Как найти расстояние до звезды зная параллакс

Меня часто спрашивают – как мы узнаем расстояния до далеких звезд? Вот например есть звезда на расстоянии 100 световых лет, как мы узнали, что расстояние именно такое? В этой статье я расскажу об очень старом методе, определения расстояния до звезд. Этот метод называется метод годичного звездного параллакса.

Источник: ifa.hawaii.edu
Источник: ifa.hawaii.edu

История

Параллакс (от греческого παραλλάξ – чередование) – это изменение местоположения неподвижного наблюдаемого объекта в зависимости от положения наблюдателя. Впервые использовать параллакс для определения дальности до звезд предложил еще древнегреческий ученый Аристарх Самосский, однако он используя доступные ему способы наблюдения не смог обнаружить видимого параллакса ни у одной из наблюдаемых звезд. Отсутствие параллакса он вполне справедливо объяснил тем, что звезды находятся очень далеко для того, чтобы их параллакс можно было обнаружить.

Памятник Аристарху Самосскому. Источник: wikipedia.org
Памятник Аристарху Самосскому. Источник: wikipedia.org

Сама идея о том, что параллакс можно использовать для этой цели явилась следствием идеи о том, что Земля вращается вокруг Солнца. К сожалению вскоре Европа погрузилась в темные века и почти две тысячи лет господствовала геоцентрическая система мира. Отсутствие параллакса считалось одним из доказательств того, что Земля НЕ вращается вокруг Солнца.

В 17-м веке некоторые астрономы заявляли о том, что им удалось засечь параллакс некоторых звезд, однако скорее всего это объясняется ошибками и неточностями измерений. Техника, которая была в их распоряжении была слишком неточна для того, чтобы с ее помощью можно было определить параллакс.

Василий Яковлевич Струве. Источник: wikipedia.org
Василий Яковлевич Струве. Источник: wikipedia.org

Первым точно определить параллакс звезд удалось русскому астроному Василию Яковлевичу Струве в 1837-м году. Вскоре его успех повторили немецкий астроном Фридрих Бессель и англичанин Томас Хендерсон. Однако на тот момент измерения были все еще очень не точны – разница в измерении параллакса одной и той же звезды могли отличаться на 20-30 процентов! С появлением фотографии наметился большой прогресс – до появления фотографии астрономы зарисовывали то, что видели в телескоп, это вело к ошибкам и неточностям. Сейчас для таких измерений используется метод сверхдальней радиоинтерферометрии что обеспечивает очень точные измерения.

Использование параллакса для определения расстояния до звезд

Зная расстояние между точками наблюдения и угол параллакса довольно легко определить расстояние до объекта.

Как астрономы узнают расстояние до звезд?

С помощью геометрии школьного уровня это расстояние вычисляется как расстояние между точками наблюдения (L) деленное на удвоенный синус половины угла параллакса (α).

В качестве точек измерения параллакса обычно избираются противоположные точки орбиты Земли.

Источник: wikipedia.org
Источник: wikipedia.org

Как мы видим, позиции Земли по разные стороны от Солнца и исследуемая звезда образуют различные треугольники. Медиана этого треугольника (т.е. линия соединяющая исследуемую звезду и Солнце) и есть искомым расстоянием.

Источник: wikipedia.org
Источник: wikipedia.org

В общем случае вычисление расстояния r до звезды сводится к решению прямоугольного треугольника в котором расстояние от земли до солнца является катетом, а расстояние от Солнца до звезды либо вторым катетом (в случае если звезда расположена вблизи полюса эклиптики – рисунок справа) или гипотенузой (в случае если звезда близка к плоскости эклиптики – рисунок слева)

Благодаря методу параллакса появилась такая внесистемная единица измерения астрономических расстояний как парсек (сокращенно – паралкс-секунда). Парсек – это расстояние до звезды параллакс которой равен 1 угловой секунде, парсек примерно равен 3.26 световых лет.

P.S. Вообще существуют и другие методы измерения расстояний до звезд и галактик в частности с использованием спектрального анализа (так называемый спектральный параллакс), с использованием последовательностей Талли-Фишера и Фабер-Джексона и другие, но в этой статье я специально остановился на самом базовом и простом для понимания методе.

Подписывайтесь на мой канал здесь, а также на мой канал в телеграме. Там вы можете почитать большое количество интересных материалов, а также задать свой вопрос.

Наше Солнце справедливо называют типичной звездой, но среди огромного многообразия мира звёзд есть немало таких, которые значительно отличаются от него по физическим характеристикам. Поэтому более полное представление о звёздах даёт такое определение:

звезда — это пространственно обособленный, гравитационно связанный, непрозрачный для излучения космический объект, в котором в значительных масштабах происходили, происходят или будут происходить термоядерные реакции превращения водорода в гелий.

Солнце существует уже несколько миллиардов лет и мало изменилось за это время, поскольку в его недрах всё ещё происходят термоядерные реакции, в результате которых из четырёх протонов (ядер водорода) образуется альфа-частица (ядро гелия, состоящее из двух протонов и двух нейтронов). Более массивные звёзды расходуют запасы водорода значительно быстрее (за десятки миллионов лет). После того как водород израсходован, начинаются реакции между ядрами гелия с образованием устойчивого изотопа углерода-12 и другие реакции, продуктами которых являются кислород и тяжёлые элементы (натрий, сера, магний и т. д.). Таким образом, в недрах звёзд образуются ядра многих химических элементов, вплоть до железа.

