригонометрии). Остановимся на обоих подходах к определению арксинуса, арккосинуса, арктангенса и арккотангенса.
Арксинус, арккосинус, арктангенс и арккотангенс как угол
Пусть про угол альфа α известно лишь то, что его синус равен числу 1/2 , то есть, sinα=1/2 . Последнее равенство определяет угол α неоднозначно, так как ему удовлетворяет бесконечное множество углов α=(−1) k ·30°+180°·k ( α=(−1) k ·π/6+π·k ), где k∈Z . Однако, если потребовать, чтобы величина угла α в градусах принадлежала отрезку [−90, 90] (в радианах – отрезку [−π/2, π/2] ), то равенство sinα=1/2 будет определять угол альфа однозначно. При этом условии равенству удовлетворяет единственный угол в 30 градусов ( π/6 радианов).
Вообще, равенство sinα=a (не путайте a и альфа: a и α ) при любом числе a∈[−1, 1] и условии −90°≤α≤90° ( −π/2≤α≤π/2 ) определяет единственный угол α . Этот угол называют арксинусом числа a .
Арксинус числа a∈[−1, 1] – это угол −90°≤α≤90° ( −π/2≤α≤π/2 ), синус которого равен a .
Аналогично определяются арккосинус, арктангенс и арккотангенс.
Арккосинус числа a∈[−1, 1] – это угол 0°≤α≤180° ( 0≤α≤π ), косинус которого равен a .
Арктангенс числа a∈(−∞, +∞) – это угол −90° ( −π/2 ), тангенс которого равен a .
Арккотангенс числа a∈(−∞, +∞) – это угол 0° ( 0 ), котангенс которого равен a .
Для записи арксинуса, арккосинуса, арктангенса и арккотангенса приняты следующие обозначения: arcsin , arccos , arctg и arcctg . То есть, арксинус числа a можно записать как arcsin a , арккосинус, арктангенс и арккотангенс числа a запишутся соответственно как arccos a , arctg a и arcctg a .
Также можно встретить обозначения arctan и arccot , они являются другой формой обозначения арктангенса и арккотангенса, которая принята в англоязычной литературе. Мы же арктангенс и арккотангенс будем обозначать как arctg и arcctg .
В свете введенных обозначений, определения арксинуса, арккосинуса, арктангенса и арккотангенса числа можно записать более формально:
arcsin a , a∈[−1, 1] , есть такой угол α , что −90°≤α≤90° ( −π/2≤α≤π/2 ) и sinα=a ;
arccos a , a∈[−1, 1] , есть такой угол α , что 0°≤α≤180° ( 0≤α≤π ) и cosα=a ;
arctg a , a∈(−∞, +∞) , есть такой угол α , что −90° ( −π/2 ) и tgα=a ;
arcctg a , a∈(−∞, +∞) , есть такой угол α , что 0° ( 0 ) и ctgα=a .
Подчеркнем, что арксинус и арккосинус числа определен для чисел, принадлежащих отрезку [−1, 1] , для остальных чисел арксинус и арккосинус не определен. Например, не имеет смысла запись arcsin2 . Аналогично не определен арксинус пяти, арксинус минус корня из трех, арккосинус семи целых двух третьих и арккосинус минус пи, так как числа 2 , 5 , , −π выходят за пределы числового отрезка от −1 до 1 . В свою очередь записи arctg a и arcctg a имеют смысл для любого действительного числа a , например, имеют смысл записи arctg0 , arctg(−500,2) , arcctg(6·π+1) и т.п.
Теперь можно привести примеры арксинуса, арккосинуса, арктангенса и арккотангенса числа.
Начнем с примеров арксинуса. Определение арксинуса позволяет утверждать, что угол π/3 является арксинусом числа , то есть, (здесь и α=π/3 ). Действительно, число принадлежит отрезку [−1, 1] , угол π/3 лежит в пределах от −π/2 до π/2 и . Приведем еще несколько примеров арксинуса числа: arcsin(−1)=−90° , arcsin(0,5)=π/6 , .
