Рассмотрим базовые задачи на подобные треугольники в трапеции.
I. Точка пересечения диагоналей трапеции — вершина подобных треугольников.
Рассмотрим треугольники AOD и COB.
Визуализация облегчает решение задач на подобие. Поэтому подобные треугольники в трапеции выделим разными цветами.
1) ∠AOD=∠COB (как вертикальные);
2)∠DAO=∠BCO (как внутренние накрест лежащие при AD ∥ BC и секущей AC).
Следовательно, треугольники AOD и COB подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Задача.
Одна из диагоналей трапеции равна 28 см и делит другую диагональ на отрезки длиной 5 см и 9 см. Найти отрезки, на которые точка пересечения диагоналей делит первую диагональ.
Решение:
AO=9 см, CO=5 см, BD=28 см. BO =?, DO- ?
Доказываем подобие треугольников AOD и COB. Отсюда
Выбираем нужные отношения:
Пусть BO=x см, тогда DO=28-x см. Следовательно,
BO=10 см, DO=28-10=18 см.
Ответ: 10 см, 18 см.
Задача
Известно, что О — точка пересечения диагоналей трапеции ABCD (AD ∥ BC). Найти длину отрезка BO, если AO:OC=7:6 и BD=39 см.
Решение:
Аналогичн0, доказываем подобие треугольников AOD и COB и
Пусть BO=x см, тогда DO=39-x см. Таким образом,
Ответ: 18 см.
II. Продолжения боковых сторон трапеции пересекаются в точке.
Аналогично задаче I, рассмотрим треугольники AFD и BFC:
1) ∠F — общий;
2)∠ DAF=∠CBF (как соответственные углы при BC ∥ AD и секущей AF).
Следовательно, треугольники AFD и BFC подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Задача
Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке F. Меньшее основание BC равно 4 см, BF=5 см, AB=15 см. Найти большее основание трапеции.
Решение:
Доказываем, треугольники AFD и BFC — подобны.
Следовательно,
Ответ: 16 см.
В следующий раз рассмотрим задачи на отношение площадей подобных треугольников.
Узнать ещё
Знание — сила. Познавательная информация
Подобные треугольники в трапеции
Рассмотрим базовые задачи на подобные треугольники в трапеции.
I. Точка пересечения диагоналей трапеции — вершина подобных треугольников.
Рассмотрим треугольники AOD и COB.
Визуализация облегчает решение задач на подобие. Поэтому подобные треугольники в трапеции выделим разными цветами.
1) ∠AOD= ∠ COB (как вертикальные);
2) ∠DAO= ∠ BCO (как внутренние накрест лежащие при AD ∥ BC и секущей AC).
Следовательно, треугольники AOD и COB подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Одна из диагоналей трапеции равна 28 см и делит другую диагональ на отрезки длиной 5 см и 9 см. Найти отрезки, на которые точка пересечения диагоналей делит первую диагональ.
AO=9 см, CO=5 см, BD=28 см. BO =?, DO- ?
Доказываем подобие треугольников AOD и COB. Отсюда
Выбираем нужные отношения:
Пусть BO=x см, тогда DO=28-x см. Следовательно,
BO=10 см, DO=28-10=18 см.
Ответ: 10 см, 18 см.
Известно, что О — точка пересечения диагоналей трапеции ABCD (AD ∥ BC). Найти длину отрезка BO, если AO:OC=7:6 и BD=39 см.
Аналогичн0, доказываем подобие треугольников AOD и COB и
Пусть BO=x см, тогда DO=39-x см. Таким образом,
II. Продолжения боковых сторон трапеции пересекаются в точке.
Аналогично задаче I, рассмотрим треугольники AFD и BFC:
2) ∠ DAF= ∠ CBF (как соответственные углы при BC ∥ AD и секущей AF).
Следовательно, треугольники AFD и BFC подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке F. Меньшее основание BC равно 4 см, BF=5 см, AB=15 см. Найти большее основание трапеции.
Доказываем, треугольники AFD и BFC — подобны.
В следующий раз рассмотрим задачи на отношение площадей подобных треугольников.
Основания BC и AD трапеции
Рассмотрим еще одну задачу на подобие треугольников.