У наиболее массивных звёзд прекращение всех возможных термоядерных реакций сопровождается мощным взрывом, который наблюдается как вспышка сверхновой звезды.

Все элементы, которые входят в состав нашей планеты и всего живого на ней, образовались в результате термоядерных реакций, происходивших в звёздах, поэтому звёзды не только самые распространённые во Вселенной объекты, но и самые важные для понимания происходящих в ней явлений и процессов.

Именно термоядерные реакции являются характерной отличительной особенностью звёзд от планет. Поэтому современное определение планеты формулируется так:

планета — небесное тело, обращающееся вокруг звезды или остатка звезды, достаточно массивное, чтобы приобрести сферическую форму под действием собственной гравитации, и своим воздействием удалившее малые тела с орбиты, близкой к собственной, но при этом в её недрах не происходят и никогда не происходили реакции термоядерного синтеза.

Мысли о том, что звёзды — это далёкие солнца, высказывались ещё в глубокой древности. Однако долгое время оставалось неясным, как далеко они находятся от Земли. Ещё Аристотель понимал, что если Земля движется, то, наблюдая положение какой-либо звезды из двух диаметрально противоположных точек земной орбиты, можно заметить, что направление на звезду изменится (рис. 5.12). Это кажущееся (параллактическое) смещение звезды будет служить мерой расстояния до неё: чем оно больше, тем ближе к нам расположена звезда. Но не только самому Аристотелю, но даже значительно позднее Копернику не удалось обнаружить это смещение. Только в конце первой половины XIX в., когда телескопы были оборудованы приспособлениями для точных угловых измерений, удалось измерить такое смещение у ближайших звёзд.

Рис. 5.12. Параллактическое смещение звезды

Рис. 5.13. Годичный параллакс звезды

Годичным параллаксом звезды p называется угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), перпендикулярную направлению на звезду (рис. 5.13).

Расстояние до звезды

D = ,

где a — большая полуось земной орбиты. Заменив синус малого угла величиной самого угла, выраженной в радианной мере, и приняв a = 1 а. е., получим следующую формулу для вычисления расстояния до звезды в астрономических единицах:

D = .

В 1837 г. впервые были осуществлены надёжные измерения годичного параллакса. Русский астроном Василий Яковлевич Струве (1793—1864) провёл эти измерения для ярчайшей звезды Северного полушария Веги (α Лиры). Почти одновременно в других странах определили параллаксы ещё двух звёзд, одной из которых была α Центавра. Эта звезда, которая с территории России не видна, оказалась ближайшей к нам. Даже у неё годичный параллакс составил всего 0,75ʺ. Под таким углом невооружённому глазу видна проволочка толщиной 1 мм с расстояния 280 м. Поэтому неудивительно, что столь малые угловые смещения так долго не могли заметить.

Расстояние до ближайшей звезды, параллакс которой p = 0,75ʺ, составляет D = = 270 000 а. е. Единицами для измерения столь значительных расстояний являются парсек и световой год.

Парсек — это такое расстояние, на котором параллакс звёзд равен 1ʺ. Отсюда и название этой единицы: пар — от слова «параллакс», сек — от слова «секунда». Расстояние в парсеках равно обратной величине годичного параллакса. Например, поскольку параллакс α Центавра равен 0,75ʺ, расстояние до неё равно 1,3 парсека.

Световой год — это такое расстояние, которое свет, распространяясь со скоростью 300 тыс. км/с, проходит за год. От ближайшей звезды свет идёт до Земли свыше четырёх лет, тогда как от Солнца около восьми минут, а от Луны немногим более одной секунды.

1 пк (парсек) = 3,26 светового года = 206 265 а. е. = 31013 км.

К настоящему времени с помощью специального спутника «Гиппаркос» измерены годичные параллаксы более 118 тыс. звёзд с точностью 0,001ʺ.

Таким образом, теперь измерением годичного параллакса можно надёжно определить расстояния до звёзд, удалённых от нас на 1000 пк, или 3000 св. лет. Расстояния до более далёких звёзд определяются другими методами.

После того как астрономы получили возможность определять расстояния до звёзд, выяснилось, что звёзды, находящиеся на одинаковом расстоянии, могут отличаться по видимой яркости (т. е. по блеску). Стало очевидно, что звёзды имеют различную светимость. Солнце кажется самым ярким объектом на небе только потому, что оно находится гораздо ближе всех остальных звёзд.

Светимостью называется полная энергия, излучаемая звездой в единицу времени.

Она выражается в абсолютных единицах (ваттах) или в единицах светимости Солнца.

В астрономии принято сравнивать звёзды по светимости, рассчитывая их блеск (звёздную величину) для одного и того же стандартного расстояния — 10 пк.

Видимая звёздная величина, которую имела бы звезда, если бы находилась от нас на расстоянии D0 = 10 пк, получила название абсолютной звёздной величины M.