А вот π/10 не является арксинусом 1/2 , так как sin(π/10)≠1/2 . Еще пример: несмотря на то, что синус 270 градусов равен −1 , угол 270 градусов не является арксинусом минус единицы, так как 270 градусов не является углом в пределах от −90 до 90 градусов. Более того, угол 270 градусов вообще не может быть арксинусом какого-либо числа, так как арксинус числа должен лежать в пределах от −90 до 90 градусов.
Для полноты картины приведем примеры арккосинуса, арктангенса и арккотангенса числа. Например, угол 0 радианов является арккосинусом единицы, то есть, arccos1=0 (так как выполняются все условия из определения арккосинуса: число 1 принадлежит отрезку от −1 до 1 , угол нуль радианов лежит в пределах от нуля до пи включительно и cos0=1 ). Аналогично, угол π/2 есть арккосинус нуля: arccos0=π/2 . По определению арктангенса числа arctg(−1)=−π/4 или arctg(−1)=−45° . Арктангенс корня из трех равен 60 градусам ( π/3 рад). А из определения арккотангенса можно заключить, что arcctg0=π/2 , так как угол π/2 лежит в рамках от 0 до пи и ctg(π/2)=0 .
Подобный подход к определению арксинуса, арккосинуса, арктангенса и арккотангенса описан в учебнике Кочеткова [1, с. 260-278] .
Арксинус, арккосинус, арктангенс и арккотангенс как число
Когда мы имеем дело с синусом, косинусом, тангенсом и котангенсом угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять как угол. Если же мы начинаем говорить про синус, косинус, тангенс и котангенс числа, а не угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять уже как число.
Арксинусом числа a∈[−1, 1] называется такое число t∈[−π/2, π/2] , синус которого равен a .
Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса
В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.
Значения арксинуса, арккосинуса, арктангенса и арккотангенса
Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».
Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.
Для четкого понимания рассмотрим пример.
Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos ( 1 2 ) = π 3 .
Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °
Основные значения arcsin, arccos, arctg и arctg
Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.
Таблица синусов основных углов предлагает такие результаты значений углов:
sin ( – π 2 ) = – 1 , sin ( – π 3 ) = – 3 2 , sin ( – π 4 ) = – 2 2 , sin ( – π 6 ) = – 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1
Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от – 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.
Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.
в р а д и а н а х
α | – 1 | – 3 2 | – 2 2 | – 1 2 | 0 | 1 2 | 2 2 | 3 2 |
a r c sin α к а к у г о л | – π 2 | – π 3 | – π 4 | – π 6 | 0 | π 6 | π 4 | π 3 |
в г р а д у с а х | – 90 ° | – 60 ° | – 45 ° | – 30 ° | 0 ° | 30 ° | 45 ° | 60 ° |
a r c sin α к а к ч и с л о | – π 2 | – π 3 | – π 4 | – π 6 | 0 | π 6 | π 4 | π 3 |
Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:
cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = – 1 2 , cos 3 π 4 = – 2 2 , cos 5 π 6 = – 3 2 , cos π = – 1
Следуя из таблицы, находим значения арккосинуса:
a r c cos ( – 1 ) = π , arccos ( – 3 2 ) = 5 π 6 , arcocos ( – 2 2 ) = 3 π 4 , arccos – 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0
в р а д и а н а х
α | – 1 | – 3 2 | – 2 2 | – 1 2 | 0 | 1 2 | 2 2 | 3 2 | 1 |
a r c cos α к а к у г о л | π | 5 π 6 | 3 π 4 | 2 π 3 | π 2 | π 3 | π 4 | π 6 | 0 |
в г р а д у с а х | 180 ° | 150 ° | 135 ° | 120 ° | 90 ° | 60 ° | 45 ° | 30 ° | 0 ° |
a r c cos α к а к ч и с л о | π | 5 π 6 | 3 π 4 | 2 π 3 | π 2 | π 3 | π 4 | π 6 | 0 |
Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.
