Как найти объем вещества в смеси

Моля́рный объём Vm — отношение объёма вещества к его количеству, численно равен объёму одного моля вещества. Термин «молярный объём» может быть применён к простым веществам, химическим соединениям и смесям. В общем случае он зависит от температуры, давления и агрегатного состояния вещества. Молярный объём также можно получить делением молярной массы M вещества на его плотность ρ: таким образом, Vm = V/n = M/ρ. Молярный объём характеризует плотность упаковки молекул в данном веществе. Для простых веществ иногда используется термин атомный объём[1].

В Международной системе единиц (СИ) единицей измерения молярного объёма является кубический метр на моль (русское обозначение: м3/моль; международное: m3/mol).

Молярный объём смеси[править | править код]

Для смеси веществ, при расчёте молярного объёма, количеством вещества считают сумму количеств всех веществ, составляющих смесь. Если известна плотность смеси ρc, мольные доли компонентов xi и их молярные массы Mi, молярный объём смеси можно найти как отношение средней молярной массы смеси (суммы молярных масс её компонентов, умноженных на их мольные доли) к плотности смеси.

{displaystyle V_{rm {m}}={frac {V}{sum n_{i}}}={frac {overline {M}}{rho _{mathrm {c} }}}={frac {displaystyle sum _{i=1}^{N}x_{i}M_{i}}{rho _{mathrm {c} }}}.}

Молярный объём газов[править | править код]

Согласно закону Авогадро, одинаковые количества газов при одинаковых условиях занимают одинаковый объём. Молярный объём идеального газа рассчитывается по формуле, выводящейся из уравнения состояния идеального газа

{displaystyle V_{rm {m}}={frac {RT}{P}}},

где T — термодинамическая температура, P — давление, R = 8,314 462 618 153 24 (точно) м3⋅Па⋅К−1⋅моль−1 — универсальная газовая постоянная.

При стандартных условиях (T = 273,15 K (0 °C), P = 101 325 Па) молярный объём идеального газа Vm = 22,413 969 545… л/моль[2][3]. Молярные объёмы идеального газа при других давлениях и температурах, часто принимаемых в качестве стандартных:

Vm = 24,465 403 697… л/моль (T = 298,15 K (25 °C), P = 101 325 Па),
Vm = 22,710 954 641… л/моль (T = 273,15 K (0 °C), P = 100 000 Па)[4],
Vm = 24,789 570 296… л/моль (T = 298,15 K (25 °C), P = 100 000 Па).
Молярные объёмы реальных газов[5]

Газ Vm, л/моль Газ Vm, л/моль
He 22,426 CO 22,408
Ne 22,428 CO2 22,262
Ar 22,394 N2O 22,260
Kr 22,388 SO2 21,889
Xe 22,266 CH4 22,376
H2 22,430 C2H6 22,176
O2 22,393 C2H4 22,255
N2 22,404 C2H2 22,157

Молярные объёмы реальных газов в той или иной степени отличаются от молярного объёма идеального газа, однако во многих случаях для практических вычислений отклонениями от идеальности можно пренебречь. Различие молярных объёмов идеального и реального газа связано в первую очередь с силами притяжения между молекулами и с конечным объёмом молекулы реального газа; в связи с этим, уравнение состояния реального газа с большей точностью описывается не формулой Менделеева — Клапейрона (уравнением состояния идеального газа), а формулой Ван-дер-Ваальса:

{displaystyle left(P+{frac {a}{V_{m}^{2}}}right)(V_{m}-b)=RT.}

В таблице справа приведены молярные объёмы некоторых реальных газов (T = 273,15 K (0 °C), P = 101 325 Па)[5]. Видно, что для газов с относительно большими молекулами (двуокись серы, углеводороды) молярный объём несколько меньше молярного объёма идеального газа (22,414 л/моль в указанных условиях); для газов с маленькими молекулами (гелий, неон, водород) молярный объём несколько больше «идеального».

С молярным объёмом идеального газа связана постоянная Лошмидта NL — количество молекул идеального газа в единице объёма при стандартных условиях:

{displaystyle N_{text{L}}={frac {N_{text{A}}}{V_{m}}}.}

Молярный объём кристаллов[править | править код]

Объём Vя элементарной ячейки кристалла можно вычислить из параметров кристаллической структуры, которые определяются с помощью рентгеноструктурного анализа. Объём ячейки связан с молярным объёмом следующим образом:

Vm = VяNA/Z,

где Z — количество формульных единиц в элементарной ячейке.