Рассмотрим, как можно определить абсолютную звёздную величину M, зная расстояние до звезды D (или параллакс — p) и её видимую звёздную величину m. Напомним, что блеск двух источников, звёздные величины которых отличаются на единицу, отличается в 2,512 раза. Для звёзд, звёздные величины которых равны m1 и m2 соответственно, отношение их блесков I1 и I2 выражается соотношением:

I1 : I2 = .

Для видимой и абсолютной звёздных величин одной и той же звезды отношение блесков будет выглядеть так:

I : I0 = 2,512M – m,

где I0 — блеск этой звезды, если бы она находилась на расстоянии D0 = 10 пк.

В то же время известно, что блеск звезды меняется обратно пропорционально квадрату расстояния до неё. Поэтому

I : I0 = : D2.

Следовательно,

2,512M – m = : D2.

Логарифмируя это выражение, находим

0,4(M – m) = lg 102 – lg D2,

или

M = m + 5 – 5 lg D,

или

M = m + 5 + lg p.

Абсолютная звёздная величина Солнца M = 5m. Иначе говоря, с расстояния 10 пк наше Солнце выглядело бы как звезда пятой звёздной величины.

Зная абсолютную звёздную величину звезды M, легко вычислить её светимость L. Считая светимость Солнца L = 1, получаем:

L = 2,5125 – M,

или

lg L = 0,4(5 – M).

По светимости (мощности излучения) звёзды значительно отличаются друг от друга: некоторые излучают энергию в сотни тысяч раз больше, чем Солнце, другие — в десятки тысяч раз меньше. Абсолютные звёздные величины звёзд наиболее высокой светимости (гигантов и сверхгигантов) достигают M = –9m, а звёзды-карлики, обладающие наименьшей светимостью, имеют абсолютную звёздную величину M = +17m.

Всю информацию о звёздах можно получить только на основе исследования приходящего от них излучения. Наблюдая звёзды, можно заметить, что они имеют различный цвет. Хорошо известно, что цвет любого нагретого тела, в частности звезды, зависит от его температуры. Более полное представление об этой зависимости даёт изучение звёздных спектров. Для большинства звёзд это спектры поглощения, в которых на фоне непрерывного спектра наблюдаются тёмные линии.

Температуру наружных слоёв звезды, от которых приходит излучение, определяют по распределению энергии в непрерывном спектре (рис. 5.14), а также по интенсивности разных спектральных линий. Длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. По мере увеличения температуры положение максимума смещается от красного к фиолетовому концу спектра. Количественно эта зависимость выражается законом Ви́на:

λmax = ,

где λmax — длина волны (в см), на которую приходится максимум излучения, а T — абсолютная температура.

Рис. 5.14. Распределение энергии в непрерывном спектре Солнца и чёрного тела при различных температурах

Как оказалось, эта температура для различных типов звёзд заключена в пределах от 2500 до 50 000 К. Изменение температуры меняет состояние атомов и молекул в атмосферах звёзд, что отражается в их спектрах. По ряду характерных особенностей спектров звёзды разделены на спектральные классы, которые обозначены латинскими буквами и расположены в порядке, соответствующем убыванию температуры: O, B, A, F, G, K, M.

У наиболее холодных (красных) звёзд класса M в спектрах наблюдаются линии поглощения некоторых двухатомных молекул (например, оксидов титана, циркония и углерода). Примерами звёзд, температура которых около 3000 К, являются Антарес и Бетельгейзе.

В спектрах жёлтых звёзд класса G с температурой около 6000 К, к которым относится и Солнце, преобладают линии металлов: железа, натрия, кальция и т. д. По температуре, спектру и цвету сходна с Солнцем звезда Капелла.

Для спектров белых звёзд класса A, которые имеют температуру около 10 000 К (Вега, Денеб и Сириус), наиболее характерны линии водорода и множество слабых линий ионизованных металлов. В спектрах наиболее горячих звёзд появляются линии нейтрального и ионизованного гелия.

Различия звёздных спектров объясняются отнюдь не разнообразием их химического состава, а различием температуры и других физических условий в атмосферах звёзд. Изучение спектров показывает, что преобладают в составе звёздных атмосфер (и звёзд в целом) водород и гелий. На долю всех остальных химических элементов приходится не более нескольких процентов.

Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения. Если источник излучения (звезда или любой другой объект) приближается к наблюдателю или удаляется от него со скоростью v, то наблюдатель будет регистрировать изменение длины волны принимаемого излучения. В случае уменьшения расстояния между наблюдателем и звездой длина волны уменьшается и соответствующая линия смещается к сине-фиолетовому концу спектра. При удалении звезды длина волны излучения увеличивается, а линия смещается в красную его часть. Это явление получило название эффекта Доплера, согласно которому зависимость разности длин волн от скорости источника по лучу зрения v и скорости света c выражается следующей формулой:

= ,

где λ0 — длина волны спектральной линии для неподвижного источника, а λ — длина волны в спектре движущегося источника.

Эффект Доплера наблюдается в оптической и других областях спектра и широко используется в астрономии.

