Как найти модуль рационального числа

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Модуль числа

Поддержать сайтспасибо

Обозначим на
координатной прямой две точки, которые соответствуют числам
«−4» и 2.

модуль числа на координатной прямой

Точка «A», соответствующая числу «−4»,
находится на расстоянии
4 единичных отрезков от точки 0
(начала отсчёта), то есть длина отрезка «OA»
равна 4 единицам.

Число 4 (длина отрезка «OA») называют модулем
числа «−4».

Обозначают модуль числа так: |−4| = 4

Читают символы выше следующим образом: «модуль числа
минус четыре равен четырём».

Точка «B», соответствующая
числу «+2», находится на расстоянии двух единичных отрезков от начала отсчёта,
то есть длина отрезка «OB» равна двум единицам.

Число 2 называют модулем числа
«+2» и записывают:
|+2| = 2 или |2| = 2.

Если взять некоторое число «a» и изобразить его
точкой «A» на координатной прямой, то
расстояние от точки «A» до начала отсчёта
(другими словами длина отрезка «OA») и будет называться
модулем числа «a».

|a| = OA

Запомните!
!

Модулем рационального числа называют расстояние от
начала отсчёта до точки координатной прямой, соответствующей этому числу.

Так как расстояние (длина отрезка) может выражаться только положительным числом или нулём, можно сказать,
что модуль числа не может быть отрицательным.

Запишем свойства модуля с помощью буквенных выражений, рассмотрев все возможные случаи.

  1. Модуль положительного числа равен самому числу.

    |a| = a, если a > 0
  2. Модуль отрицательного числа равен противоположному числу.

    |−a| = a, если a < 0
  3. Модуль нуля равен нулю.

    |0| = 0, если a = 0
  4. Противоположные числа имеют равные модули.

    |−a| = |a| = a

Примеры модулей рациональных чисел:

  • |−4,8| = 4,8
  • |5| = 5
  • |0| = 0
  • | | =


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

18 января 2016 в 17:47

Евгения Плотникова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Евгения Плотникова
Профиль
Благодарили: 0

Сообщений: 1

Модуль координаты точки равен 1)2;2)4;3)3.Вопрос.Какую координату может иметь точка.

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:45
Ответ для Евгения Плотникова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Знак моддуля, означает, что под ним может скрываться как отрицательное, так и положительное значение. Следовательно: 
1) 2;2
-2;2
-2;-2
2;-2
2) 4;0
-4;0
0;4
0;-4
3) 3;0
-3;0
0;3
0;-3

подробнее здесь.

0
Спасибоthanks
Ответить

17 января 2016 в 18:05

Заира Надырова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Заира Надырова
Профиль
Благодарили: 0

Сообщений: 1

а) Что можно сказать о числе х, если известно, что модуль х=х?
б)модуль х=?х

0
Спасибоthanks
Ответить

21 января 2016 в 16:18
Ответ для Заира Надырова

Сергей Фадеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 6

(^-^)
Сергей Фадеев
Профиль
Благодарили: 0

Сообщений: 6


то что х=х больше х

0
Спасибоthanks
Ответить


Тип урока: урок постановки учебной задачи.

I. Повторение пройденного

Задание 1. Распределите данные уравнения по группам.

Учащиеся сначала выделили две группы. В первую группу вошли уравнения 1) –3), 5) –7). Ко второй группе были отнесены уравнения 8) и 9). Затем учащиеся заметили уравнение 10), содержащее знак модуля два раза. Окончательно было выделено три группы: 1-я группа – модуль содержится в левой части уравнения; 2-я группа – модуль содержится в обеих частях уравнения; 3-я группа – в уравнении содержится двойной модуль.

Учитель. Какую главную задачу мы должны будем решить сегодня на уроке?

Учащиеся. Мы должны научиться решать уравнения.

Учитель. Да. Но посмотрите еще раз на все эти уравнения и выделите их общую особенность.

Учащиеся. Все они содержат модуль.

Учитель. Как точнее сформулировать задачу нашего урока?

Учащиеся. Применять определение модуля при решении данных уравнений.

Учитель. Действительно, эту задачу мы и должны решить на уроке. По-другому ее можно сформулировать так: “Как решать уравнения с модулем?” Какие понятия, определения могут быть полезны при решении этой задачи?

Учитель. Вспомним, что такое модуль.

Учащиеся. По определению:

| а | = если а > 0
если а 0 (число положительное).

| х – 1 | + | х – 2 | = если х 2

а) Если х – 3 0, то есть х 3, то | х – 3 | = х – 3;

Модуль числа

О чем эта статья:

Определение модуля числа

Алгебра дает четкое определение модуля числа. Модуль числа в математике — это расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.

Если мы возьмем некоторое число «a» и изобразим его на координатной прямой точкой A — расстояние от точки A до начала отсчёта (то есть до нуля) длина отрезка OA будет называться модулем числа «a».

Знак модуля: |a| = OA.

Разберем на примере:

Точка В, которая соответствует числу −3, находится на расстоянии 3 единичных отрезков от точки O (то есть от начала отсчёта). Значит, длина отрезка OB равна 3 единицам.

Число 3 (длину отрезка OB) называют модулем числа −3.

Обозначение модуля: |−3| = 3 (читают: «модуль числа минус три равен трём»).

Точка С, которая соответствует числу +4, находится на расстоянии четырех единичных отрезков от начала отсчёта, то есть длина отрезка OС равна четырем единицам.

Число 4 называют модулем числа +4 и обозначают так: |+4| = 4.

Также можно опустить плюс и записать значение, как |4| = 4.

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Свойства модуля числа

Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.