Значения молярного объёма химических элементов[править | править код]

Ниже приведены значения молярного (атомного) объёма простых веществ в см3/моль (10−6 м3/моль, 10−3 л/моль) при нормальных условиях либо (для элементов, газообразных при н.у.) при температуре конденсации и нормальном давлении.

Группа I A (1) II A (2) III B (3) IV B (4) V B (5) VI B (6) VII B (7) VIII B (8) VIII B (9) VIII B (10) I B (11) II B (12) III A (13) IV A (14) V A (15) VI A (16) VII A (17) VIII A (18)
Период
1 H
14,0
He
31,8
2 Li
13,1
Be
5
B
4,6
C
5,3
N
17,3
O
14
F
17,1
Ne
16,8
3 Na
23,7
Mg
14
Al
10
Si
12,1
P
17
S
15,5
Cl
18,7
Ar
24,2
4 K
45,3
Ca
29,9
Sc
15
Ti
10,6
V
8,35
Cr
7,23
Mn
7,39
Fe
7,1
Co
6,7
Ni
6,6
Cu
7,1
Zn
9,2
Ga
11,8
Ge
13,6
As
13,1
Se
16,5
Br
23,5
Kr
32,2
5 Rb
55,9
Sr
33,7
Y
19,8
Zr
14,1
Nb
10,8
Mo
9,4
Tc
8,5
Ru
8,3
Rh
8,3
Pd
8,9
Ag
10,3
Cd
13,1
In
15,7
Sn
16,3
Sb
18,4
Te
20,5
I
25,7
Xe
42,9
6 Cs
70
Ba
39
* Hf
13,6
Ta
10,9
W
9,53
Re
8,85
Os
8,43
Ir
8,54
Pt
9,1
Au
10,2
Hg
14,8
Tl
17,2
Pb
18,3
Bi
21,3
Po
22,7
At
н/д
Rn
н/д
7 Fr
н/д
Ra
45
** Rf
н/д
Db
н/д
Sg
н/д
Bh
н/д
Hs
н/д
Mt
н/д
Ds
н/д
Rg
н/д
Cn
н/д
Nh
н/д
Fl
н/д
Mc
н/д
Lv
н/д
Ts
н/д
Og
н/д
Лантаноиды * La
22,5
Ce
21
Pr
20,8
Nd
20,6
Pm
19,96
Sm
19,9
Eu
28,9
Gd
19,9
Tb
19,2
Dy
19
Ho
18,7
Er
18,4
Tm
18,1
Yb
24,8
Lu
17,8
Актиноиды ** Ac
22,54
Th
19,8
Pa
15
U
12,5
Np
21,1
Pu
12,12
Am
20,8
Cm
18,28
Bk
16,8
Cf
16,5
Es
н/д
Fm
н/д
Md
н/д
No
н/д
Lr
н/д

См. также[править | править код]

  • Число Авогадро
  • Удельный объём
  • Молярная масса
  • Молярная теплоёмкость

Примечания[править | править код]

  1. Для молекулярных кристаллов простых веществ молярный объём, определяемый через 1 моль молекул, не равен атомному объёму, поскольку количество атомов не равно количеству молекул. В этих случаях необходимо уточнять, относится ли указанная величина к молекулярному или к атомному молярному объёму. Так, атомный молярный объём иода (кристаллы, состоящие из двухатомных молекул I2) вдвое меньше молекулярного молярного объёма.
  2. CODATA Value: molar volume of ideal gas (273.15 K, 101.325 kPa). Дата обращения: 17 ноября 2022.
  3. После изменения определений основных единиц СИ в 2019 году универсальная газовая константа стала не измеряемой, а определяемой (точно фиксированной) величиной, будучи произведением точно фиксированных величин — постоянной Больцмана и постоянной Авогадро. Это же относится и к стандартному молярному объёму.
  4. CODATA Value: molar volume of ideal gas (273.15 K, 100 kPa). Дата обращения: 17 ноября 2022.
  5. 1 2 Battino R. The Ostwald coefficient of gas solubility (англ.) // Fluid Phase Equilibria. — 1984. — Vol. 15, no. 3. — P. 231—240. — ISSN 0378-3812. — doi:10.1016/0378-3812(84)87009-0. [исправить]; Table 2.