Полученные данные о светимости и спектрах звёзд уже в начале XX в. были сопоставлены двумя астрономами — Эйнаром Герцшпрунгом (Голландия) и Генри Расселлом (США) — и представлены в виде диаграммы, которая получила название «диаграмма Герцшпрунга—Расселла». Если по горизонтальной оси отложены спектральные классы (температура) звёзд, а по вертикальной — их светимости (абсолютные звёздные величины), то каждой звезде будет соответствовать определённая точка на этой диаграмме (рис. 5.15). В результате обнаруживается определённая закономерность в расположении звёзд на диаграмме — они не заполняют всё её поле, а образуют несколько групп, названных последовательностями. Наиболее многочисленной (примерно 90% всех звёзд) оказалась главная последовательность, к числу звёзд которой принадлежит наше Солнце (его положение отмечено на диаграмме кружочком). Звёзды этой последовательности отличаются друг от друга по светимости и температуре, и взаимосвязь этих характеристик соблюдается весьма строго: самую высокую светимость имеют наиболее горячие звёзды, а по мере уменьшения температуры светимость падает. Красные звёзды малой светимости получили название красных карликов. Вместе с тем на диаграмме существуют и другие последовательности, где подобная закономерность не соблюдается. Особенно заметно это среди более холодных (красных) звёзд: помимо звёзд, принадлежащих главной последовательности и потому имеющих малую светимость, на диаграмме представлены звёзды высокой светимости, которая практически не меняется при изменении их температуры. Такие звёзды принадлежат двум последовательностям (гиганты и сверхгиганты), получившим эти названия вследствие своей светимости, которая значительно превосходит светимость Солнца. Особое место на диаграмме занимают горячие звёзды малой светимости — белые карлики.

Рис. 5.15. Диаграмма «спектр — светимость»

Лишь к концу XX в., когда объём знаний о физических процессах, происходящих в звёздах, существенно увеличился и стали понятными пути их эволюции, удалось найти теоретическое обоснование тем эмпирическим закономерностям, которые отражает диаграмма «спектр — светимость».

Какова светимость звезды ξ Скорпиона, если её звёздная величина 3m, а расстояние до неё 7500 св. лет?

Дано:

m = 3m

D = 7500 св. лет

Решение:

lg L = 0,4(5 – M).

M = m + 5 – 5 lg D, где D = 7500 : 3,26 = 2300 пк.

Тогда M = 3 + 5 – 5 lg 2300 = –8,8.

lg L = 0,4[5 – (–8,8)] = 5,52.

L — ?

Отсюда L = 330 000.

Ответ: L = 330 000.

Вопросы1. Как определяют расстояния до звёзд? 2. От чего зависит цвет звезды? 3. В чём главная причина различия спектров звёзд? 4. От чего зависит светимость звезды?

Упражнение 181. Во сколько раз Сириус ярче, чем Альдебаран; Солнце ярче, чем Сириус? 2. Одна звезда ярче другой в 16 раз. Чему равна разность их звёздных величин? 3. Параллакс Веги 0,11ʺ. Сколько времени идёт свет от неё до Земли? 4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе? 5. Во сколько раз звезда 3,4 звёздной величины слабее, чем Сириус, имеющий звёздную величину –1,6? Чему равны абсолютные величины этих звёзд, если расстояние до каждой составляет 3 пк?

Наше Солнце справедливо называют типичной звездой. Но среди
большого и разнообразного числа звёзд есть немало таких, которые значительно
отличаются от него по своим физическим характеристикам и химическому составу.
Поэтому полное представление о звёздах даст такое определение:

Звезда — это массивный газовый шар, излучающий свет и
удерживаемый в состоянии равновесия силами собственной гравитации и внутренним
давлением, в недрах которого происходят (или происходили ранее) реакции
термоядерного синтеза.

Мысли о том, что звёзды — это далёкие солнца, высказывались
ещё в глубокой древности. Но из-за колоссальных расстояний до них диски звёзд
не видны даже в самые мощные телескопы. Поэтому, чтобы найти возможность
сравнивать звёзды между собой и с Солнцем, необходимо было придумать способы
определения расстояний до них.

Ещё Аристотель предполагал, что если Земля движется вокруг
Солнца, то, наблюдая за звездой из двух диаметрально противоположных точек
земной орбиты, можно заметить изменение направления на звезду — её параллактическое
(то есть кажущееся) смещение.

Такая же идея измерения расстояний была предложена и Николаем
Коперником после опубликования им гелиоцентрической системы мироустройства.
Однако ни Копернику, ни тем более Аристотелю не удалось обнаружить это
смещение.

Лишь к середине XIX века, когда на телескопы стали ставить оборудование для
точного измерения углов, удалось измерить такое смещение у ближайших звёзд. Как
удалось установить, кажущееся перемещение более близкой звезды на фоне очень
далёких звёзд происходит по эллипсу с периодом в один год и отражает движение
наблюдателя вместе с Землёй вокруг Солнца. Этот небольшой эллипс, который
описывает звезда, называется параллактическим эллипсом.

В угловой мере его большая полуось равна величине угла, под
которым со звезды видна большая полуось земной орбиты, перпендикулярная
направлению на звезду. Этот угол называется годичным параллаксом и
обозначается греческой буквой π или латинской буквой р.

Зная годичное параллактическое смещение звезды, можно легко
определить расстояние до неё:

В записанной формуле а — это
средний радиус земной орбиты.

