Как найти производную от арксинуса

Содержание:

  • Формула
  • Примеры вычисления производной арксинуса

Формула

$(arcsin x)^{prime}=frac{1}{sqrt{1-x^{2}}}$

Производная арксинуса равна единице, деленной на корень квадратный из разности единицы и аргумента в квадрате.

Если аргумент арксинуса отличен от $x$, то производную ищем как
производную сложной функции, то есть по формуле:

$$(arcsin u)^{prime}=frac{1}{sqrt{1-u^{2}}} cdot u^{prime}$$

то есть производную от арксинуса умножаем еще на производную аргумента.

Примеры вычисления производной арксинуса

Пример

Задание. Найти производную функции
$y(x)=frac{arcsin x}{2}$

Решение. Искомая производная

$$y^{prime}(x)=left(frac{arcsin x}{2}right)^{prime}$$

По правилам дифференцирования выносим константу за знак производной:

$$y^{prime}(x)=frac{1}{2} cdot(arcsin x)^{prime}=frac{1}{2} cdot frac{1}{sqrt{1-x^{2}}}=frac{1}{2 sqrt{1-x^{2}}}$$

Ответ. $y^{prime}(x)=frac{1}{2 sqrt{1-x^{2}}}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Вычислить производную функции $y(x)=3 arcsin x-2$

Решение. Искомая производная

$$y^{prime}(x)=(3 arcsin x-2)^{prime}$$

Производная разности функций равна разности производных этих функций:

$$y^{prime}(x)=(3 arcsin x)^{prime}-(2)^{prime}$$

В первом слагаемом вынесем 3 за знак производной, а вторая производная равна нулю, так как 2 – константа:

$$y^{prime}(x)=3 cdot(arcsin x)^{prime}-0=3 cdot frac{1}{sqrt{1-x^{2}}}=frac{3}{sqrt{1-x^{2}}}$$

Ответ. $y^{prime}(x)=frac{3}{sqrt{1-x^{2}}}$

Читать дальше: производная арккосинуса (arccosx)’.

При
выводе самой первой формулы таблицы
будем исходить из определения
производнойфункции в точке. Возьмем ,
где x –
любое действительное число, то есть, x –
любое число из области определения
функции .
Запишем предел отношения приращения
функции к приращению аргумента при :

Следует
заметить, что под знаком предела
получается выражение ,
которое не являетсянеопределенностью
ноль делить на ноль, так как в числителе
находится не бесконечно малая величина,
а именно ноль. Другими словами, приращение
постоянной функции всегда равно нулю.

Таким
образом, производная
постоянной функции
 равна
нулю на всей области определения
.

Производная степенной функции.

Формула
производной степенной функции имеет
вид ,
где показатель степени p –
любое действительное число.

Докажем
сначала формулу для натурального
показателя степени, то есть, для p
= 1, 2, 3, …

Будем
пользоваться определением производной.
Запишем предел отношения приращения
степенной функции к приращению
аргумента:

Для
упрощения выражения в числителе обратимся
к формуле бинома
Ньютона:

Следовательно,

Этим
доказана формула производной степенной
функции для натурального показателя.

Производная показательной функции.

Вывод
формулы производной приведем на основе
определения:

Пришли
к неопределенности. Для ее раскрытия
введем новую переменную ,
причем при .
Тогда .
В последнем переходе мы использовали
формулу перехода к новому основанию
логарифма.

Выполним
подстановку в исходный предел:

Если
вспомнить второй
замечательный предел, то придем к
формуле производной показательной
функции:

Производная логарифмической функции.

Докажем
формулу производной логарифмической
функции для всех x из
области определения и всех допустимых
значениях основания a логарифма.
По определению производной имеем:

Как
Вы заметили, при доказательстве
преобразования проводились с использованием
свойств логарифма. Равенство справедливо
в силу второго замечательного предела.

Производные тригонометрических функций.

Для
вывода формул производных тригонометрических
функций нам придется вспомнить некоторые
формулы тригонометрии, а также первый
замечательный предел.

По
определению производной для функции
синуса имеем .