α | – 3 | – 1 | – 3 3 | 0 | 3 3 | 1 | 3 | |
a r c t g a к а к у г о л | в р а д и а н а х | – π 3 | – π 4 | – π 6 | 0 | π 6 | π 4 | π 3 |
в г р а д у с а х | – 60 ° | – 45 ° | – 30 ° | 0 ° | 30 ° | 45 ° | 60 ° | |
a r c t g a к а к ч и с л о | – π 3 | – π 4 | – π 6 | 0 | π 6 | π 4 | π 3 |
Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса
a r c sin , a r c cos , a r c t g и a r c c t g
Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.
Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin ( – α ) = – a r c sin α , a r c cos ( – α ) = π – a r c cos α , a r c t g ( – α ) = – a r c t g α , a r c c t g ( – α ) = π – a r c c t g α .
Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.
Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.
Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.
Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.
Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .
Нахождение значения arcsin, arccos, arctg и arcctg
Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).
При известном a r c sin α = – π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:
a r c cos α = π 2 − a r c sin α = π 2 − ( − π 12 ) = 7 π 12 .
Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.
Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.
При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.
Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.
Арктангенс и арккотангенс. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти арксинус и арккосинус от числа. Результат можно видеть как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Арктангенс и арккотангенс − теория, примеры и решения
Функция арктангенс и ее график
Функция тангенс определена в интервале [−∞;+∞] кроме точек , . и не является монотонной функцией (т.е. не является возрастающей или убывающей во всей области определения функции (Рис.1) (подробнее о функции тангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.
Однако, функцию тангенс можно разделить на интервалы, где она монотонна. Эти интервалы:
По теореме об обратной функции, на каждом из указанных отрезков функция tg x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию обозначают x=arctg y. Поменяв местами x и y, получим:
Функция (1) − это функция, обратная к функции
График функции арктангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.2).
Свойства функции арктангенс.
- Область определения функции: .
- Область значений функции: .
- Функция является нечетной: .
- Функция возрастает.
- Функция непрерывна.
Решим тригонометрическое уравнение
В интервале для уравнения (2) существует одно t, для которого tg t=a. Это решение
Следовательно в интервале уравнение (2) имеет один корень. Так как тангенс периодичная функция с основным периодом π, то все корни уравнения (2) отличаются на πn (n∈Z), т.е.
Решение уравнения (2) представлен на Рис.3:
Так как tg t − это ординат точки пересечения прямой OMt1 c прямым x=1, то для любого a на линии тангенса есть только одна точка T(1; a). Прямая OTt пересекается с окружностью с радиусом 1 в двух точках: . Но только точка соответствует интервалу , которое соответствует решению .
Пример 1. Решить тригонометрическое уравнение:
Решение. Воспользуемся формулой (3):
Пример 2. Решить тригонометрическое уравнение:
Решение. Воспользуемся формулой (3):
Используя онлайн калькулятор получим:
Функция арккотангенс и ее график
Как известно, функция котангенс определена в интервале [−∞;+∞] кроме точек -2π, –π 0, π, 2π. и не является монотонной функцией (Рис.4) (подробнее о функции котангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.
Однако, функцию кокотангенс можно разделить на интервалы, где она монотонна. Эти интервалы:
По теореме об обратной функции, на каждом из указанных интервалов функция ctg x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию оброзначают x=arcctg y. Поменяв местами x и y, получим:
Функция (4) − это функция, обратная к функции
График функции арккотангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.5).
Свойства функции арккотангенс.
- Область определения функции: .
- Область значений функции: .
- Функция не является ни четной ни нечетной (так как функция не симметрична ни относительно начала координит, ни относительно оси Y).
- Функция убывает.
- Функция непрерывна.
Решим тригонометрическое уравнение
В интервале (0; π) для уравнения (5) существует одно t, для которого сtg t=a. Это t=arcctg a. Следовательно в интервале (0; π) уравнение (5) имеет один корень. Так как котангенс периодичная функция с основным периодом π, то общее решение уравнения (5) имеет следующий вид:
Решения уравнения (5) можно представить на единичной окружности (Рис.6):
ctg t − это абсцис точки пересечения прямой с прямым y=1. Любому числу a на линии котангенс соответствует только одна точка . Прямая пересекется с единичной окружностью в двух точках . Но только точка соответствует интервалу (0; π), которое соответствует решению .