Если учесть, что годичные параллаксы звёзд измеряются десятитысячными
долями секунды, а большая полуось земной орбиты равна одной астрономической
единице, то можно получить формулу для вычисления расстояния до звезды в
астрономических единицах:

Первые надёжные измерения годичного параллакса были
осуществлены почти одновременно в Германии, России и Англии в 1837 году.

В России первые измерения годичного параллакса были проведены
Василием Яковлевичем Струве для яркой звезды Северного полушария Веги. Давайте
по его данным определим расстояние до этой звезды.

Согласитесь, что для измерения расстояний до звёзд
астрономическая единица слишком мала. Даже ближайшая к нам звезда —
альфа-Центавра — расположена более чем в 273,5 тысячах а. е. Поэтому для
удобства определения расстояний до звёзд в астрономии применяется специальная
единица длины — парсек (сокращённо пк), название
которой происходит от двух слов — «параллакс» и «секунда».

Парсек — это расстояние, с которого средний радиус
земной орбиты, перпендикулярный лучу зрения, виден под углом в одну угловую
секунду:

1 пк
= 206 265 а. е. =30,8586 трлн км.

Исходя из определения, расстояние в парсеках равно обратной
величине годичного параллакса:

Вернёмся к нашей задаче и определим расстояние до Веги в
парсеках, воспользовавшись полученным нами уравнением.

Также, помимо парсека, в астрономии используется ещё одна
внесистемная единица измерения расстояний — световой год.

Световой год — это расстояние, которое свет,
распространяясь в вакууме, проходит за один год:

1 пк
= 3,26 св. г. = 206 265 а. е. = 3 ∙ 1013 км.

В 1989 году Европейским космическим агентством был запущен
спутник «Гиппаркос». За 37 месяцев своей работы ему удалось
измерить годичные параллаксы более чем миллиона звёзд. При этом точность
измерений для более ста тысяч из них составила одну угловую миллисекунду.

Однако после того, как астрономы научились определять
расстояния до звёзд, возникла ещё одна проблема. Оказалось, что звёзды,
находящиеся примерно на одинаковом расстоянии от Земли, могут отличаться друг
от друга по видимой яркости (блеску). При этом видимый блеск не характеризует
реального излучения звезды. Например, Солнце нам кажется самым ярким объектом
на небе лишь потому, что оно находится гораздо ближе к Земле, чем остальные
звёзды. Поэтому для сравнения истинного блеска звёзд необходимо было определять
их звёздную величину на определённом одинаковом расстоянии от Земли. За такое
одинаковое (или стандартное) расстояние принято 10 пк. Видимая звёздная величина, которую
имела бы звезда, если бы находилась от нас на расстоянии 10 пк,
называется абсолютной звёздной величиной.

Почему в качестве эталонного расстояния было выбрано 10
парсек? Да для простоты расчётов. Итак, предположим, что видимая звёздная
величина звезды на некотором расстоянии D равна т а её блеск — I.

Напомним, что блеск двух источников, звёздные величины
которых отличаются на единицу, отличаются в 2,512 раза. То есть для двух звёзд,
звёздные величины которых равны т1 и т2
соответственно, отношение их блесков выражается соотношением:

Тогда по определению видимая звёздная величина звезды с
расстояния в 10 пк будет равна абсолютной звёздной
величине М. Если обозначить блеск звезды на этом расстоянии через I0, то для
видимой и абсолютной звёздных величин одной и той же звезды предыдущее
уравнение будет выглядеть так:

В тоже время из физики известно, что блеск меняется обратно
пропорционально квадрату расстояния:

Подставим данное выражение в предыдущее уравнение, при этом
учтём, что :

Теперь прологарифмируем полученное выражение:

И упростим его:

Если учесть, что расстояние до звезды обратно пропорционально
её годичному параллаксу, то получим формулу, по которой можно вычислить
абсолютную звёздную величину близко расположенных к нам звёзд

Теперь давайте по полученной формуле рассчитаем абсолютную
звёздную величину нашего Солнца. Для этого учтём, что его видимая звёздная
величина равна–26,8т, а среднее расстояние до него составляет
одну астрономическую единицу

То есть наше Солнце выглядит слабой звёздочкой почти пятой
звёздной величины.

Зная абсолютную звёздную величину звезды, можно вычислить её
действительное общее излучение или светимость.

Светимостью называют полную энергию, излучаемую
звездой за единицу времени. Светимость звезды можно выразить в ваттах, но чаще
её выражают в светимостях Солнца.

Используя формулу Погсона, можно записать соотношение между светимостями
и абсолютными звёздными величинами какой-либо звезды и Солнца:

Данную формулу можно переписать, если учесть, что светимость
Солнца принята за единицу, а его абсолютна звёздная величина равна 4,8m:

По светимости (то есть мощности излучения) звёзды значительно
отличаются друг от друга. Так мощность излучения некоторых звёзд-сверхгигантов
больше мощности излучения Солнца в 330 тыс. А некоторые звёзды-карлики,
обладающие наименьшей светимостью, излучают свет в 480 тыс. раз слабее нашего
Солнца.

ПРАКТИЧЕСКАЯ РАБОТА

ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ ДО ЗВЕЗД

 МЕТОДОМ ГОДИЧНОГО ПАРАЛЛАКСА

Цели занятия:

1.     Научится определять расстояния до звёзд с
помощью годичного параллакса.