2.1. Основные понятия и формулы

Количество
вещества

число структурных элементов (молекул,
атомов, ионов и т. п.), содержащихся в
теле или системе. Количество вещества
выражается в молях. Моль равен количеству
вещества системы, содержащей столько
же структурных элементов, сколько
содержится атомов в
0,012
кг изотопа углерода 12C.
Количество вещества тела (системы)

,

где
N

число структурных элементов (молекул,
атомов, ионов и т.п.), составляющих тело
(систему). Постоянная Авогадро NА=6,021023
моль-1.

Молярная масса вещества ,

где
mмасса
однородного тела (системы);
—количество
вещества (число молей) этого тела
(системы). Выражается в единицах г/моль
(или кг/моль).

Единица
массы, равная 1/12 массы атома углерода
12C,
называется атомной единицей массы
(а.е.м.). Массы атомов или молекул выраженные
в атомных единицах массы называют
соответственно относительной атомной
или относительной молекулярной массой
вещества. Относительная молекулярная
масса вещества состоит из относительных
атомных масс химических элементов,
составляющих молекулу вещества.
Относительные атомные массы химических
элементов приводятся в таблице Д. И.
Менделеева (см. также таблицу 8 приложения
данного пособия).

Молярная
масса вещества численно равна относительной
атомной или молекулярной массе данного
вещества, если размерность а.е.м. заменить
на размерность г/моль.

Количество вещества смеси n газов

или

,

где
νi,
Ni,
mi,
i

соответственно количество вещества,
число молекул, масса и молярная масса
i-го
компонента смеси (i=1,2,…,n).

Уравнение
Менделеева

Клапейрона (уравнение состояния
идеального газа)

,

где
т

масса газа, 

молярная масса газа, R

универсальная газовая постоянная, ν

количество вещества, Т

термодинамическая температура.

Опытные
газовые законы, являющиеся частными
случаями уравнения Менделеева

Клапейрона для изопроцессов:

а)
закон Бойля—Мариотта
(изотермический процесс: T=const,
m=const)

или
для двух состояний газа, обозначенных
цифрами 1 и 2,

,

б)
закон Гей-Люссака (изобарический процесс:
р=const,
m=const)

или
для двух состояний
,

в)
закон Шарля (изохорический процесс:
V=const,
m=const)


или
для двух состояний
,

г)
объединенный газовый закон (m=const)

или
для двух состояний
.

Под
нормальными условиями понимают давление
po=1
атм (1,013105
Па), температуру 0оС
(T=273
K).

Закон
Дальтона, определяющий давление смеси
n
газов.

,

где
pi

парциальные давления компонентов смеси
(i=1,2,…,n).
Парциальным
давлением называется давление газа,
которое производил бы этот газ, если бы
только он один находился в сосуде,
занятом смесью.

Молярная масса смеси n газов

.

Массовая
доля i-го
компонента смеси газа (в долях единицы
или процентах)

,

где
т

масса смеси.

Концентрация молекул

,

где
N

число молекул, содержащихся в данной
системе; 

плотность вещества в системе;
V

объем системы. Формула справедлива не
только для газов, но и для любого
агрегатного состояния вещества.

Уравнение
Ван-дер-Ваальса для реального газа

,

где
a
и b

коэффициенты Ван-дер-Ваальса

Для
идеального газа уравнение Ван-дер-Ваальса
переходит в уравнение Менделеева

Клапейрона.

Основное уравнение
молекулярно – кинетической теории газов

,

где
п

средняя кинетическая энергия
поступательного движения молекулы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Основные формулы для решения задач по химии

05-Авг-2012 | комментариев 450 | Лолита Окольнова

Все, все основные задачи по химии решаются с помощью

нескольких основных понятий и формул.

У всех веществ разная масса, плотность и объем. Кусочек металла одного элемента может весить во много раз больше, чем точно такого же размера кусочек другого металла.