Пример 1. Решить тригонометрическое уравнение:
Решение. Воcпользуемся формулой (6):
Так как в интервале (0; π), то
Пример 2. Решить следующее тригонометрическое уравнение:
Решение. Используя формулу (6), имеем
С помощью онлайн калькулятора вычисляем . Тогда
[spoiler title=”источники:”]
http://zaochnik.com/spravochnik/matematika/trigonometrija/nahozhdenie-znachenij-arksinusa-arkkosinusa-arktan/
http://matworld.ru/trigonometry/arktangens-i-arkkotangens.php
[/spoiler]
Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика XVIII века Карла Шерфера и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: но они не прижились[1].
Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа sin−1, cos−1 для арксинуса, арккосинуса и т. п.[2], — такая запись считается не очень удобной, так как возможна путаница с возведением функции в степень −1.
Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданному числу. Например, означает множество углов , синус которых равен . Из множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т. д.
В общем случае при условии все решения уравнения можно представить в виде [3]
Основное соотношение[править | править код]
Функция arcsin[править | править код]
График функции
Аркси́нусом числа x называется такое значение угла y, выраженного в радианах, для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго возрастающей.
Свойства функции arcsin[править | править код]
Получение функции arcsin[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие функцией не является. Поэтому рассмотрим отрезок , на котором функция строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на отрезке существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arccos[править | править код]
График функции
Аркко́синусом числа x называется такое значение угла y в радианной мере, для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго убывающей и неотрицательной.
Свойства функции arccos[править | править код]
Получение функции arccos[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие функцией не является. Поэтому рассмотрим отрезок , на котором функция строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на отрезке существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arctg[править | править код]
График функции
Аркта́нгенсом числа x называется такое значение угла выраженное в радианах, для которого
Функция определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго возрастающей.
Свойства функции arctg[править | править код]
Получение функции arctg[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим интервал , на котором функция строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на интервале существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arcctg[править | править код]
График функции
Арккота́нгенсом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго убывающей и всюду положительной.
Свойства функции arcctg[править | править код]
Получение функции arcctg[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим интервал , на котором функция строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на интервале существует обратная функция , график которой симметричен графику функции относительно прямой .
График арккотангенса получается из графика арктангенса, если последний отразить относительно оси ординат (то есть заменить знак аргумента, ) и сместить вверх на π/2; это вытекает из вышеупомянутой формулы
Функция arcsec[править | править код]
График функции
Арксе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго возрастающей и всюду неотрицательной.
Свойства функции arcsec[править | править код]
Функция arccosec[править | править код]
График функции
Арккосе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго убывающей.
Свойства функции arccosec[править | править код]
Разложение в ряды[править | править код]
Производные от обратных тригонометрических функций[править | править код]
Все обратные тригонометрические функции бесконечно дифференцируемы в каждой точке своей области определения. Первые производные:
производные обратных тригонометрических функций
Функция | Производная | Примечание |
---|---|---|
Доказательство Найти производную арксинуса можно при помощи взаимно обратных функций. |
||
Доказательство Найти производную арккосинуса можно при помощи данного тождества: |
||
Доказательство Найти производную арктангенса можно при помощи взаимнообратной функции: |
||
Доказательство Найти производную арккотангенса можно при помощи данного тождества: |
||
Доказательство Найти производную арксеканса можно при помощи тождества:
Теперь находим производную обеих частей этого тождества.
Получается.
|
||
Доказательство Найти производную арккосеканса можно при помощи данного тождества: |
Интегралы от обратных тригонометрических функций[править | править код]
Неопределённые интегралы[править | править код]
Для действительных и комплексных x:
Для действительных x ≥ 1:
- См. также Список интегралов от обратных тригонометрических функций
Использование в геометрии[править | править код]
Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например, с помощью теоремы косинусов.