Воспользуемся
формулой разности синусов:

Осталось
обратиться к первому замечательному
пределу:

Таким
образом, производная функции sin
x
 есть cos
x
.

Абсолютно
аналогично доказывается формула
производной косинуса.

Следовательно,
производная функции cos
x
 есть –sin
x
.

Вывод
формул таблицы производных для тангенса
и котангенса проведем с использованием
доказанных правил дифференцирования
(производная
дроби).

Производные гиперболических функций.

Правила
дифференцирования и
формула производной показательной
функции из таблицы производных позволяют
вывести формулы производных гиперболического
синуса, косинуса, тангенса и котангенса.

Производная обратной функции.

Перед
началом изучения данной статьи рекомендуем
вспомнить определение
и свойства обратной функции.

Чтобы
при изложении не было путаницы, давайте
обозначать в нижнем индексе аргумент
функции, по которому выполняется
дифференцирование, то есть, 
это производная функции f(x) по x.

Теперь
сформулируем правило
нахождения производной обратной функции.

Пусть
функции y
= f(x)
 и x
= g(y)
 взаимно
обратные, определенные на
интервалах и соответственно.
Если в точке существует
конечная отличная от нуля производная
функции f(x),
то в точке существует
конечная производная обратной
функции g(y),
причем .
В другой записи .

Можно
это правило переформулировать для
любого x из
промежутка ,
тогда получим .

Давайте
проверим справедливость этих формул.

Найдем
обратную функцию для натурального
логарифма (здесь y –
функция, а x
аргумент). Разрешив это уравнение
относительно x,
получим (здесь x –
функция, а y –
ее аргумент). То есть, и взаимно
обратные функции.

Из таблицы
производных видим,
что и .

Убедимся,
что формулы нахождения производных
обратной функции приводят нас к этим
же результатам:

Как
видите, получили такие же результаты
как и в таблице производных.

Теперь
мы обладаем знаниями для доказательства
формул производных обратных
тригонометрических функций.

Начнем
с производной арксинуса.

Для обратной
функцией является .
Тогда по формуле производной обратной
функции получаем

Осталось
провести преобразования.

Так
как областью значений арксинуса является
интервал ,
то (смотрите
раздел основные
элементарные функции, их свойства и
графики). Поэтому ,
а не
рассматриваем.

Следовательно, .
Областью определения производной
арксинуса является промежуток (-1;
1)
.

Для
арккосинуса все делается абсолютно
аналогично:

Найдем
производную арктангенса.

Для обратной
функцией является .

Выразим
арктангенс через арккосинус, чтобы
упростить полученное выражение.

Пусть arctgx
= z
,
тогда

Следовательно,

Схожим
образом находится производная
арккотангенса:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Производная арксинуса

    [    left( arcsin x right)' = frac{1}{sqrt{1-x^{2}}} ]

Функция y = arcsin x является обратной к функции y = sin x и также является нечетной.

Если аргумент арксинуса есть сложной функцией (то есть там стоит выражение более сложное, чем просто x), то формула для производной принимает вид:

    [    left( arcsin u(x) right)' = frac{1}{sqrt{1-u^{2}(x)}} cdot left( u(x) right)' ]

Примеры решения задач по теме «Производная арксинуса»

Понравился сайт? Расскажи друзьям!

Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика XVIII века Карла Шерфера и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: {displaystyle sin ^{-1},{frac {1}{sin }},} но они не прижились[1].
Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа sin−1, cos−1 для арксинуса, арккосинуса и т. п.[2], — такая запись считается не очень удобной, так как возможна путаница с возведением функции в степень −1.

Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданному числу. Например, arcsin 1/2 означает множество углов left ( frac{pi}{6}, frac{5 pi}{6}, frac{13 pi}{6}, frac{17 pi}{6} dots ~ (30^circ, 150^circ, 390^circ, 510^circ dots) right ), синус которых равен 1/2. Из множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т. д.