1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:

2. Модуль положительного числа равен самому числу.

3. Модуль отрицательного числа равен противоположному числу.

4. Модуль нуля равен нулю.

5. Противоположные числа имеют равные модули.

6. Модуль произведения равен произведению модулей этих чисел.

−(a · b), когда a · b

Геометрическая интерпретация модуля

Как мы уже знаем, модуль числа — это расстояние от нуля до данного числа. То есть расстояние от точки −5 до нуля равно 5.

Нарисуем числовую прямую и отобразим это на ней.

Эта геометрическая интерпретация используется для решения уравнений и неравенств с модулем. Давайте рассмотрим на примерах.

Решим уравнение: |х| = 5.

Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно 5. Это точки 5 и −5. Значит, уравнение имеет два решения: x = 5 и x = −5.

Когда у нас есть два числа a и b, то их разность |a – b| равна расстоянию между ними на числовой прямой или длине отрезка АВ.

Расстояние от точки a до точки b равно расстоянию от точки b до точки a, тогда |a – b| = |b – a|.

Решим уравнение: |a – 3| = 4 . Запись читаем так: расстояние от точки а до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.

Уравнение имеет два решения: −1 и 7. Мы из 3 вычли 4 – и это один ответ, а также к 3 мы прибавили 4 – и это второй ответ.

Решим неравенство: |a + 7|

График функции

График функции равен y = |х|.

Для x > 0 имеем y = x.

Этот график можно использовать при решении уравнений и неравенств.

Корень из квадрата

В контрольной работе или на ЕГЭ может встретиться задачка, в которой нужно вычислить √ a 2 , где a – некоторое число или выражение.

При этом, √ a 2 = |a|.

По определению арифметического квадратного корня √ a 2 — это такое неотрицательное число, квадрат которого равен a 2 .

Оно равно a при а > 0 и −а, при а

Модуль рационального числа

Как найти модуль рационального числа — это расстояние от начала отсчёта до точки координатной прямой, которая соответствует этому числу.

Обобщённое понятие модуля числа

В данном уроке мы рассмотрим понятие модуля числа более подробно.

Что такое модуль?

Модуль — это расстояние от начала координат до какого-нибудь числа на координатной прямой. Поскольку расстояние не бывает отрицательным, то и модуль всегда неотрицателен. Так, модуль числа 3 равен 3, как и модуль числа −3 равен 3

Предстáвим, что на координатной прямой расстояние между целыми числами равно одному шагу. Теперь если отметить числа −3 и 3, то расстояние до них от начала координат будет одинаково равно трём шагам:

Модуль это не только расстояние от начала координат до какого-нибудь числа. Модуль это также расстояние между любыми двумя числами на координатной прямой. Такое расстояние выражается в виде разности между этими числами, заключенной под знак модуля:

Где x1 и x2 — числа на координатной прямой.

Например, отметим на координатной прямой числа 2 и 5.

Расстояние между числами 2 и 5 можно записать с помощью модуля. Для этого запишем разность из чисел 2 и 5 и заключим эту разность под знак модуля:

Видим, что расстояние от числа 2 до числа 5 равно трём шагам:

Если расстояние от 2 до 5 равно 3, то и расстояние от 5 до 2 тоже равно 3

То есть, если в выражении |5 − 2| поменять числа местами, то результат не изменится:

Тогда можно записать, что |2 − 5| = |5 − 2|. Вообще, справедливо следующее равенство:

Это равенство можно прочитать так: Расстояние от x1 до x2 равно расстоянию от x2 до x1.

Раскрытие модуля

Когда мы говорим, что |3|= 3 или |−3|= 3 мы выполняем действие называемое раскрытием модуля.

Правило раскрытия модуля выглядит так:

Такую запись мы ранее не использовали. Дело в том, что равенство можно задавать несколькими формулами. Фигурная скобка указывает, что возможны два случая в зависимости от условия. В данном случае условиями являются записи «если x ≥ 0» и «если x .

В зависимости от того что будет подставлено вместо x, выражение |x| будет равно x, если подставленное число больше или равно нулю. А если вместо x подставлено число меньшее нуля, то выражение |x| будет равно −x.

Второй случай на первый взгляд может показаться противоречивым, поскольку запись |x| = −x выглядит будто модуль стал равен отрицательному числу. Следует иметь ввиду, что когда x

Пример 2. Пусть x = 5. То есть мы рассматриваем модуль числа 5

В данном случае выполняется первое условие x ≥ 0, ведь 5 ≥ 0

Поэтому используем первую формулу. А именно | x | = x. Получаем | 5 | = 5.

Ноль это своего рода точка перехода, в которой модуль меняет свой порядок раскрытия и далее сохраняет свой знак. Визуально это можно представить так:

На рисунке красные знаки минуса и плюса указывают как будет раскрываться модуль |x| на промежутках x и x ≥ 0 .

К примеру, если взять числа 1, 9 и 13 , а они принадлежат промежутку x ≥ 0, то согласно рисунку модуль |x| раскроется со знаком плюс:

А если возьмём числа, меньшие нуля, например −3, −9, −15, то согласно рисунку модуль раскроется со знаком минус:

Пример 3. Пусть x = √4 − 6. То есть мы рассматриваем модуль выражения √4 − 6,

Корень из числа 4 равен 2. Тогда модуль примет вид

x который был равен √4−6 теперь стал равен −4. В данном случае выполняется второе условие x |√4 − 6| = |2 − 6| = |−4| = −(−4) = 4

На практике обычно рассуждают так:

«Модуль раскрывается со знаком плюс, если подмодульное выражение больше или равно нулю; модуль раскрывается со знаком минус, если подмодульное выражение меньше нуля».