В прямоугольном треугольнике эти функции от отношений сторон сразу дают угол.
Так, если катет длины является противолежащим для угла , то
Связь с натуральным логарифмом[править | править код]
Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:
См. также[править | править код]
- Обратные гиперболические функции
- Теорема Данжуа — Лузина
Примечания[править | править код]
Ссылки[править | править код]
- Weisstein, Eric W. Обратные тригонометрические функции (англ.) на сайте Wolfram MathWorld.
- Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: «Советская Энциклопедия», 1982. — [dic.academic.ru/dic.nsf/enc_mathematics/3612/%D0%9E%D0%91%D0%A0%D0%90%D0%A2%D0%9D%D0%AB%D0%95 Т. 3. — с. 1135].
- Обратные тригонометрические функции — статья из Большой советской энциклопедии. — М.: «Советская Энциклопедия», 1974. — Т. 18. — с. 225.
- Обратные тригонометрические функции // Энциклопедический словарь юного математика / Савин А.П. — М.: Педагогика, 1985. — С. 220—221. — 352 с.
- Построение графиков обратных тригонометрических функций онлайн
- Онлайн калькулятор: обратные тригонометрические функции
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных доменов
|
Арктангенс(y = arctg(x)) – это обратная тригонометрическая функция к тангенсу x = tg(y). Область определения -∞ ≤ x ≤ +∞ и множество значений -π/2 ≤ y ≤ +π/2.
arctg(0) = 0° | arctg(-1.732050808) = 120° | arctg(1.732050808) = 240° |
arctg(0.01745506493) = 1° | arctg(-1.664279482) = 121° | arctg(1.804047755) = 241° |
arctg(0.03492076949) = 2° | arctg(-1.600334529) = 122° | arctg(1.880726465) = 242° |
arctg(0.05240777928) = 3° | arctg(-1.539864964) = 123° | arctg(1.962610506) = 243° |
arctg(0.06992681194) = 4° | arctg(-1.482560969) = 124° | arctg(2.050303842) = 244° |
arctg(0.08748866353) = 5° | arctg(-1.428148007) = 125° | arctg(2.144506921) = 245° |
arctg(0.1051042353) = 6° | arctg(-1.37638192) = 126° | arctg(2.246036774) = 246° |
arctg(0.1227845609) = 7° | arctg(-1.327044822) = 127° | arctg(2.355852366) = 247° |
arctg(0.1405408347) = 8° | arctg(-1.279941632) = 128° | arctg(2.475086853) = 248° |
arctg(0.1583844403) = 9° | arctg(-1.234897157) = 129° | arctg(2.605089065) = 249° |
arctg(0.1763269807) = 10° | arctg(-1.191753593) = 130° | arctg(2.747477419) = 250° |
arctg(0.1943803091) = 11° | arctg(-1.150368407) = 131° | arctg(2.904210878) = 251° |
arctg(0.2125565617) = 12° | arctg(-1.110612515) = 132° | arctg(3.077683537) = 252° |
arctg(0.2308681911) = 13° | arctg(-1.07236871) = 133° | arctg(3.270852618) = 253° |
arctg(0.2493280028) = 14° | arctg(-1.035530314) = 134° | arctg(3.487414444) = 254° |
arctg(0.2679491924) = 15° | arctg(-1) = 135° | arctg(3.732050808) = 255° |
arctg(0.2867453858) = 16° | arctg(-0.9656887748) = 136° | arctg(4.010780934) = 256° |
arctg(0.3057306815) = 17° | arctg(-0.9325150861) = 137° | arctg(4.331475874) = 257° |
arctg(0.3249196962) = 18° | arctg(-0.9004040443) = 138° | arctg(4.704630109) = 258° |