В общем случае при условии -1leqslant alpha leqslant 1 все решения уравнения sin x=alpha можно представить в виде x=(-1)^{n}arcsin alpha +pi n,~n=0,pm 1,pm 2,dots ~.[3]

Основное соотношение[править | править код]

arcsin x+arccos x={frac  {pi }{2}}
operatorname {arctg},x+operatorname {arcctg},x={frac  {pi }{2}}

Функция arcsin[править | править код]

График функции y=arcsin x

Аркси́нусом числа x называется такое значение угла y, выраженного в радианах, для которого {displaystyle sin y=x,quad -{frac {pi }{2}}leqslant yleqslant {frac {pi }{2}},quad |x|leqslant 1.}

Функция y=arcsin x непрерывна и ограничена на всей своей области определения. Она является строго возрастающей.

Свойства функции arcsin[править | править код]

Получение функции arcsin[править | править код]

Дана функция y=sin x. На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие y=arcsin x функцией не является. Поэтому рассмотрим отрезок {displaystyle [-pi /2;pi /2]}, на котором функция y=sin x строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на отрезке {displaystyle [-pi /2;pi /2]} существует обратная функция y=arcsin x, график которой симметричен графику функции y=sin x относительно прямой y=x.

Функция arccos[править | править код]

График функции y=arccos x

Аркко́синусом числа x называется такое значение угла y в радианной мере, для которого {displaystyle cos y=x,qquad 0leqslant yleqslant pi ,quad |x|leqslant 1.}

Функция y=arccos x непрерывна и ограничена на всей своей области определения. Она является строго убывающей и неотрицательной.

Свойства функции arccos[править | править код]

Получение функции arccos[править | править код]

Дана функция y=cos x. На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие y=arccos x функцией не является. Поэтому рассмотрим отрезок [0;pi ], на котором функция y=cos x строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на отрезке [0;pi ] существует обратная функция {displaystyle y=arccos x}, график которой симметричен графику функции y=cos x относительно прямой y=x.

Функция arctg[править | править код]

График функции y=operatorname {arctg},x

Аркта́нгенсом числа x называется такое значение угла {displaystyle y,} выраженное в радианах, для которого {displaystyle operatorname {tg} y=x,quad -{frac {pi }{2}}<y<{frac {pi }{2}}.}

Функция y=operatorname {arctg}x определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго возрастающей.

Свойства функции arctg[править | править код]

Получение функции arctg[править | править код]

Дана функция y=operatorname {tg},x. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие y=operatorname {arctg},x функцией не является. Поэтому рассмотрим интервал {displaystyle (-pi /2;pi /2)}, на котором функция y=operatorname {tg},x строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на интервале {displaystyle (-pi /2;pi /2)} существует обратная функция y=operatorname {arctg},x, график которой симметричен графику функции y=operatorname {tg},x относительно прямой y=x.

Функция arcctg[править | править код]

График функции {displaystyle y=operatorname {arcctg} x}

Арккота́нгенсом числа x называется такое значение угла y (в радианной мере измерения углов), для которого {displaystyle operatorname {ctg} ,y=x,quad 0<y<pi .}

Функция y=operatorname {arcctg},x определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго убывающей и всюду положительной.

Свойства функции arcctg[править | править код]

Получение функции arcctg[править | править код]

Дана функция y=operatorname {ctg},x. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие y=operatorname {arcctg},x функцией не является. Поэтому рассмотрим интервал (0;pi ), на котором функция y=operatorname {ctg},x строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на интервале (0;pi ) существует обратная функция y=operatorname {arcctg},x, график которой симметричен графику функции y=operatorname {ctg},x относительно прямой y=x.

График арккотангенса получается из графика арктангенса, если последний отразить относительно оси ординат (то есть заменить знак аргумента, xrightarrow -x) и сместить вверх на π/2; это вытекает из вышеупомянутой формулы operatorname {arcctg}x=operatorname {arctg}(-x)+pi /2.

Функция arcsec[править | править код]

График функции {displaystyle y=operatorname {arcsec} x}

Арксе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого {displaystyle sec y=x,qquad |x|geqslant 1,quad 0leqslant yleqslant pi .}

Функция {displaystyle y=operatorname {arcsec} x} непрерывна и ограничена на всей своей области определения. Она является строго возрастающей и всюду неотрицательной.