Примеры:

|2| = 2 — модуль раскрылся со знаком плюс, поскольку 2 ≥ 0

|−4| = −(−4) = 4 — модуль раскрылся со знаком минус, поскольку −4 x ≥ 0 расписано подробнее, а именно сказано что если x > 0 , то выражение |x| будет равно x , а если x =0, то выражение |x| будет равно нулю.

Пример 4. Пусть x = 0. То есть мы рассматриваем модуль нуля:

В данном случае выполняется условие x=0, ведь 0 = 0

Пример 5. Раскрыть модуль в выражении |x|+ 3

Если x ≥ 0, то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид x + 3.

Допустим, требуется найти значение выражения |x|+ 3 при x = 5. Поскольку 5 ≥ 0, то модуль, содержащийся в выражении |x|+ 3 раскрóется со знаком плюс и тогда решение примет вид:

Найдём значение выражения |x|+ 3 при x = −6. Поскольку −6 |x| + 3 = 3 − x = 3 − (−6) = 9

Пример 6. Раскрыть модуль в выражении x +|x + 3|

Если x + 3 ≥ 0, то модуль |x + 3| раскроется со знаком плюс и тогда исходное выражение примет вид x + x + 3 , откуда 2x + 3.

Найдём значение выражения x +|x + 3| при x = 4. Поскольку 4 ≥ −3, то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив 4 получим 11

Найдём значение выражения x +|x + 3| при x=−3.

Поскольку −3 ≥ −3 , то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив −3 получим −3

Пример 3. Раскрыть модуль в выражении

Как и прежде используем правило раскрытия модуля:

Но это решение не будет правильным, поскольку в первом случае написано условие x ≥ 0 , которое допускает что при x = 0 знаменатель выражения обращается в ноль, а на ноль делить нельзя.

В данном примере удобнее использовать подробную запись правила раскрытия модуля, где отдельно рассматривается случай при котором x = 0

Перепишем решение так:

В первом случае написано условие x > 0 . Тогда выражение станет равно 1. Например, если x = 3 , то числитель и знаменатель станут равны 3, откуда полýчится 1

И так будет при любом x , бóльшем нуля.

Во втором случае написано условие x = 0 . Тогда решений не будет, потому что на ноль делить нельзя.

В третьем случае написано условие x . Тогда выражение станет равно −1 . Например, если x = −4 , то числитель станет равен 4 , а знаменатель −4 , откуда полýчится единица −1

Пример 4. Раскрыть модуль в выражении

Если x ≥ 0 , то модуль, содержащийся в числителе, раскроется со знаком плюс, и тогда исходное выражение примет вид , которое при любом x , бóльшем нуля, будет равно единице:

Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид

Но надо учитывать, что при x = − 1 знаменатель выражения обращается в ноль. Поэтому второе условие x следует дополнить записью о том, какие значения может принимать x

Преобразование выражений с модулями

Модуль, входящий в выражение, можно рассматривать как полноценный множитель. Его можно сокращать и выносить за скобки. Если модуль входит в многочлен, то его можно сложить с подобным ему модулем.

Как и у обычного буквенного множителя, у модуля есть свой коэффициент. Например, коэффициентом модуля |x| является 1, а коэффициентом модуля −|x| является −1. Коэффициентом модуля 3|x+1| является 3, а коэффициентом модуля −3|x+1| является −3.

Пример 1. Упростить выражение |x| + 2|x| − 2x + 5y и раскрыть модуль в получившемся выражении.

Решение

Выражения|x| и 2|x| являются подобными членами. Слóжим их. Остальное оставим без изменений:

Раскроем модуль в получившемся выражении. Если x ≥ 0, то получим 3x − 2x + 5y , откуда x + 5y .

Если x , то получим − 3x − 2x + 5y , откуда − 5x + 5y . Вынесем за скобки множитель − 5 , получим − 5(x − y)

В итоге имеем следующее решение:

Пример 2. Раскрыть модуль в выражении: −|x|

Решение

В данном случае перед знаком модуля стоит минус. Его можно понимать как минус единицу перед знаком модуля. Если x ≥ 0 , то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид −x

Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид −(−x) откуда получим просто x

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/modul-chisla

[/spoiler]

Модуль числа — теория и решение задач

Модуль числа – это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности 🙂

А между тем она проста как апельсин. Но, чтобы ее понять, давай сначала разберемся, зачем и кому он нужен.

Вот смотри…

Ситуация первая

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине «минус 70 километров» (мы проедем 70 километров, не важно, в каком направлении), как и не можем купить «минус 5 кг апельсинов». Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.

Ситуация вторая

Ты покупаешь пакет чипсов «Lay’s». На пакете написано, что он весит 100 грамм. Но, если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.

И что, можно идти судиться с компанией «Lay’s», если они тебе недовесили?

Нет. Потому что  «Lay’s» устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это «плюс-минус» – это и есть модуль.

Ситуация третья

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: «Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!» 20 тысяч – это и есть модуль.

А вообще для простоты запомни, что модуль это расстояние от точки отсчета в любую сторону.

Ну вот, ты уже почти все знаешь. Давай теперь подробнее…

Модуль числа — коротко о главном

Определение модуля:

Модуль (абсолютная величина) числа ( displaystyle x) — это само число ( displaystyle x), если ( displaystyle xge 0), и число ( displaystyle -x), если ( displaystyle x<0):

( displaystyle left| x right|=left{ begin{array}{l}x, xge 0\-x, x<0end{array} right.)