arctg(0.3443276133) = 19° | arctg(-0.8692867378) = 139° | arctg(5.144554016) = 259° |
arctg(0.3639702343) = 20° | arctg(-0.8390996312) = 140° | arctg(5.67128182) = 260° |
arctg(0.383864035) = 21° | arctg(-0.8097840332) = 141° | arctg(6.313751515) = 261° |
arctg(0.4040262258) = 22° | arctg(-0.7812856265) = 142° | arctg(7.115369722) = 262° |
arctg(0.4244748162) = 23° | arctg(-0.7535540501) = 143° | arctg(8.144346428) = 263° |
arctg(0.4452286853) = 24° | arctg(-0.726542528) = 144° | arctg(9.514364454) = 264° |
arctg(0.4663076582) = 25° | arctg(-0.7002075382) = 145° | arctg(11.4300523) = 265° |
arctg(0.4877325886) = 26° | arctg(-0.6745085168) = 146° | arctg(14.30066626) = 266° |
arctg(0.5095254495) = 27° | arctg(-0.6494075932) = 147° | arctg(19.08113669) = 267° |
arctg(0.5317094317) = 28° | arctg(-0.6248693519) = 148° | arctg(28.63625328) = 268° |
arctg(0.5543090515) = 29° | arctg(-0.600860619) = 149° | arctg(57.28996163) = 269° |
arctg(0.5773502692) = 30° | arctg(-0.5773502692) = 150° | arctg(∞) = 270° |
arctg(0.600860619) = 31° | arctg(-0.5543090515) = 151° | arctg(-57.28996163) = 271° |
arctg(0.6248693519) = 32° | arctg(-0.5317094317) = 152° | arctg(-28.63625328) = 272° |
arctg(0.6494075932) = 33° | arctg(-0.5095254495) = 153° | arctg(-19.08113669) = 273° |
arctg(0.6745085168) = 34° | arctg(-0.4877325886) = 154° | arctg(-14.30066626) = 274° |
arctg(0.7002075382) = 35° | arctg(-0.4663076582) = 155° | arctg(-11.4300523) = 275° |
arctg(0.726542528) = 36° | arctg(-0.4452286853) = 156° | arctg(-9.514364454) = 276° |
arctg(0.7535540501) = 37° | arctg(-0.4244748162) = 157° | arctg(-8.144346428) = 277° |
arctg(0.7812856265) = 38° | arctg(-0.4040262258) = 158° | arctg(-7.115369722) = 278° |
arctg(0.8097840332) = 39° | arctg(-0.383864035) = 159° | arctg(-6.313751515) = 279° |
arctg(0.8390996312) = 40° | arctg(-0.3639702343) = 160° | arctg(-5.67128182) = 280° |
arctg(0.8692867378) = 41° | arctg(-0.3443276133) = 161° | arctg(-5.144554016) = 281° |
arctg(0.9004040443) = 42° | arctg(-0.3249196962) = 162° | arctg(-4.704630109) = 282° |
arctg(0.9325150861) = 43° | arctg(-0.3057306815) = 163° | arctg(-4.331475874) = 283° |
arctg(0.9656887748) = 44° | arctg(-0.2867453858) = 164° | arctg(-4.010780934) = 284° |
arctg(1) = 45° | arctg(-0.2679491924) = 165° | arctg(-3.732050808) = 285° |
arctg(1.035530314) = 46° | arctg(-0.2493280028) = 166° | arctg(-3.487414444) = 286° |
arctg(1.07236871) = 47° | arctg(-0.2308681911) = 167° | arctg(-3.270852618) = 287° |
arctg(1.110612515) = 48° | arctg(-0.2125565617) = 168° | arctg(-3.077683537) = 288° |
arctg(1.150368407) = 49° | arctg(-0.1943803091) = 169° | arctg(-2.904210878) = 289° |
arctg(1.191753593) = 50° | arctg(-0.1763269807) = 170° | arctg(-2.747477419) = 290° |
arctg(1.234897157) = 51° | arctg(-0.1583844403) = 171° | arctg(-2.605089065) = 291° |