Свойства функции arcsec[править | править код]

Функция arccosec[править | править код]

График функции {displaystyle y=operatorname {arccosec} x}

Арккосе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого {displaystyle operatorname {cosec} y=x,qquad |x|geqslant 1,quad -pi /2leqslant yleqslant pi /2.}

Функция {displaystyle y=operatorname {arccosec} x} непрерывна и ограничена на всей своей области определения. Она является строго убывающей.

Свойства функции arccosec[править | править код]

Разложение в ряды[править | править код]

Производные от обратных тригонометрических функций[править | править код]

Все обратные тригонометрические функции бесконечно дифференцируемы в каждой точке своей области определения. Первые производные:

производные обратных тригонометрических функций

Функция f(x) Производная f'(x) Примечание
{displaystyle arcsin {x}} {frac  {1}{{sqrt  {1-x^{2}}}}}

Доказательство                                 

Найти производную арксинуса можно при помощи взаимно обратных функций.
{displaystyle sin(arcsin((x))=x}
После чего мы должны взять производную этих обеих функций.
{displaystyle [sin(arcsin((x))]'=x'}
{displaystyle cos(arcsin(x))cdot (arcsin(x))'=1}
Теперь мы должны выразить производную арксинуса.
{displaystyle (arcsin(x))'={frac {1}{cos(arcsin(x))}}}
Исходя из тригонометрического тождества({displaystyle sin^{2}x+cos^{2}x=1}) — получаем.
{displaystyle (arcsin(x))'={frac {1}{pm {sqrt {1-sin^{2}(arcsin(x))}}}}}
Для того, чтобы понять плюс должен стоять или минус взглянем какие значения.
{displaystyle D(cos(x))=[{frac {pi }{2}};-{frac {pi }{2}}]}
Так как косинус находится в 2-й и 4-й четвертях то, получается что косинус положительный.
{displaystyle (arcsin(x))'={frac {1}{sqrt {1-sin^{2}(arcsin(x))}}}}
Получается.
{displaystyle (arcsin(x))'={frac {1}{sqrt {1-x^{2}}}}}

{displaystyle arccos {x}} -{frac  {1}{{sqrt  {1-x^{2}}}}}

Доказательство                                 

Найти производную арккосинуса можно при помощи данного тождества:
{displaystyle arcsin(x)+arccos(x)={frac {pi }{2}}}
Теперь находим производную обеих частей этого тождества.
{displaystyle [arcsin(x)+arccos(x)]'=({frac {pi }{2}})'}
{displaystyle (arcsin(x))'+(arccos(x))'=0}
Теперь выражаем производную арккосинуса.
{displaystyle (arccos(x))'=-(arcsin(x))'}
Получается.
{displaystyle (arccos(x))'=-{frac {1}{sqrt {1-x^{2}}}}}

{displaystyle mathrm {arctg}  x} {displaystyle {frac {1}{1+x^{2}}}}

Доказательство                                 

Найти производную арктангенса можно при помощи взаимнообратной функции:
{displaystyle tg(arctg(x))=x}
Теперь находим производную обеих частей этого тождества.
{displaystyle [tg(arctg(x))]'=1}
{displaystyle {frac {1}{cos^{2}(arctg(x))}}cdot (arctg(x))'=1}
Теперь мы должны выразить производную арктангенса:
{displaystyle (arctg(x))'=cos^{2}(arctg(x))}
Теперь на помощь нам придет на помощь тождество({displaystyle cos(x)={frac {1}{sqrt {1+tg^{2}(x)}}}}):
{displaystyle (arctg(x))'=({frac {1}{sqrt {1+tg^{2}(arctg(x))}}})^{2}}
Получается.
{displaystyle (arctg(x))'={frac {1}{1+x^{2}}}}

{displaystyle mathrm {arcctg}  x} {displaystyle -{frac {1}{1+x^{2}}}}

Доказательство                                 

Найти производную арккотангенса можно при помощи данного тождества:
{displaystyle arctg(x)+arcctg(x)={frac {pi }{2}}}
Теперь находим производную обеих частей этого тождества.
{displaystyle [arctg(x)+arcctg(x)]'=({frac {pi }{2}})'}
{displaystyle (arctg(x))'+(arcctg(x))'=0}
Теперь выражаем производную арккотангенса.
{displaystyle (arcctg(x))'=-(arctg(x))'}
Получается.
{displaystyle (arcctg(x))'=-{frac {1}{1+x^{2}}}}