Свойства модуля:

  • Модуль числа есть число неотрицательное: ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0);
  • Модули противоположных чисел равны: ( left| -x right|=left| x right|);
  • Модуль произведения двух (и более) чисел равен произведению их модулей: ( left| xcdot yright|=left| x right|cdot left|yright|);
  • Модуль частного двух чисел равен частному их модулей: ( displaystyle left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0});
  • Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:( left| x+y right|le left| x right|+left| y right|);
  • Постоянный положительный множитель можно выносить за знак модуля: ( left| cx right|=ccdot left| x right|) при ( displaystyle c>0);
  • Квадрат модуля числа равен квадрату этого числа: ( {{left| x right|}^{2}}={{x}^{2}}).

Кстати, в продолжение этой темы у нас есть отличная статья: «Уравнения с модулем«. Когда прочитаешь эту статью, обязательно ознакомься и со второй.

И просто чтобы ты знал, модуль часто попадается при решении квадратных уравнений или иррациональных.

Что же такое модуль числа?

Представь, что это ты.

Предположим, что ты стоишь на месте и можешь двигаться как вперёд, так и назад. Обозначим точку отправления ( 0).

Итак, ты делаешь ( 3) шага вперёд и оказываешься в точке с координатой ( 3).

Это означает, что ты удалился от места, где стоял на (3) шага (( 3) единичных отрезка).

То есть, расстояние от начала движения до точки, где ты в итоге оказался, равно ( 3).

Но ведь ты же можешь двигаться и назад!

Если от отправной точки с координатой ( 0) сделать ( 3) шага в обратную сторону, то окажешься в точке с координатой ( -3).

Какое расстояние было пройдено в первом и во втором случае?

Конечно же, расстояние, пройденное в первом и во втором случае, будет одинаковым и равным трем, ведь обе точки (( 3) и ( -3)), в которых ты оказался одинаково удалены от точки, из которой было начато движение (( 0)).

Таким образом, мы приблизились к понятию модуля.

Получается, что модуль показывает расстояние от любой точки на координатном отрезке до точки начала координат.

Так, модулем числа ( 5) будет ( 5). Модуль числа ( -5) также равен ( 5).

Потому что расстояние не может быть отрицательным! Модуль – это абсолютная величина.

Обозначается модуль просто:

( |mathbf{a}|,) (( a) — любое число).

Итак, найдём модуль числа ( 3) и ( -3):

( left| mathbf{3} right|=mathbf{3})

( left| -mathbf{3} right|=mathbf{3}.)

Основные свойства модуля

Первое свойство модуля

Модуль не может быть выражен отрицательным числом ( |mathbf{a}|text{ }ge text{ }mathbf{0})

То есть, если ( mathbf{a}) – число положительное, то его модуль будет равен этому же числу.

Если ( mathbf{a}text{ }>text{ }mathbf{0},) то ( displaystyle left| a right|=a).

Если ( a) – отрицательное число, то его модуль равен противоположному числу.

Если ( atext{ }<text{ }mathbf{0},) то ( |mathbf{a}|text{ }=text{ }-mathbf{a})

А если ( a=0)? Ну, конечно! Его модуль также равен ( 0):

Если ( a=0), то ( |mathbf{a}|=mathbf{a}), или ( displaystyle left| 0 right|=0).

Из этого следует, что модули противоположных чисел равны, то есть:

( left| -4 right|text{ }=text{ }left| 4 right|text{ }=text{ }4;)

( left| -7 right|text{ }=text{ }left| 7 right|text{ }=text{ }7.)

А теперь потренируйся:

  • ( left| 9 right|text{ }=text{ }?;)
  • ( left| -3 right|text{ }=text{ }?;)
  • ( left| 16 right|text{ }=text{ }?;)
  •  ( left| 8 right|text{ }=text{ }?;)
  • ( left| -17 right|text{ }=text{ }?.)

Ответы: 9; 3; 16; 8; 17.

Довольно легко, правда? А если перед тобой вот такое число: ( left| 2-sqrt{5} right|=?)

Как быть здесь? Как раскрыть модуль в этом случае? Действуем по тому же сценарию.

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль:

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим ( 2-sqrt{5}):

( 2<sqrt{5}) (Забыл, что такое корень? Бегом повторять!)

Если ( 2<sqrt{5}), то какой знак имеет ( 2-sqrt{5})? Ну конечно, ( 2-sqrt{5}<0)!

А, значит, знак модуля раскрываем, меняя знак у выражения:

( left| 2-sqrt{5} right|=-left( 2-sqrt{5} right)=-2+sqrt{5}=sqrt{5}-2)

Разобрался? Тогда попробуй сам:

  • ( left| sqrt{3}-1 right|=?)
  • ( left| 3-sqrt{7} right|=?)
  • ( left| 2-sqrt{7} right|=?)
  • ( left| sqrt{13}-4 right|=?)

Ответы:

( sqrt{3}-1; 3-sqrt{7}; sqrt{7}-2; 4-sqrt{13.})

Какими же ещё свойствами обладает модуль?

Во-первых, если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел.

То есть: ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|)

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

Например:

( left| mathbf{5}cdot mathbf{7} right|text{ }=text{ }left| mathbf{5} right|cdot left| mathbf{7} right|text{ }=text{ }mathbf{5}cdot mathbf{7}text{ }=text{ }mathbf{35};)

( left| mathbf{3}cdot left( -mathbf{2} right) right|text{ }=text{ }left| mathbf{3} right|cdot left| -mathbf{2} right|text{ }=text{ }mathbf{3}cdot mathbf{2}text{ }=text{ }mathbf{6}.)