2.     Развить логического мышления, развитие умения
решать задачи.

3.     Формировать научное мировоззрение и
диалектическое мышление.

Ключевые слова: звезды, годовой параллакс, астрономическая
единица, парсек.

Теоретический материал

Астрономические единицы.

Поскольку расстояние между астрономическими объектами
(планетами, звёздами, галактиками),  огромны, пользоваться обычными единицами
длины – метры и километры – неудобно. Поэтому в астрономии приняты особые
единицы измерения расстояний: астрономическая единица, парсек и световой год.

Астрономическая единица (а.е.) равна среднему расстоянию от Земли до Солнца (149 600 000 км)

Парсек – расстояние, из которого а.е. (средний радиус орбиты
Земли) видна под углом 1” (секунда дуги): 1 пк = 206 265 а.е.
= 30 857 244 000 000 км = 3,08 ×
1013 км.

Световой год
это расстояние, которое преодолеет световой поток за время, равное
календарному  году:

1 св.год = 3 × 105 км/с × 365,25дней × 24часов × 3600 сек. = 9 467 280 000 000
км = 9,46 × 1012 км.

1 пс = 3,26 св.лет.

Годичный параллакс

Как измерить расстояние, если
до предмета не дотянуться ни линейкой, ни лучом локатора? На помощь приходит
метод триангуляции, широко применяемый в обычной земной геодезии.

Выбираем отрезок известной
длины – «базу»( на рисунке – точки А и С), измеряем из его концов углы, под
которыми видна недоступная по тем или иным причинам точка В, а затем простые
тригонометрические формулы дают искомое расстояние.

Когда мы переходим с одного
конца базы на другой, видимое направление на точку меняется, она сдвигается на
фоне далёких объектов. Это называется параллактическим смещением, или параллаксом.

 Величина параллакса тем
меньше, чем дальше объект, и тем больше, чем длиннее база.

 Для измерения
расстояний до звёзд приходится брать максимально доступную астрономам базу,
равную диаметру земной орбиты. Соответствующее параллактическое смещение звёзд
на небе (строго говоря, его половину) стали называть годичным параллаксом.

Годичным параллаксом звезды ρ
называется угол, под которым со звезды можно было бы видеть большую полуось
земной орбиты (равную 1 а. е.), перпендикулярную направлению на звезду.

Определить расстояние до
звезды можно, зная годовой параллакс ρ– угол, под которым со звезды был виден
радиус земной орбиты. Для этого звезду фотографируют с помощью телескопа через
каждые 6 месяцев, то есть из двух противоположных точек земной орбиты. На
фотографиях близкая звезда несколько меняет своё положение относительно других,
более удалённых. Если это смещение таково, что его можно измерить, то вычислив
соответствующий угол, можно рассчитать расстояние до звезды по формуле

где а – средний радиус земной
орбиты , D – расстояние до звезды ,

ρ – её годичный параллакс.

Если углы малые, то синус малого угла можно заменить
величиной самого угла в радианной мере:

 sin p ≈ p’’/206265. Тогда получаем: D = a∙206265/p’’, или

 в астрономических единицах.

Если расстояние нужно выразить в парсеках (1 пк = 206265
а.е.), то

 

Примеры решения

Задача №1:  

Годичный
параллакс самой близкой к нам звезды Проксима из созвездия  Кентавра – 0,762″.
Каково до неё расстояние (в пк, св.годах, км).

Дано:  ρ = 0,762″         Решение:    Dпс  = 1 / ρ = 1 / 0,762 пк = 1,31 пк ,

Dпс – ?                                     Dсвг = 3,26 св.лет × 1,31 = 4,27 св.лет ,

Dсв.г – ?                                    Dr  =
4,27 × 9,46 × 1012 км = 40,39 × 1012 км,

D – ?                            или      D  = 1,31 × 3,08 × 1013 км = 40,39 × 1012 км.

Задача
№2: 

Найти расстояние до звезды Альдебаран (α созвездия Телец) , имеющей
годичный параллакс 0,05″. Выразите это расстояние в парсеках, световых годах и
километрах.

Дано:  ρ = 0,05″       Решение:         D пс   = 1 / ρ  =
1 / 0,05 пк = 20пк ,

D пс – ?                            D свг. = 3,26 св.лет × 20 = 65,2 св.лет ,

Dсв.г – ?                            D      =
65,2 × 9,46 × 1012 км = 616,792 × 1012 км.

D – ?                            

ПРАКТИЧЕСКОЕ
ЗАДАНИЕ

Задача №1. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария Арктура (α в
созвездии Волопаса) если известно, что её параллакс равен 88.83 угловым
миллисекундам.

Задача №2. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария Канопус (α в
созвездии Киля) если известно, что её параллакс равен 10.55 угловым
миллисекундам.

Задача №3. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Ригель
Кентаурус (α в созвездии  Центавра A) если известно, что её параллакс равен
754,81 угловым миллисекундам

Задача №4. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Сириус (α в
созвездии  Большого Пса) если известно, что её параллакс равен 379,21 угловым
миллисекундам

Задача №5. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Вега (α в
созвездии  Лиры)  если известно, что её параллакс равен 130,23 угловым миллисекундам

Задача №6. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Капелла (α в
созвездии  Возничего) если известно, что её параллакс равен 76,2 угловым
миллисекундам

Задача №7. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Ригель (β в
созвездии  Ориона) если известно, что её параллакс равен 3,78 угловым
миллисекундам.