Основания BC и AD трапеции ABCD равны соответственно 9 и 36, BD=18. Доказать, что треугольники CBD и BDA подобны.
Дано : ABCD — трапеция, AD ∥ BC,
Рассмотрим треугольники и BDA.
1) ∠CBD=∠BDA (как внутренние накрест лежащие при AD ∥ BC и секущей BD)
Диагонали трапеции
Свойства диагоналей трапеции
- Отрезок, соединяющий середины диагоналей трапеции равен половине разности оснований
- Треугольники, образованные основаниями трапеции и отрезками диагоналей до точки их пересечения – подобны
- Треугольники, образованные отрезками диагоналей трапеции, стороны которых лежат на боковых сторонах трапеции – равновеликие (имеют одинаковую площадь)
- Если продлить боковые стороны трапеции в сторону меньшего основания, то они пересекутся в одной точке с прямой, соединяющей середины оснований
- Отрезок, соединяющий основания трапеции, и проходящий через точку пересечения диагоналей трапеции, делится этой точкой в пропорции, равной соотношению длин оснований трапеции
- Отрезок, параллельный основаниям трапеции, и проведенный через точку пересечения диагоналей, делится этой точкой пополам, а его длина равна 2ab/(a + b), где a и b – основания трапеции
Свойства отрезка, соединяющего середины диагоналей трапеции
Свойства треугольников, образованных диагоналями трапеции
Свойства треугольников, лежащих на боковой стороне и диагоналях трапеции
Свойства трапеции, достроенной до треугольника
- Треугольники, образованные основаниями трапеции с общей вершиной в точке пересечения продленных боковых сторон являются подобными
- Прямая, соединяющая середины оснований трапеции, является, одновременно, медианой построенного треугольника
Свойства отрезка, соединяющего основания трапеции
Свойства отрезка, параллельного основаниям трапеции
- Заданный отрезок (KM) делится точкой пересечения диагоналей трапеции пополам
- Длина отрезка, проходящего через точку пересечения диагоналей трапеции и параллельного основаниям, равна KM = 2ab/(a + b)
Формулы для нахождения диагоналей трапеции
Формулы нахождения диагоналей трапеции через основания, боковые стороны и углы при основании
Формулы нахождения диагоналей трапеции через высоту
Примечание. В данном уроке приведено решение задач по геометрии о трапециях. Если Вы не нашли решение задачи по геометрии, интересующего Вас типа – задайте вопрос на форуме.
Задача.
Диагонали трапеции ABCD (AD | | ВС) пересекаются в точке О. Найдите длину основания ВС трапеции, если основание АD = 24 см, длина АО = 9см, длина ОС = 6 см.
Решение.
Решение данной задачи по идеологии абсолютно идентично предыдущим задачам.
Треугольники AOD и BOC являются подобными по трем углам – AOD и BOC являются вертикальными, а остальные углы попарно равны, поскольку образованы пересечением одной прямой и двух параллельных прямых.
Поскольку треугольники подобны, то все их геометрические размеры относятся между собой, как геометрически размеры известных нам по условию задачи отрезков AO и OC. То есть
AO / OC = AD / BC
9 / 6 = 24 / BC
BC = 24 * 6 / 9 = 16
Задача .
В трапеции ABCD известно, что AD=24, ВС=8, АС=13, BD=5√17. Найдите площадь трапеции.
Решение .
Для нахождения высоты трапеции из вершин меньшего основания B и C опустим на большее основание две высоты. Поскольку трапеция неравнобокая – то обозначим длину AM = a, длину KD = b ( не путать с обозначениями в формуле нахождения площади трапеции). Поскольку основания трапеции параллельны, а мы опускали две высоты, перпендикулярных большему основанию, то MBCK – прямоугольник.