А что, если нам нужно разделить два числа (выражения) под знаком модуля? Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

( displaystyle |frac{a}{b}|=frac{|a|}{|b|}) при условии, что ( mathbf{b}ne mathbf{0}) (так как на ноль делить нельзя).

Еще одно свойство модуля…

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел.

( |a+bleft| text{ }le text{ } right|aleft| + right|b|)

Почему так? Всё очень просто! Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное.

Допустим, что числа ( a) и ( b) оба положительные. Тогда левое выражение будет равно правому выражению. Рассмотрим на примере:

( left| mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{10} right|text{ }=text{ }mathbf{10}) ( left| mathbf{3} right|+left| mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

Выражения также равны, если оба числа отрицательны:

( displaystyle |-3+(-7)|~=~|-3-7|~)( displaystyle=|-10|=10) ( |-mathbf{3}left| + right|-mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

( left| -mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{4} right|text{ }=text{ }mathbf{4}) ( |-mathbf{3}left| + right|mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

или

( left| mathbf{3}+left( -mathbf{7} right) right|text{ }=text{ }left| -mathbf{4} right|text{ }=text{ }mathbf{4}) ( left| mathbf{3} right|+left| -mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

( mathbf{4}<mathbf{10})

Рассмотрим еще парочку полезных свойств модуля

Что если перед нами такое выражение:

( left| 7x right|)

Что мы можем сделать с этим выражением?

Значение x нам неизвестно, но зато мы уже знаем, что ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|), а значит ( left| 7x right|=left| 7 right|cdot left| x right|). Число ( 7) больше нуля, а значит можно просто записать:

( left| 7x right|=left| 7 right|cdot left| x right|=7left| x right|)

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

( left| cx right|=ccdot left| x right|,) при ( c>0)

А чему равно такое выражение:

( {{left| x right|}^{2}}=?)

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему степень и ее свойства.

И что же получается? А вот что:

( {{left| x right|}^{2}}={{x}^{2}})

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

( {{left| 5 right|}^{2}}={{5}^{2}}=25)

( {{left| -5 right|}^{2}}=?)

Ну, и почему сомнения? Действуем смело!

( {{left| -5 right|}^{2}}={{5}^{2}}=25)

Во всем разобрался? Тогда вперед тренироваться на примерах!

Тренировка на примерах

1. Найдите значение выражения ( |xleft| text{ }+text{ } right|y|), если ( x=text{ }-7,5text{ },y=text{ }12.)

2. У каких чисел модуль равен ( 5)?

3. Найдите значение выражений:

а) ( |3|text{ }+text{ }|-9|;)

б) ( |-5|text{ }-text{ }|6|;)

в) ( |15left| cdot right|-3|;)

г) ( displaystyle frac{|8|}{|-2|}).

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1:

Итак, подставим значения ( x) и ( y) в выражение ( |mathbf{x}left| text{ }-text{ } right|mathbf{y}|.) Получим:

( |-7,5|text{ }+text{ }|12|text{ }=7,5text{ }+text{ }12text{ }=text{ }19,5.)

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное ( 5) имеют два числа: ( 5) и ( -5).

Решение 3:

а) ( |3|text{ }+text{ }|-9|=text{ }3+9=text{ }12;)
б) ( |-5|-text{ }left| 6 right|text{ }=text{ }5-6=text{ }-1;)
в) ( |15left| cdot right|-3|text{ }=text{ }15cdot 3=text{ }45;)
г) ( frac{|8|}{|-2|}=frac{8}{2}=4.)

Все уловил? Тогда пора перейти к более сложному!

Решение более сложных примеров

Попробуем упростить выражение ( left| sqrt{3}-2 right|+left| sqrt{3}+5 right|)

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

( displaystyle sqrt{3} approx 1,7). Получается, значение первого выражения под модулем ( displaystyle sqrt{3}-2approx 1,7-2approx -0,3text{ }).

( -0,3<0), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Модуль числа и его свойства (строгие определения и доказательства)

Модуль (абсолютная величина) числа ( x) — это само число ( x), если ( xge 0), и число ( -x), если ( x<0):

( left| x right|=left{ begin{array}{l}x,text{ }xge 0\-x,text{ }x<0end{array} right.)

Например: ( left| 4 right|=4;text{ }left| 0 right|=0;text{ }left| -3 right|=-left( -3 right)=3.)

Пример:

Упростите выражение ( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|).

Решение:

( sqrt{5}-3<0Rightarrow left| sqrt{5}-3 right|=-left( sqrt{5}-3 right)=3-sqrt{5};)

( sqrt{5}+1>0Rightarrow left| sqrt{5}+1 right|=sqrt{5}+1;)

( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|=3-sqrt{5}+sqrt{5}+1=4.)

Основные свойства модуля (итог)

Для всех ( x,yin mathbb{R}):

  • ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0;)
  • ( left| -x right|=left| x right|;)
  • ( left| xcdot y right|=left| x right|cdot left| y right|;)
  • ( left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0};)
  • ( left| x+y right|le left| x right|+left| y right|)
  • ( left| cx right|=ccdot left| x right|, при text{ }c>0)
  • ( {{left| x right|}^{2}}={{x}^{2}})

Докажите свойство модуля: ( left| x+y right|le left| x right|+left| y right|)

Доказательство:

Предположим, что существуют такие ( x;yin mathbb{R}), что ( left| x+y right|>left| x right|+left| y right|.) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):

( displaystyle begin{array}{l}left| x+y right|>left| x right|+left| y right|Leftrightarrow \{{left( x+y right)}^{2}}>{{left( left| x right|+left| y right| right)}^{2}}Leftrightarrow \{{x}^{2}}+2xy+{{y}^{2}}>{{x}^{2}}+2cdot left| x right|cdot left| y right|+{{y}^{2}}Leftrightarrow \xy>left| x right|cdot left| y right|Leftrightarrow \xy>left| xy right|,end{array})

а это противоречит определению модуля.