Задача №8. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Альтаир  (α в созвездии  Орла) если известно, что её параллакс
равен 194,95 угловым миллисекундам.

Задача №9. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Антарес (α в
созвездии  Скорпиона) если известно, что её параллакс равен 5,89 угловым
миллисекундам

Задача №10. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Альдебаран
(α в созвездии  Тельца)   если известно, что её параллакс равен 49,97 угловым
миллисекундам.

Задача №11. Рассчитать расстояние в
световых годах до яркой звезды звёздного неба северного полушария  Денеб (α в
созвездии  Лебедь)   если известно, что её параллакс равен 0,003 угловым
миллисекундам

Литература.

Астрономия.
Учебник для 10 класса средней школы. (Издание 15-ое). Издательство: Москва
“Просвещение” Год: 1983., 145 страниц.

Калькулятор
параллакса и расстояний онлайн _

https://www.translatorscafe.com/unit-converter/ru-RU/calculator/parallax-distance/

Ответы

1

11,257
парс

36,72 СГ

3,47*1014
км

2

94,787
парс

309,15 СГ

2,92*1015
км

3

1,325
парс

4,32 СГ

4,09*1013
км

4

2,637
парс

8,6 СГ

8,14*1013
км

5

7,679
парс

25,04 СГ

2,37*1014
км

6

13,123
парс

42,8 СГ

4,05*1014
км

7

264,55
парс

862,85 СГ

8,16*1015
км

8

5,13 парс

16,73 СГ

1,58*1014
км

9

169,779
парс

553,75 СГ

5,24*1015
км

10

20,012
парс

65,27 СГ

6,18*1014
км

11

333,333
парс

1087,19
СГ

1,03*1016
км

Расстояния до удаленных небесных объектов, например, звезд, недоступны для прямого измерения. Их вычисляют, опираясь на измеряемые параметры этих объектов, такие как блеск звезды или периодическое изменение ее координат. В настоящее время разработано несколько методов вычисления звездных расстояний, и каждый из них имеет свои границы применимости. Рассмотрим подробнее, как ученые определяют расстояние до звезд.

Использование параллакса

Параллаксом называют смещение наблюдаемого объекта относительно удаленного фона при изменении положения наблюдателя. Зная расстояние между точками наблюдения (базис параллакса) и величину углового смещения объекта, несложно рассчитать расстояние до него. Чем меньше величина смещения, тем дальше находится объект. Межзвездные расстояния огромны, и, чтобы увеличить угол, используют максимально большой базис – для этого измеряют положение звезды в противоположных точках земной орбиты. Этот метод называется звездным годичным параллаксом.

Теперь легко понять, как измеряют расстояние до звезд методом годичного параллакса. Оно вычисляется как одна из сторон треугольника, образованного наблюдателем, Солнцем и удаленной звездой, и равно r = a/sin p, где: r – расстояние до звезды, а – расстояние от Земли до Солнца и p – годичный параллакс звезды. Поскольку параллаксы всех звезд меньше 1 угловой секунды (1’’), синус малого угла можно заменить величиной самого угла в радианной мере: sin p ≈ p’’/206265. Тогда получаем: r = a∙206265/p’’, или, в астрономических единицах, r = 206265/p’’.

Годичный звездный параллакс

Единицы межзвездных расстояний

Понятно, что полученная формула неудобна, как и выражение колоссальных расстояний в километрах или астрономических единицах. Поэтому в качестве общепринятой единицы в звездной астрономии принят парсек («параллакс-секунда»; сокращенно – пк). Это расстояние до звезды, годичный параллакс которой равен 1 секунде. В этом случае формула принимает простой и удобный вид: r = 1/p пк.

Один парсек равен 206265 астрономических единиц или приблизительно 30,8 триллионов километров. В популярной литературе и статьях часто используется такая единица, как световой год – расстояние, которое за год проходят в вакууме электромагнитные волны, не испытывая влияния гравитационных полей. Один световой год равен около 9,5 триллиона километров, или 0,3 парсека. Соответственно, один парсек составляет приблизительно 3,26 светового года.

Точность параллактического метода

Точность измерения параллакса в наземных условиях в настоящее время позволяет определение расстояний до звезд не более 200 парсек. Дальнейшее повышение точности достигается путем наблюдений с использованием космических телескопов.

Спутник "Гайя"

Так, европейский спутник «Гиппарх» (HIPPARCOS, был запущен в 1989 году) позволил, во-первых, увеличить это расстояние до 1000 пк, а во-вторых, существенно уточнить уже известные звездные расстояния. Европейский же спутник «Гайя», или «Гея» (Gaia, запущен в 2013 году), повысил точность измерений еще в на два порядка. С помощью данных «Гайя» астрономы как определяют расстояние до звезд в радиусе 40 килопарсек, так и надеются открыть новые экзопланеты. Космический телескоп им. Хаббла достигает сопоставимой с «Гайя» точности. Вероятно, она близка к предельной для оптических измерений.