Моль
 (количество моль)

Основные формулы для решения задач по химии

обозначение: моль, международное: mol — единица измерения количества вещества. Соответствует количеству вещества, в котором содержится NA частиц (молекул, атомов, ионов). Поэтому была введена универсальная величина — количество моль. Часто встречающаяся фраза в задачах — «было получено… моль вещества»

NA = 6,02 · 1023 

N— число Авогадро.  Тоже «число по договоренности». Сколько атомов содержится в стержне кончика карандаша? Несколько миллионов. Оперировать такими величинами не удобно. Поэтому химики и физики всего мира договорились — обозначим 6,02 · 1023 частиц (атомов, молекул, ионов) как 1 моль вещества.

1 моль =  6,02 · 1023 частиц 

Это была первая из основных формул для решения задач.

Молярная масса вещества

Молярная масса вещества — это масса одного моль вещества. Обозначается как M

Есть еще молекулярная масса — Mr

Находится по таблице Менделеева — это просто сумма атомных масс вещества.

Например, нам дана серная кислота — H2SO4. Давайте посчитаем молярную массу вещества: атомная масса H =1, S-32, O-16.
Mr(H2SO4)=1•2+32+16•4=98 гмоль.

Вторая необходимая формула для решения задач —

формула массы вещества:

Основные формулы для решения задач по химии

Т.е., чтобы найти массу вещества, необходимо знать количество моль (n), а молярную массу мы находим из Периодической системы.

Закон сохранения массы — масса веществ, вступивших в химическую реакцию, всегда равна массе образовавшихся веществ.

Если мы знаем массу (массы) веществ, вступивших в реакцию, мы можем найти массу (массы) продуктов этой реакции. И наоборот.

Третья формула для решения задач по химии —

объем вещества:

Основные формулы для решения задач по химии

Откуда взялось число 22.4?  Из закона Авогадро:

в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул.

Согласно закону Авогадро, 1 моль идеального газа при нормальных условиях (н.у.) имеет один и тот же объём Vm = 22,413 996(39) л

Т.е., если в задаче нам даны нормальные условия, то, зная количество моль (n), мы можем найти объем вещества.

Итак,  основные формулы для решения задач по химии

 Число Авогадро NA

6,02 · 1023 частиц

Количество вещества n (моль)

n=mM

n=V22.4 (лмоль)

Масса вещества m (г)

m=n•Mr

Объем вещества V(л)

V=n•22.4 (лмоль)

или вот еще удобная табличка:

Основные формулы для решения задач по химии

 Это формулы. Часто для решения задач нужно сначала написать уравнение реакции и (обязательно!) расставить коэффициенты — их соотношение определяет соотношение молей в процессе.


В ОГЭ и ЕГЭ по химии задач , в которых нужно было бы найти только объем массу кол-во моль нет — это обычно ЧАСТЬ решения задачи. Однако, чтобы легко решать более сложные задачи, нужно тренироваться на таких вот небольших упражнениях.

Находим количество вещества по массе

 
1 Какое количество вещества алюминия содержится в образце металла массой 10.8 г?

2 Какое количество вещества содержится в оксиде серы (VI) массой 12 г?

3 Определите количество моль брома, содержащееся в массе 12.8 г.

Находим массу по количеству вещества:


4. Определите массу карбоната натрия количеством вещества 0.25 моль.

Объем по количеству вещества:

 
5. Какой объем будет иметь азот при н.у., если его количество вещества 1.34 моль?

6. Какой объем занимают при н.у. 2 моль любого газа?
 

Ответы:/p>
 

  1. 0.4 моль
  2. 0.15 моль
  3. 0.08 моль
  4. 26.5 г
  5. 30 л
  6. 44.8 л

Категории:
|

Обсуждение: “Основные формулы для решения задач по химии”

(Правила комментирования)

Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества

Для расчета массы (объема, количества вещества) продукта реакции, если данные по одному из веществ представлены в виде раствора с определенной массовой долей этого растворенного вещества, следует воспользоваться нижеследующим алгоритмом:

1) Прежде всего следует найти массу растворенного вещества. Возможны две ситуации:

* В условии даны масса раствора и массовая доля растворенного вещества (концентрация). В этом случае масса растворенного вещества рассчитывается по формуле:

формула расчета массы растворенного вещества, зная массу раствора и его концентрацию

* В условии даны объем раствора вещества, плотность этого раствора и массовая доля растворенного вещества в этом растворе. В таком случае следует воспользоваться формулой для расчета массы раствора:

m(р-ра) = ρ(р-ра) ∙V(р-ра)

После чего следует рассчитать массу растворенного вещества по формуле 1.