Следовательно, таких ( x;yin mathbb{R}) не существует, а значит, при всех ( x,text{ }yin mathbb{R}) выполняется неравенство ( left| x+y right|le left| x right|+left| y right|.)

А теперь самостоятельно…

Докажите свойство модуля: ( left| cx right|=ccdot left| x right|, при text{ }c>0)

Воспользуемся свойством №3: ( left| ccdot x right|=left| c right|cdot left| x right|), а поскольку ( c>0text{ }Rightarrow text{ }left| c right|=c), тогда

( left| cx right|=ccdot left| x right|), ч.т.д.

Упростите выражение ( left| frac{31}{8}-sqrt{15} right|+left| frac{15}{4}-sqrt{15} right|)

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем:

Подготовка к ЕГЭ на 90+ в мини-группах

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Модуль числа — теория и решение задач

Модуль числа – это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности 🙂

А между тем она проста как апельсин. Но, чтобы ее понять, давай сначала разберемся, зачем и кому он нужен.

Ситуация первая

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине «минус 70 километров» (мы проедем 70 километров, не важно, в каком направлении), как и не можем купить «минус 5 кг апельсинов». Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.

Ситуация вторая

Ты покупаешь пакет чипсов «Lay’s». На пакете написано, что он весит 100 грамм. Но, если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.

И что, можно идти судиться с компанией «Lay’s», если они тебе недовесили?

Нет. Потому что «Lay’s» устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это «плюс-минус» – это и есть модуль.

Ситуация третья

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: «Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!» 20 тысяч – это и есть модуль.

А вообще для простоты запомни, что модуль это расстояние от точки отсчета в любую сторону.

Ну вот, ты уже почти все знаешь. Давай теперь подробнее…

Источник

Что такое модуль действительного числа

В данной публикации мы рассмотрим определение, геометрическую интерпретацию, график функции и примеры модуля положительного/отрицательного числа и нуля.

Определение модуля числа

Модуль действительного числа (иногда называется абсолютной величиной) – это величина, равная ему же, если число положительное или равная противоположному, если оно отрицательное.

Модуль числа a обозначается вертикальными черточками с обеих сторон от него – |a|.

modul chisla 4

Противоположное число отличается от исходного знаком. Например, для числа 5 противоположным является -5. При этом ноль является противоположным самому себе, т.е.

Геометрическая интерпретация модуля

Модуль числа a – это расстояние от начала координат (O) до точки A на координатной оси, которая соответствует числу a, т.е.

modul chisla 2

График функции с модулем

График четной функции y = |х| выглядит следующим образом:

modul chisla 3

Чему равняются следующие модули |3|, |-7|, |12,4| и |-0,87|.

Решение:
Согласно приведенному выше определению:

Источник

Модуль числа

5f23e63c5d09d195571681

Определение модуля числа

Алгебра дает четкое определение модуля числа. Модуль в математике — это расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.

Если мы возьмем некоторое число «a» и изобразим его на координатной прямой точкой A — расстояние от точки A до начала отсчёта (то есть до нуля) длина отрезка OA будет называться модулем числа «a».

Знак модуля: |a| = OA.

Разберем на примере:

Точка В, которая соответствует числу −3, находится на расстоянии 3 единичных отрезков от точки O (то есть от начала отсчёта). Значит, длина отрезка OB равна 3 единицам.

Число 3 (длину отрезка OB) называют модулем числа −3.

Обозначение модуля: |−3| = 3 (читают: «модуль числа минус три равен трём»).

Точка С, которая соответствует числу +4, находится на расстоянии четырех единичных отрезков от начала отсчёта, то есть длина отрезка OС равна четырем единицам.

Число 4 называют модулем числа +4 и обозначают так: |+4| = 4.

Также можно опустить плюс и записать значение, как |4| = 4.

Записывайся на занятия по математике для учеников с 1 по 11 классы.

Свойства модуля числа

Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.

1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:

2. Модуль положительного числа равен самому числу.

3. Модуль отрицательного числа равен противоположному числу.

4. Модуль нуля равен нулю.

5. Противоположные числа имеют равные модули.

6. Модуль произведения равен произведению модулей этих чисел.

Геометрическая интерпретация модуля

Как мы уже знаем, модуль числа — это расстояние от нуля до данного числа. То есть расстояние от точки −5 до нуля равно 5.

Нарисуем числовую прямую и отобразим это на ней.

Эта геометрическая интерпретация используется для решения уравнений и неравенств с модулем. Давайте рассмотрим на примерах.

Решим уравнение: |х| = 5.

Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно 5. Это точки 5 и −5. Значит, уравнение имеет два решения: x = 5 и x = −5.

График функции

График функции равен y = |х|.

Для x > 0 имеем y = x.

Этот график можно использовать при решении уравнений и неравенств.

Корень из квадрата

Оно равно a при а > 0 и −а, при а

Модуль комплексного числа

Чему равен модуль числа в данном случае? Это арифметический квадратный корень из суммы квадратов действительной и мнимой части комплексного числа:

Свойства модуля комплексных чисел

Модуль рационального числа

Как найти модуль рационального числа — это расстояние от начала отсчёта до точки координатной прямой, которая соответствует этому числу.