Несмотря на это ограничение, тригонометрический годичный параллакс служит калибровочной основой для других методов определения расстояний до звезд.

Фотометрия. Понятие звездной величины

Фотометрия в астрономии занимается измерением интенсивности испускаемого небесным объектом электромагнитного излучения, в том числе и в оптическом диапазоне. На основе фотометрических параметров различными методами определяют расстояние как до звезд, так и до иных удаленных объектов, например, галактик. Одним из основных понятий, используемых в фотометрических методах, является звездная величина, или блеск (обозначается индексом m).

Видимая, или относительная (для оптического диапазона – визуальная) звездная величина измеряется непосредственно по яркости звезды и имеет шкалу, в которой возрастание величины характеризует падение яркости (так сложилось исторически). Например, Солнце имеет видимую звездную величину –26,7m, Сириус имеет величину –1,46m, а ближайшая к Солнцу звезда Проксима Центавра – величину +11,05m.

Проксима Центавра (отмечена кружком)

Абсолютная звездная величина – вычисляемый параметр. Он соответствует видимой звездной величине звезды, если бы эта звезда находилась на расстоянии 10 пк. Этот параметр связывает блеск объекта с расстоянием до него. У приведенных в качестве примера звезд абсолютная величина составляет: у Солнца +4,8m, у Сириуса +1,4m, у Проксимы +15,5m. Расстояние этих звезд соответственно 0,000005, 2,64 и 1,30 парсека. Они различаются по очень важному астрофизическому параметру – светимости.

Спектры и светимость звезд

Астрономы называют светимостью L полную энергию, излучаемую звездой (либо другим объектом) в единицу времени, то есть мощность звезды. Светимость может быть выражена через абсолютную звездную величину, однако, в отличие от нее, не зависит от расстояния.

По спектру излучения, отражающему в первую очередь температуру (от нее зависит цвет), звезды подразделяются на несколько спектральных классов. Звезды одного спектрального класса характеризуются, как правило, одинаковой светимостью (здесь есть исключения, но они выявляются по особенностям спектра). Зависимость «спектр – светимость» (или «цвет – звездная величина») отображена на так называемой Диаграмме Герцшпрунга – Рассела.

Диаграмма Герцшпрунга - Рассела

Эта диаграмма дает возможность по спектральным классам звезд оценивать их абсолютные величины. А поскольку абсолютная величина связана несложным соотношением с расстоянием и с видимой, наблюдаемой величиной, далее нам уже ясно, как определяют расстояние до звезд. Формула имеет следующий вид: lg r = 0,2(m – M)+1. Здесь r – расстояние, m – видимая звездная величина и M – абсолютная величина. Точность такого метода невелика, но позволяет сделать оценку расстояния.

Стандартные свечи в астрономии

Существуют звезды, светимость которых характеризуется однозначным соответствием определенному физическому параметру. Благодаря этому астрономы с хорошей точностью по закону обратных квадратов определяют расстояние до звезд как функцию падения блеска. Чем меньше видимая величина такой звезды, тем дальше расположена сама звезда. К подобным объектам относятся, например, цефеиды и сверхновые типа Ia.

Цефеиды – переменные звезды, светимость которых строго связана с периодом пульсаций. Измерив блеск и период такой звезды, легко вычислить расстояние до нее. Цефеиды – очень яркие звезды. Современные телескопы способны разрешать цефеиды в других галактиках и таким образом установить расстояние до галактики.

Цефеида в галактике Андромеды

Сверхновые типа Ia представляют собой взрывы определенного типа звезд в тесных двойных системах. Взрыв происходит при достижении звездой некоторого критического значения массы и всегда имеет одинаковую светимость и характер спада блеска, что также позволяет вычислить расстояние. Яркость сверхновых бывает сопоставима с яркостью целой галактики, поэтому с их помощью астрономы могут оценивать расстояния на очень больших, космологических масштабах – порядка миллиардов парсек.

Дальше всех

О самой близкой к нам звезде – Проксиме Центавра – знают многие. А вот какая из известных ныне звезд расположена дальше всех?

Самая дальняя звезда, принадлежащая к нашей Галактике, обнаружена не так давно. Она находится за пределами спирального диска Млечного Пути, на внешней границе галактического гало, на расстоянии около 122 700 пк, или 400 000 световых лет, в созвездии Весов. Это красный гигант 18-звездной величины. Конечно, известны и более далекие звезды, однако трудно установить точно их принадлежность к нашей Галактике.

Самая дальняя звезда LS1

Ну, а какая звезда из всех известных во Вселенной наиболее удалена от нас? Она имеет романтическое имя MACS J1149+2223 Lensed Star-1, или просто LS1, и расположена в 9 миллиардах световых лет. Ее обнаружение – это астрономическая удача, поскольку увидеть звезду на таком расстоянии оказалось возможно лишь благодаря событию гравитационного микролинзирования в далекой галактике, в свою очередь линзируемой более близким скоплением галактик. При этом использовался иной метод вычисления расстояния – по космологическому красному смещению. Этим способом определяют расстояния до самых удаленных объектов Вселенной, которые невозможно разрешить на отдельные звезды. И LS1 – один из самых удивительных и красивых примеров того, как определяют расстояния до звезд астрономы.

Добавить комментарий