2) Рассчитать количество вещества (моль) участника реакции, масса которого стала известна из расчетов выше. Для этого воспользоваться формулой:

n(в-ва) = m(в-ва)/M(в-ва), где М - молярная масса вещества

3) Записать уравнение реакции и убедиться в правильности расставленных коэффициентов.

4) Рассчитать количество моль интересующего участника реакции исходя из известного количества другого участника реакции, зная, что количества веществ любых двух участников реакции A и B относятся друг к другу как коэффициенты перед этими же веществами в уравнении реакции, то есть:

n(A)/n(B) = k(A)/k(B)

Если  в условии требовалось рассчитать количество вещества, то действия на этом заканчиваются. Если же требуется найти его массу или объем, следует переходить к следующему пункту.

5) Зная количество вещества, определенное в п.4, мы можем рассчитать его массу по формуле:

Расчет количества продукта по данным раствора другого вещества

Также, если вещество является газообразным и речь идет о нормальных условиях (н.у.), его объем может быть рассчитан по формуле:

V(газа) = Vm ∙ n(газа) = n(газа) ∙ 22,4 л/моль

Рассмотрим пару примеров расчетных задач по этой теме.

Пример 1

Рассчитайте массу осадка, который образуется при добавлении к 147 г 20%-ного раствора серной кислоты избытка раствора нитрата бария.

Решение:

1) Рассчитаем массу чистой серной кислоты:

m(H2SO4) = w(H2SO4) ∙ m(р-ра H2SO4)/100% = 147 г ∙ 20% /100%  = 29,4 г

2) Рассчитаем количество вещества (моль) серной кислоты:

n(H2SO4) = m(H2SO4) / M(H2SO4) = 29,4 г/98 г/моль =  0,3 моль.

3) Запишем уравнение взаимодействия серной кислоты с нитратом бария:

H2SO4 + Ba(NO3)2 = BaSO4↓ + 2HNO3

4) В результате расчетов стало известно количество вещества серной кислоты. Осадок представляет собой сульфат бария. Зная, что:

n(BaSO4)/n(H2SO4) = k(BaSO4)/k(H2SO4), где n — количество вещества, а k — коэффициент в уравнении реакции,

можем записать:

n(BaSO4) = n(H2SO4) ∙ k(H2SO4)/k(BaSO4) = 0,3 моль ∙ 1/1 = 0,3 моль

5) Тогда масса осадка, т.е. сульфата бария, может  быть рассчитана следующим образом:

m(BaSO4) = M(BaSO4) ∙ n(BaSO4) = 233 г/моль ∙ 0,3 моль = 69,9 г

Пример 2

Какой объем газа (н.у.) выделится при растворении необходимого количества сульфида железа (II) в 20%-ном растворе соляной кислоты с плотностью 1,1 г/мл и объемом 83 мл.

Решение:

1) Рассчитаем массу раствора соляной кислоты:

m(р-ра HCl) = V(р-ра HCl) ∙ ρ(р-ра HCl) = 83 мл ∙ 1,1 г/мл = 91,3 г

Далее рассчитаем массу чистого хлороводорода, входящего в состав кислоты:

m(HCl) = m(р-ра HCl) ∙ w(HCl)/100% = 91,3 г ∙ 20%/100% = 18,26 г

2) Рассчитаем количество вещества хлороводорода:

n(HCl) = m(HCl)/M(HCl) = 18,26 г/36,5 г/моль = 0,5 моль;

3) Запишем уравнение реакции сульфида железа (II) с соляной кислотой:

FeS + 2HCl = FeCl2 + H2S↑

4) Исходя из уравнения реакции следует, что количество прореагировавшей соляной кислоты с количеством выделившегося сероводорода связано соотношением:

n(HCl)/n(H2S) = 2/1, где 2 и 1 — коэффициенты перед HCl и и H2S соответственно

Следовательно:

n(H2S) = n(HCl)/2 = 0,5/2 = 0,25 моль

5) Объем любого газа, находящегося при нормальных условиях, можно рассчитать по формуле V(газа) = Vm ∙ n(газа), тогда:

V(H2S) = Vm ∙ n(H2S) = 22,4 л/моль ∙ 0,25 моль = 5,6 л

Автор: С.И. Широкопояс https://scienceforyou.ru/

Молярная масса

Вы знаете, что одинаковое химическое количество любых веществ содержит одно и то же число структурных единиц. Но у каждого вещества его структурная единица имеет собственную массу. Поэтому и массы одинаковых химических количеств различных веществ тоже будут различны.