Модуль рационального числа, примеры:

Модуль вещественных чисел

Модуль противоположного числа, нуля, отрицательного и положительного чисел

Закрепим свойства модуля числа, которые мы рассмотрели выше:

teen girl

woman

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Записаться на марафон

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Источник

Модули. Применение геометрического смысла модуля при решений уравнений и неравенств

Цель: Актуализировать знания школьников о смысле понятия «модуль». Учить их применять эти знания при решении уравнении, неравенств и систем уравнении с модулями.

Для того, чтобы научиться решать уравнения и неравенства с модулем, необходимо хорошо разобраться с понятием модуля, его геометрическим смыслом и свойствами.

С рассмотрения этого материала мы и начнем наше занятие.

1. Определение: Модулем числа называется само число, если оно неотрицательно, или число противоположное данному, если оно отрицательно.

Следовательно, при любых значениях переменной |а| есть число неотрицательное.

2. Рассмотрим основные свойства модуля, которые используются при решении уравнений и неравенств, содержащих модуль.

Свойства модуля

— Модуль числа есть величина неотрицательная: |а|>0 или равно 0.

— Модули противоположенных чисел равны: |а|= |-а|

— Модуль произведения равен произведению модулей множителей: |а*в|= |а|*|в|.

— Модуль частного равен частному модулей числителя и знаменателя: |а/в|=|а|/|в|, где в не равен нулю.

— Модуль суммы не больше суммы модулей ее слагаемых: |а+в|≤|а|+|в|.

При этом равенство |а+в|=|а|+|в| имеет место тогда и только тогда, когда слагаемые одного знака или одно из слагаемых равно нулю.

— Два числа, модули которых равны, либо равны между собой, либо отличаются только знаками, то есть являются противоположными: |а|=|в|, если, а=в или, а=–в.

Преобразование выражений, содержащих модули

При решении уравнении и неравенств с модулем, часто приходится преобразовывать их, раскрывая знак модуля.

Рассмотрим, по каким правилам раскрывается модуль.

Из определения модуля следует: чтобы раскрыть знак модуля, надо знать знак подмодульного выражения.

Составим схему раскрытия модуля:

а) если знак подмодульного выражения неотрицателен, то знак модуля опускается: |а| =а.

б) если знак подмодульного выражения отрицателен, то подмодульное выражение умножается на (-1), то есть заменяется противоположенным выражением: |а| =-1а.

Рассмотрим несколько примеров.

Пример 1.1

б) |3+х|, если х 5, то х-2 > 0, поэтому |х-2|=х-2;

4. Задания для самостоятельной работы

б) |- 3/7х|, если х 2 |, если а > 0;

3. Решить неравенство самостоятельно:

4. Решить уравнение:

5. Решить уравнение:

6. Решить неравенство:

7. Найдите наибольшее натуральное значение параметра с при котором решение неравенства

Это задание можно предложить сильным школьникам для домашней работы с последующей проверкой на уроке.

2. Для решения неравенства сделаем ещё два рисунка.

Значение выражения, стоящего под модулем, не должно превышать 2, значит

Значение выражения, стоящего под модулем, должно быть больше, чем 48 единиц, значит:

Источник

Модуль числа

Модуль числа и уравнения с модулем — тема особенная, прямо-таки заколдованная :-) Она совсем не сложная, просто в школе её редко объясняют нормально. В результате без специальной подготовки почти никто из школьников не может дать правильное определение модуля и тем более решить уравнение с модулем. И эту картину мы наблюдаем на протяжении многих лет.

Поэтому осваивайте тему «Уравнения и неравенства с модулем» по нашим статьям и на наших занятиях! Вы сумеете обойти множество конкурентов на ЕГЭ, олимпиадах и вступительных экзаменах.

Модуль числа называют ещё абсолютной величиной этого числа. Попросту говоря, при взятии модуля нужно отбросить от числа его знак. В записи положительного числа и так нет. никакого знака, поэтому модуль положительного числа равен ему самому. Например, Модуль нуля равен нулю. А модуль отрицательного числа равен противоположному ему положительному
(без знака!). Например,

Обратите внимание: модуль числа всегда неотрицателен:

formula42872

От большинства известных из школы определений оно отличается лишь одним: в нём есть выбор. Есть условие. И в зависимости от этого условия мы раскрываем модуль либо так, либо иначе.

Так же, как в информатике — в разветвляющихся алгоритмах с применением условных операторов. Как, вообще-то, и в жизни: сдал ЕГЭ на минимальный балл — можешь подавать документы в ВУЗ. Не сдал на минимальный балл — можешь идти в армию :-)

Таким образом, если под знаком модуля стоит выражение, зависящее от переменной, мы раскрываем модуль по определению. Например,

formula42874
В некоторых случаях модуль раскрывается однозначно. Например, так как выражение под знаком модуля неотрицательно при любых x и y. Или: так так как выражение под модулем неположительно при любых z.

Геометрическая интерпретация модуля

Нарисуем числовую прямую. Модуль числа — это расстояние от нуля до данного числа. Например, То есть расстояние от точки −5 до нуля равно 5.
Эта геометрическая интерпретация очень полезна для решения уравнений и неравенств с модулем.

Рассмотрим простейшее уравнение . Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно трём. Это точки 3 и −3. Значит, у уравнения есть два решения: x = 3 и x = −3.

Вообще, если имеются два числа a и b, то равно расстоянию между ними на числовой прямой.
(В связи с этим нередко встречается обозначение длины отрезка AB, то есть расстояния от точки A до точки B.)

Ясно, что (расстояние от точки a до точки b равно расстоянию от точки b до точки a).

Решим уравнение . Эту запись можно прочитать так: расстояние от точки x до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.