{displaystyle mathrm {arcsec}  x} {displaystyle {frac {1}{|x|{sqrt {x^{2}-1}}}}}

Доказательство                                 

Найти производную арксеканса можно при помощи тождества:

{displaystyle arcsec(x)=arccos({frac {1}{x}})}

Теперь находим производную обеих частей этого тождества.

{displaystyle (arcsec(x))'=(arccos({frac {1}{x}}))'}

{displaystyle (arcsec(x))'=-{frac {1}{sqrt {1-{frac {1}{x^{2}}}}}}cdot (-{frac {1}{x^{2}}})}

{displaystyle (arcsec(x))'={frac {1}{x^{2}{sqrt {frac {x^{2}-1}{x^{2}}}}}}}

{displaystyle (arcsec(x))'={frac {1}{x^{2}{frac {sqrt {x^{2}-1}}{|x|}}}}}

Получается.

{displaystyle (arcsec(x))'={frac {1}{|x|{sqrt {x^{2}-1}}}}}

{displaystyle mathrm {arccosec}  x} {displaystyle -{frac {1}{|x|{sqrt {x^{2}-1}}}}}

Доказательство                                 

Найти производную арккосеканса можно при помощи данного тождества:
{displaystyle arccosec(x)+arcsec(x)={frac {pi }{2}}}
Теперь находим производную обеих частей этого тождества.
{displaystyle [arccosec(x)+arcsec(x)]'=({frac {pi }{2}})'}
{displaystyle (arccosec(x))'+(arcsec(x))'=0}
Теперь выражаем производную арккосинуса.
{displaystyle (arccosec(x))'=-(arcsec(x))'}
Получается.
{displaystyle (arccosec(x))'=-{frac {1}{|x|{sqrt {x^{2}-1}}}}}

Интегралы от обратных тригонометрических функций[править | править код]

Неопределённые интегралы[править | править код]

Для действительных и комплексных x:

{begin{aligned}int arcsin x,dx&{}=x,arcsin x+{sqrt  {1-x^{2}}}+C,\int arccos x,dx&{}=x,arccos x-{sqrt  {1-x^{2}}}+C,\int operatorname {arctg},x,dx&{}=x,operatorname {arctg},x-{frac  {1}{2}}ln left(1+x^{2}right)+C,\int operatorname {arcctg},x,dx&{}=x,operatorname {arcctg},x+{frac  {1}{2}}ln left(1+x^{2}right)+C,\int operatorname{arcsec} x,dx&{}=x,operatorname{arcsec} x-ln left(xleft(1+{sqrt  {{x^{2}-1} over x^{2}}},right)!right)+C,\int operatorname {arccosec},x,dx&{}=x,operatorname {arccosec},x+ln left(xleft(1+{sqrt  {{x^{2}-1} over x^{2}}},right)!right)+C.end{aligned}}

Для действительных x ≥ 1:

{begin{aligned}int operatorname{arcsec} x,dx&{}=x,operatorname{arcsec} x-ln left(x+{sqrt  {x^{2}-1}}right)+C,\int operatorname {arccosec},x,dx&{}=x,operatorname {arccosec},x+ln left(x+{sqrt  {x^{2}-1}}right)+C.end{aligned}}
См. также Список интегралов от обратных тригонометрических функций

Использование в геометрии[править | править код]

Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например, с помощью теоремы косинусов.