Молярная масса — это масса порции вещества химическим количеством 1 моль.

Молярная масса вещества Х обозначается символом M(Х)Она равна отношению массы данной порции вещества m(Х) (в г или кг) к его химическому количеству n(Х) (в моль):

В Международной системе единиц молярная масса выра

В Международной системе единиц молярная масса выражается в кг/моль. В химии чаще используется дольная единица — г/моль.

Определим молярную массу углерода. Масса углерода химическим количеством 1 моль равна 0,012 кг, или 12 г. Отсюда:

Молярная масса любого вещества, если она выражена

Молярная масса любого вещества, если она выражена в г/моль, численно равна его относительной молекулярной (формульной) массе.

Например:

На рисунке 47 показаны образцы веществ (H2O, CaCO3

На рисунке 47 показаны образцы веществ (H2O, CaCO3, Zn), химическое количество которых одно и то же — 1 моль. Как видите, массы разных веществ химическим количеством 1 моль различны.

Молярная масса является важной характеристикой каж

Молярная масса является важной характеристикой каждого отдельного вещества. Она отражает зависимость между массой и химическим количеством вещества. Зная одну из этих величин, можно определить вторую — массу по химическому количеству:

и, наоборот, химическое количество по массе:

и, наоборот, химическое количество по массе:

а также число структурных единиц:

а также число структурных единиц:

Взаимосвязь между этими тремя характеристиками вещ

Взаимосвязь между этими тремя характеристиками вещества в любом его агрегатном состоянии можно выразить простой схемой:

Формула и алгоритм нахождения объёма

Сегодня мы научимся одному немаловажному умению в химии – находить объём различных растворов и прочих веществ. Это знание необходимо потому, что оно поможет нам в решении многих задач как в тетради, так и в жизни. Нужно лишь знать устоявшуюся формулу.

Важно понимать, что формула нахождения объёма может быть разной в зависимости от того вещества, объём которого нам предстоит найти, а точнее, от агрегатного состояния этого вещества. Для нахождения объёма газа и жидкости используются разные, непохожие друг на друга формулы.

Чёткая и правильная формула для расчёта объёма жидкости выглядит следующим образом: С=n/V.

В этом случае:

  1. C – молярная масса раствора (моль на литр).
  2. n – количество вещества (моль).
  3. V – объём вещества-жидкости (литры).

Из этого следует что V=n/c.

Cуществует и вторая формула для нахождения объёма жидкости при другой задаче и других данных: V=m/p.

Здесь, соответственно:

  1. V – объём и измеряется он в миллилитрах.
  2. m – масса, измеряется в граммах.
  3. p – плотность, измеряется в граммах, делённых на миллилитры.

В случае если, кроме объёма, требуется также найти массу, это можно сделать, зная формулу и количество нужного вещества. При помощи формулы вещества находим его молярную массу путём сложения атомной массы всех элементов, которые входят в его состав.

Для примера возьмём M (AuSo2) и при расчётах у нас должно выйти 197+32+16 * 2 = 261 г/моль. После проведённых расчётов находим массу по формуле m=n*M, где, следовательно:

  1. m – масса.
  2. n – количество вещества, которое измеряется в молях (моль).
  3. M – молярная масса вещества: граммы, делённые на моль.

Количество вещества, как правило, даётся в задаче. Если же нет, то, скорее всего, допущена опечатка или ошибка в условии, и вам стоит обратиться за помощью и объяснениями к учителю, а не пытаться самим вывести несуществующую величину. Основные формулы и алгоритмы решения приведены в данной статье.