arctg(1.279941632) = 52° | arctg(-0.1405408347) = 172° | arctg(-2.475086853) = 292° |
arctg(1.327044822) = 53° | arctg(-0.1227845609) = 173° | arctg(-2.355852366) = 293° |
arctg(1.37638192) = 54° | arctg(-0.1051042353) = 174° | arctg(-2.246036774) = 294° |
arctg(1.428148007) = 55° | arctg(-0.08748866353) = 175° | arctg(-2.144506921) = 295° |
arctg(1.482560969) = 56° | arctg(-0.06992681194) = 176° | arctg(-2.050303842) = 296° |
arctg(1.539864964) = 57° | arctg(-0.05240777928) = 177° | arctg(-1.962610506) = 297° |
arctg(1.600334529) = 58° | arctg(-0.03492076949) = 178° | arctg(-1.880726465) = 298° |
arctg(1.664279482) = 59° | arctg(-0.01745506493) = 179° | arctg(-1.804047755) = 299° |
arctg(1.732050808) = 60° | arctg(0) = 180° | arctg(-1.732050808) = 300° |
arctg(1.804047755) = 61° | arctg(0.01745506493) = 181° | arctg(-1.664279482) = 301° |
arctg(1.880726465) = 62° | arctg(0.03492076949) = 182° | arctg(-1.600334529) = 302° |
arctg(1.962610506) = 63° | arctg(0.05240777928) = 183° | arctg(-1.539864964) = 303° |
arctg(2.050303842) = 64° | arctg(0.06992681194) = 184° | arctg(-1.482560969) = 304° |
arctg(2.144506921) = 65° | arctg(0.08748866353) = 185° | arctg(-1.428148007) = 305° |
arctg(2.246036774) = 66° | arctg(0.1051042353) = 186° | arctg(-1.37638192) = 306° |
arctg(2.355852366) = 67° | arctg(0.1227845609) = 187° | arctg(-1.327044822) = 307° |
arctg(2.475086853) = 68° | arctg(0.1405408347) = 188° | arctg(-1.279941632) = 308° |
arctg(2.605089065) = 69° | arctg(0.1583844403) = 189° | arctg(-1.234897157) = 309° |
arctg(2.747477419) = 70° | arctg(0.1763269807) = 190° | arctg(-1.191753593) = 310° |
arctg(2.904210878) = 71° | arctg(0.1943803091) = 191° | arctg(-1.150368407) = 311° |
arctg(3.077683537) = 72° | arctg(0.2125565617) = 192° | arctg(-1.110612515) = 312° |
arctg(3.270852618) = 73° | arctg(0.2308681911) = 193° | arctg(-1.07236871) = 313° |
arctg(3.487414444) = 74° | arctg(0.2493280028) = 194° | arctg(-1.035530314) = 314° |
arctg(3.732050808) = 75° | arctg(0.2679491924) = 195° | arctg(-1) = 315° |
arctg(4.010780934) = 76° | arctg(0.2867453858) = 196° | arctg(-0.9656887748) = 316° |
arctg(4.331475874) = 77° | arctg(0.3057306815) = 197° | arctg(-0.9325150861) = 317° |
arctg(4.704630109) = 78° | arctg(0.3249196962) = 198° | arctg(-0.9004040443) = 318° |
arctg(5.144554016) = 79° | arctg(0.3443276133) = 199° | arctg(-0.8692867378) = 319° |
arctg(5.67128182) = 80° | arctg(0.3639702343) = 200° | arctg(-0.8390996312) = 320° |
arctg(6.313751515) = 81° | arctg(0.383864035) = 201° | arctg(-0.8097840332) = 321° |
arctg(7.115369722) = 82° | arctg(0.4040262258) = 202° | arctg(-0.7812856265) = 322° |
arctg(8.144346428) = 83° | arctg(0.4244748162) = 203° | arctg(-0.7535540501) = 323° |
arctg(9.514364454) = 84° | arctg(0.4452286853) = 204° | arctg(-0.726542528) = 324° |
arctg(11.4300523) = 85° | arctg(0.4663076582) = 205° | arctg(-0.7002075382) = 325° |