В прямоугольном треугольнике эти функции от отношений сторон сразу дают угол.
Так, если катет длины a является противолежащим для угла alpha , то

{displaystyle alpha =arcsin(a/c)=arccos(b/c)=operatorname {arctg} (a/b)=operatorname {arccosec} (c/a)=operatorname {arcsec}(c/b)=operatorname {arcctg} (b/a).}

Связь с натуральным логарифмом[править | править код]

Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:

{displaystyle {begin{aligned}arcsin z&{}=-iln(iz+{sqrt {1-z^{2}}})={frac {pi }{2}}-iln(z+{sqrt {z^{2}-1}})=-ioperatorname {arsh} ,iz,end{aligned}}}
{displaystyle arccos(z)={dfrac {pi }{2}}+iln(iz+{sqrt {1-z^{2}}})=-ioperatorname {arch} (iz)}
{displaystyle operatorname {arctg} (z)={dfrac {i}{2}}(ln(1-iz)-ln(1+iz))=-ioperatorname {arth} (iz)}
{displaystyle operatorname {arcctg} (z)={dfrac {i}{2}}left(ln left({dfrac {z-i}{z}}right)-ln left({dfrac {z+i}{z}}right)right)=ioperatorname {arcth} (iz)}
{displaystyle operatorname {arcsec}(z)=arccos left(z^{-1}right)={dfrac {pi }{2}}+iln left({sqrt {1-{dfrac {1}{z^{2}}}}}+{dfrac {i}{z}}right),}
{displaystyle operatorname {arccosec} ,(z)=arcsin left(z^{-1}right)=-iln left({sqrt {1-{dfrac {1}{z^{2}}}}}+{dfrac {i}{z}}right).}

См. также[править | править код]

  • Обратные гиперболические функции
  • Теорема Данжуа — Лузина

Примечания[править | править код]

Ссылки[править | править код]

  • Weisstein, Eric W. Обратные тригонометрические функции (англ.) на сайте Wolfram MathWorld.
  • Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: «Советская Энциклопедия», 1982. — [dic.academic.ru/dic.nsf/enc_mathematics/3612/%D0%9E%D0%91%D0%A0%D0%90%D0%A2%D0%9D%D0%AB%D0%95 Т. 3. — с. 1135].
  • Обратные тригонометрические функции — статья из Большой советской энциклопедии.  — М.: «Советская Энциклопедия», 1974. — Т. 18. — с. 225.
  • Обратные тригонометрические функции // Энциклопедический словарь юного математика / Савин А.П. — М.: Педагогика, 1985. — С. 220—221. — 352 с.
  • Построение графиков обратных тригонометрических функций онлайн
  • Онлайн калькулятор: обратные тригонометрические функции

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

  • dic.academic.ru

Таблица производных в алгебре нужна для решения целого ряда различных прикладных задач. Поскольку смысл производной иначе интерпретируется как “скорость изменения”, то, каждый раз, беря производную, мы находим величину на ступеньку более “быструю”, чем та, от которой мы берем производную. Например, беря производную от y(x) по x, мы фактически находим скорость изменения координаты y в зависимости от изменения координаты x, а беря производную от скорости изменения координаты y в зависимости от координаты x, мы находим ускорение.

Что такое производная функции

Например, при использовании производной в физике, мы знаем, что производная расстояния s по времени – это скорость. Потому что скорость – это величина, характеризующая быстроту изменения расстояния в зависимости от времени. А производная скорости – ничто иное как ускорение, так как ускорение – это величина, характеризующая быстроту изменения скорости.
Поскольку производная находится по формуле: displaystyle f^prime(x) =lim_{Delta xto0}frac{f(x+Delta x)-f(x)}{Delta x}, то бесконечное количество различных функций усложняют задачу дифференцирования, так как удобно функцию, которую можно представить из различных элементарных функций, дифференцировать основываясь на уже выведенных выражениях для производных этих элементарных функций.

Характеристика производной и ее смысл

Производная характеризует быстроту изменения функции в зависимости от изменения аргумента.

Таблица производных

Таким образом, чтобы работать с производными, необходима таблица производных элементарных функций. Руководствуясь этой таблицей, можно взять производную от какой угодно функции. Но прежде чем работать с таблицей – нужно знать как брать производную функции, есть определенные правила дифференцирования, которые представим в таблице.