Также существует формула для нахождения объёма газа, и выглядит она так – V=n*Vm:

  1. V – объём газа (литры).
  2. n – количество вещества (моль).
  3. Vm – молярный объём газа (литры/моль).

Но есть своего рода исключение. Оно состоит в том, что при нормальных условиях, то есть при определённом давлении и температуре, объём газа является постоянной величиной, равной 22,3 л/моль.

Есть и третий вариант. Если в самом задании будет

Есть и третий вариант. Если в самом задании будет присутствовать уравнение реакции, тогда ход решения должен проходить иначе. Из уравнения, которое у вас имеется, можно найти количество каждого вещества, оно будет равняться коэффициенту. К примеру, Ch4 + 2O2 = CO2 + H2O. Из этого уравнения следует, что 1 моль метана и 2 моль кислорода при взаимодействии дают 1 моль углерода и 1 моль воды. Даже если учесть тот факт, что в условии имеется количество вещества лишь одного-единственного компонента, не составит труда найти количество всех остальных веществ. Если количество метана составит 0,3 моль, значит, n(Сh4) будет равняться 0,6 моль, n(CO2) = 0,3 моль, n(H2O) = 0.3 моль.

б) Газовые законы объем газа

Кроме вышеуказанной формулы для решения расчетных химических задач, нередко приходится использовать газовые законы, известные из курса физики.

— Закон Бойля-Мариотта

При постоянной температуре объем данного количества газа обратно пропорционален давлению, под которым он находится:

pV = const

— Закон Гей-Люссака

При постоянном давлении изменение объема газа прямо пропорционально температуре:

V/T = const

— Объединенный газовый закон Бойля-Мариотта и Гей-Люссака

pV/T = const

Помимо этого, если известна масса или количество газа, его объем можно вычислить, используя уравнение Менделеева-Клапейрона:

pV = nRT;

pV = n/M ×RT,

где n–число молей вещества, m–масса (г), Ь – молярная масса газа (г/моль), R – универсальная газовая постоянная равная 8,31 Дж/(моль×К).

Молярный объем кристаллов

Объем Vя элементарной ячейки кристалла вычисляют с помощью характеристик кристаллической структуры, которые определяют на основании результатов рентгеноструктурного анализа.

Формула 

Зависимость между объемом ячейки и молярным объемом:

Vm=VяNA/Z

где Z — определяет, сколько формульных единиц в элементарной ячейке.

Молярный объем

В отличие от твердых и жидких веществ все газообразные вещества химическим количеством 1 моль занимают одинаковый объем (при одинаковых условиях). Эта величина называется молярным объемом и обозначается Vm.

Подобно молярной массе, молярный объем газа равен отношению объема данного газообразного вещества V(Х) к его химическому количеству n(Х):

Так как объем газа зависит от температуры и давлен

Так как объем газа зависит от температуры и давления, то при проведении различных расчетов берутся обычно объемы газов при нормальных условиях (сокращенно — н. у.). За нормальные условия принимаются температура 0 °С и давление 101,325 кПа.

Установлено, что при нормальных условиях отношение объема любой порции газа к химическому количеству газа есть величина постоянная и равная 22,4 дм3/моль. Другими словами, молярный объем любого газа при нормальных условиях:

Молярный объем — это объем, равный 22,4 дм3, котор

Молярный объем — это объем, равный 22,4 дм3, который занимает 1 моль любого газа при нормальных условиях.

Пример 1. Вычислите химическое количество SiO2, масса которого равна 240 г.

Спойлер

[свернуть]

Пример 2. Определите массу серной кислоты H2SO4, химическое количество которой 2,5 моль.

Спойлер

[свернуть]

Пример 3. Сколько молекул CO2 и сколько атомов кислорода содержится в углекислом газе массой 110 г?

Спойлер

[свернуть]

Пример 4. Какой объем занимает кислород химическим количеством 5 моль при нормальных условиях?

Спойлер

[свернуть]

Краткие выводы урока:

  1. Масса вещества химическим количеством 1 моль называется его молярной массой. Она равна отношению массы данной порции вещества к его химическому количеству.
  2. Объем газообразных веществ химическим количеством 1 моль при нормальных условиях одинаков и равен 22,4 дм3.
  3. Величина, равная 22,4 дм3/моль, называется молярным объемом газов.

Надеюсь урок 9 «» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии. Данный урок был заключительным в главе «».

Теги

Добавить комментарий