arctg(14.30066626) = 86° | arctg(0.4877325886) = 206° | arctg(-0.6745085168) = 326° |
arctg(19.08113669) = 87° | arctg(0.5095254495) = 207° | arctg(-0.6494075932) = 327° |
arctg(28.63625328) = 88° | arctg(0.5317094317) = 208° | arctg(-0.6248693519) = 328° |
arctg(57.28996163) = 89° | arctg(0.5543090515) = 209° | arctg(-0.600860619) = 329° |
arctg(∞) = 90° | arctg(0.5773502692) = 210° | arctg(-0.5773502692) = 330° |
arctg(-57.28996163) = 91° | arctg(0.600860619) = 211° | arctg(-0.5543090515) = 331° |
arctg(-28.63625328) = 92° | arctg(0.6248693519) = 212° | arctg(-0.5317094317) = 332° |
arctg(-19.08113669) = 93° | arctg(0.6494075932) = 213° | arctg(-0.5095254495) = 333° |
arctg(-14.30066626) = 94° | arctg(0.6745085168) = 214° | arctg(-0.4877325886) = 334° |
arctg(-11.4300523) = 95° | arctg(0.7002075382) = 215° | arctg(-0.4663076582) = 335° |
arctg(-9.514364454) = 96° | arctg(0.726542528) = 216° | arctg(-0.4452286853) = 336° |
arctg(-8.144346428) = 97° | arctg(0.7535540501) = 217° | arctg(-0.4244748162) = 337° |
arctg(-7.115369722) = 98° | arctg(0.7812856265) = 218° | arctg(-0.4040262258) = 338° |
arctg(-6.313751515) = 99° | arctg(0.8097840332) = 219° | arctg(-0.383864035) = 339° |
arctg(-5.67128182) = 100° | arctg(0.8390996312) = 220° | arctg(-0.3639702343) = 340° |
arctg(-5.144554016) = 101° | arctg(0.8692867378) = 221° | arctg(-0.3443276133) = 341° |
arctg(-4.704630109) = 102° | arctg(0.9004040443) = 222° | arctg(-0.3249196962) = 342° |
arctg(-4.331475874) = 103° | arctg(0.9325150861) = 223° | arctg(-0.3057306815) = 343° |
arctg(-4.010780934) = 104° | arctg(0.9656887748) = 224° | arctg(-0.2867453858) = 344° |
arctg(-3.732050808) = 105° | arctg(1) = 225° | arctg(-0.2679491924) = 345° |
arctg(-3.487414444) = 106° | arctg(1.035530314) = 226° | arctg(-0.2493280028) = 346° |
arctg(-3.270852618) = 107° | arctg(1.07236871) = 227° | arctg(-0.2308681911) = 347° |
arctg(-3.077683537) = 108° | arctg(1.110612515) = 228° | arctg(-0.2125565617) = 348° |
arctg(-2.904210878) = 109° | arctg(1.150368407) = 229° | arctg(-0.1943803091) = 349° |
arctg(-2.747477419) = 110° | arctg(1.191753593) = 230° | arctg(-0.1763269807) = 350° |
arctg(-2.605089065) = 111° | arctg(1.234897157) = 231° | arctg(-0.1583844403) = 351° |
arctg(-2.475086853) = 112° | arctg(1.279941632) = 232° | arctg(-0.1405408347) = 352° |
arctg(-2.355852366) = 113° | arctg(1.327044822) = 233° | arctg(-0.1227845609) = 353° |
arctg(-2.246036774) = 114° | arctg(1.37638192) = 234° | arctg(-0.1051042353) = 354° |
arctg(-2.144506921) = 115° | arctg(1.428148007) = 235° | arctg(-0.08748866353) = 355° |
arctg(-2.050303842) = 116° | arctg(1.482560969) = 236° | arctg(-0.06992681194) = 356° |
arctg(-1.962610506) = 117° | arctg(1.539864964) = 237° | arctg(-0.05240777928) = 357° |
arctg(-1.880726465) = 118° | arctg(1.600334529) = 238° | arctg(-0.03492076949) = 358° |
arctg(-1.804047755) = 119° | arctg(1.664279482) = 239° | arctg(-0.01745506493) = 359° |