Значит
AD = AM+BC+KD
a + 8 + b = 24
a = 16 – b
Треугольники DBM и ACK – прямоугольные, так их прямые углы образованы высотами трапеции. Обозначим высоту трапеции через h. Тогда по теореме Пифагора
h 2 + (24 – a) 2 = (5√17) 2
и
h 2 + (24 – b) 2 = 13 2
Учтем, что a = 16 – b , тогда в первом уравнении
h 2 + (24 – 16 + b) 2 = 425
h 2 = 425 – (8 + b) 2
Подставим значение квадрата высоты во второе уравнение, полученное по Теореме Пифагора. Получим:
425 – (8 + b) 2 + (24 – b) 2 = 169
-(64 + 16b + b) 2 + (24 – b) 2 = -256
-64 – 16b – b 2 + 576 – 48b + b 2 = -256
-64b = -768
b = 12
Таким образом, KD = 12
Откуда
h 2 = 425 – (8 + b) 2 = 425 – (8 + 12) 2 = 25
h = 5
Найдем площадь трапеции через ее высоту и полусумму оснований
, где a b – основания трапеции, h – высота трапеции
S = (24 + 8) * 5 / 2 = 80 см 2
Ответ: площадь трапеции равна 80 см 2 .
[spoiler title=”источники:”]
http://profmeter.com.ua/communication/learning/course/course7/lesson181/
[/spoiler]
Диагонали трапеции пересекаются в точке. Что можно сказать об образовавшихся треугольниках, прилежащих к основаниям?
Утверждение.
Если диагонали трапеции пересекаются в точке, то образованные при этом прилежащие к основаниям треугольники подобны.
Дано: ABCD — трапеция,
Доказать:
Доказательство:
В треугольниках AOD и COB
1) ∠AOD=∠COB (как вертикальные)
2) ∠DAO=∠BCO (как внутренние накрест лежащие при AD ∥ BC и секущей AC).
Следовательно, треугольники AOD и COB подобны (по двум углам).
Что и требовалось доказать.
Задача.
Одна из диагоналей трапеции равна 14 см и делит другую диагональ на отрезки длиной см и см. Найти отрезки, на которые точка пересечения диагоналей делит первую диагональ.
Дано: ABCD — трапеция,
AC=14 см, DO=20 см, BO=8 см.
Найти: AO, CO.
Решение:
(доказали в утверждении выше).
Из подобия треугольников следует пропорциональность их соответствующих сторон:
Пусть CO=x см, тогда AO=(14-x) см. Отсюда
Значит, CO=4 см, AO=14-4=10 см.
Ответ: 4 см, 10 см.
Подобные треугольники — это треугольники, у которых отношения всех их соответствующих сторон равны. Отношение k соответствующих сторон подобных треугольников называется коэффициентом подобия этих треугольников.
На рисунке: △ABC∽△A1B1C1 ⇔ AB/A1B1=AC/A1C1=BC/B1C1; k=AB/A1B1=AC/A1C1=BC/B1C1.
Свойство углов подобных треугольников
Если треугольники подобны, то все их соответствующие углы равны.
На рисунке: △ABC∽△A1B1C1 ⇒ ∠A=∠A1, ∠B=∠B1, ∠C=∠C1.
Признаки подобия треугольников
Отношения для подобных треугольников
- Отношение любых двух соответствующих линейных элементов (стороны, медианы, радиус, периметр) подобных треугольников равно коэффициенту подобия этих треугольников.
- Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Параллельные прямые и подобие треугольников
Если стороны двух треугольников лежат на соответственно параллельных или совпадающих прямых, то такие треугольники подобны. В частности, параллельные прямые отсекают от угла, либо вертикальных углов, подобные треугольники. На рисунке: AB||A1B1, AC||A1C1, BC||B1C1.
При пересечении диагоналей трапеции, а также продолжений её боковых сторон, образуются подобные треугольники, прилежащие к основаниям трапеции. Коэффициент подобия в обоих случаях равен отношению оснований трапеции. На рисунке: k=AD/BC; k=AD/BC.
При пересечении двух прямых с окружностью образуются подобные треугольники. На рисунке: k=AB/B1A1=AC/B1C*BC/A1C.
Касательная к окружности и подобные треугольники.
Пусть к окружности проведена касательная CB и секущая CA, пересекающая окружность во второй раз в точке A1. Тогда △ABC∽△BA1C. На рисунке: △ABC∽△BCA1, k=AB/BA1=AC/BC * BC/A1C.