Мы видим, что наше уравнение имеет два решения: −1 и 7. Мы решили его самым простым способом — без использования определения модуля.

Перейдём к неравенствам. Решим неравенство .

Эту запись можно прочитать так: «расстояние от точки x до точки −7 меньше четырёх». Отмечаем на числовой прямой точки, удовлетворяющие этому условию.

Другой пример. Решим неравенство |10 − x| ≥ 7.

Расстояние от точки 10 до точки x больше или равно семи. Отметим эти точки на числовой прямой.
Ответ: png

График функции

Этот график надо знать обязательно. Для имеем y = x. Для имеем y = −x. В результате получаем:
С помощью этого графика также можно решать уравнения и неравенства.

Корень из квадрата

Нередко в задачах ЕГЭ требуется вычислить , где – некоторое число или выражение. Не забывайте, что

Действительно, по определению арифметического квадратного корня — это такое неотрицательное число, квадрат которого равен . Оно равно при и при , т. е. как раз .

Примеры заданий ЕГЭ

1. Найдите значение выражения при .
Заметим, что при . Следовательно, значение нашего выражения равно: .

2. Найдите значение выражения при .

В следующей статье мы рассмотрим более сложные уравнения и неравенства с модулем.

Источник

Подписывайтесь на канал в Яндекс. Дзен или на канал в телеграм “Математика не для всех”, чтобы не пропустить интересующие Вас материалы.

Модуль числа. А вы помните школьную математику ?

Доброго времени суток, уважаемые Читатели! Тема школьной математики на моём канале началась еще в далеком апреле с публикации о теореме Виета, а недавно продолжилась логарифмами. Сегодня же речь пойдет о куда более простом, но не менее важном понятии – модуле числа. Поехали!

Определение

Модулем или абсолютной величиной числа x называется расстояние от начала отсчета до точки координатной плоскости, соответствующей этому числу. Модуль числа обозначается |x|.

Впервые это понятие ввел учение Ньютона Роджер Котс, а современное обозначение – Карл Вейерштрасс в 1841 году.

Исходя из определения, можно заключить, что модуль любого числа – есть величина неотрицательная (расстояние же не может быть меньше нуля!). Другие свойства модуля проще всего запомнить, используя его геометрическую интерпретацию

Модули вещественных чисел

Если Вы забыли, что такое вещественные числа – призываю прочитать этот материал.

На представленном  рисунке |A| = 9, |B|=4  |D|=4 |E|=6,5
На представленном рисунке |A| = 9, |B|=4 |D|=4 |E|=6,5

Итак модуль определен для всех вещественных чисел, куда входят натуральные, целые, рациональные, иррациональные и трансцендентные числа. Т.к. модуль неотрицателен, для него верны следующие утверждения:

Функция sgn(x) возвращает знак x. Если x<0, sgn(x)=-1, x>0, sgn(x)=1, x=0, sgn(x)=0
Функция sgn(x) возвращает знак x. Если x<0, sgn(x)=-1, x>0, sgn(x)=1, x=0, sgn(x)=0

Дополнительно модуль можно определить как кусочно-заданную функцию вида:

Из графика видно, что функция |x| - четная. Так же эта функция имеет дифференциал во всех точках кроме 0, в которой имеет излом.
Из графика видно, что функция |x| – четная. Так же эта функция имеет дифференциал во всех точках кроме 0, в которой имеет излом.

Модуль комплексного числа

Напомню, что комплексные числа – это числа вида Z=x+iy, где i – мнимая единица, а x,y – вещественные числа. Исходя из геометрического представления комплексного числа, его модуль определяется следующим образом:

Используем теорему Пифагора. Re - действительная, Im - мнимая оси.
Используем теорему Пифагора. Re – действительная, Im – мнимая оси.

Модуль и норма

Понятие “норма” – это результат обобщения понятия модуля и абсолютной величины на случай векторного пространства (в нём есть векторы и скаляры – числа, которые подчиняются восьми аксиомам), частным случаем которого, например, является трехмерное Эвклидово. Норма – это некое отображение (читайте про это понятие), переводящее точку векторного пространства в числовую ось и удовлетворяющее следующим требованиям (аксиомам):

V - векторное пространство
V – векторное пространство

Оказывается, что модуль лучше всего подходит, чтобы быть нормой векторного пространства, ведь для него по определению выполняются указанные выше аксиомы. В трехмерном Эвклидовом пространстве вместо нормы вектора также употребляют понятие “длина”.

Координаты вектора ОА равные (x,y,z)
Координаты вектора ОА равные (x,y,z)

Как работает “отображение”? Представьте, что на рисунке выше вектор ОА имеет координаты (2,3,-1), тогда длина (норма) этого вектора равна ((2^2)+(3^2)+(-1)^2) = 14. Таким образом, вычислив норму вектора, мы однозначно сопоставили точку векторного пространства некой числовой величине, что и является отображением.

Источник: https://businesslike.ru/wp-content/uploads/2017/09/foto-krizis-jizni.jpg
Источник: https://businesslike.ru/wp-content/uploads/2017/09/foto-krizis-jizni.jpg

Понравилось? А знаете, как теорема Байеса может буквально перевернуть Вашу логику с ног на голову ?

Путеводитель по каналу “Математика не для всех” – здесь собрано больше 100 статей на самые разнообразные темы: как для новичков, так и для более начитанных математиков! ССЫЛКА НА ДЗЕН-КАНАЛ и TELEGRAM. Также есть группы в VK,Одноклассниках и Facebook : всё для математического просвещения!

Второй проект канал “Русский язык не для всех”.

Добавить комментарий