Правила дифференцирования

№ правила Название правила Правило дифференцирования
1 Производная постоянной величины C^prime= 0, С-постоянная
2 Производная суммы (u+v-w)^prime= u ^prime +v ^prime -w^prime.
3 Производная произведения постоянной на функцию (C cdot u)' = C cdot u', С – постоянная
4 Производная переменной x (x)' = 1
5 Производная произведения двух функций (uv)' = u'v+uv'
6 Производная деления двух функций displaystyle (frac{u}{v})' = frac{u'v-v'u}{v^2}
7 Производная сложной функции y{}'_x = y{}'_u cdot u{}'_x

Таблица производных простых и сложных функций

Теперь таблица производных для элементарных и для сложных функций.

Номер формулы Название производной Основные элементарные функции Сложные функции
1 Производная натурального логарифма по x (ln (x))' = frac{1}{x} (ln(u))' = frac{1}{u}u'
2 Производная логарифмической функции по основанию a displaystyle (log(x)_a)' = frac{1}{x cdot ln a} displaystyle (log(u)_a)' = frac{1}{u cdot ln a}u'
3 Производная по x в степени n (x^n)' = n x^{n-1} (u^n)' = n u^{n-1}u'
4 Производная квадратного корня (sqrt {x})' = frac{1}{2 sqrt{x}} (sqrt {u})' = frac{1}{2 sqrt{u}}u'
5 Производная a в степени x displaystyle (a^x)' = a^x cdot ln a displaystyle (a^u)' = a^u cdot ln u cdot u'
6 Производная e в степени x (e^x)' = e^x (e^u)' = e^u cdot u'
7 Производная синуса (sin {x})' = cos{x} (sin {u})' = cos{u} cdot u'
8 Производная косинуса (cos {x})' = -sin{x} (cos {u})' = -sin{u} cdot u'
9 Производная тангенса (tan {x})' = frac{1}{cos^2{x}} (tan {u})' = frac{1}{cos^2{u}} cdot u'
10 Производная котангенса (ctg {x})' = -frac{1}{sin^2{x}} (ctg {u})' = -frac{1}{sin^2{u}} cdot u'
11 Производная арксинуса (arcsin {x})' = frac{1}{sqr{1-x^2}} (arcsin {u})' = frac{u'}{sqr{1-u^2}}
12 Производная арккосинуса (arccos {x})' = -frac{1}{sqr{1-x^2}} (arccos {u})' = -frac{u'}{sqr{1-u^2}}
13 Производная арктангенса (arctg {x})' = frac{1}{1+x^2} (arctg {u})' = frac{u'}{1+u^2}
14 Производная арккотангенса (arcctg {x})' = -frac{1}{1+x^2} (arcctg {u})' = -frac{u'}{1+u^2}

Примеры нахождения производных

Пример 1

Пользуясь формулами и правилами дифференцирования, найти производную функции: y=x^2-5x+4.

Решение: y'=(x^2-5x+4)'=(x^2)'-(5x)'+(4)'

Мы использовали правило 2 дифференцирования суммы. Теперь найдем производную каждого слагаемого:

(x^2)'=2x По формуле 3 “производная по x в степени n” (у нас в степени 2).

(5x)'=5 По правилам дифференцирования 3 и 4.

(4)'=0 По первому правилу дифференцирования “производная постоянной равна нулю”

Итак, получим: y'=2x-5.

Пример 2

Найти производную функции y=frac{2x}{3x+5}

Решение:

Находим производную, пользуясь правилам дифференцирования 6.

    [y'=frac{(2x)'(3x+5)-2x(3x+5)'}{(3x+5)^2}]

    [y'=frac{2(3x+5)-2x cdot 3}{(3x+5)^2}]

    [y'=frac{6x+10-6x}{(3x+5)^2}]

    [y'=frac{10}{(3x+5)^2}]

Ответ:

    [y'=frac{10}{(3x+5)^2}]

Пример 3

Найти производную функции y=cosx

Решение: здесь все просто, мы возьмем производную из таблицы производных.

y'=-sin x

Ответ: y'=-sin x

Пример 4

Найдите производную функции y=cos(5x+7)

Решение: Здесь мы уже имеем не простую функцию, а сложную функцию и брать производную мы будем по формуле 8 таблицы производных для сложных функций.

    [y'=cos'(5x+7) cdot (5x+7)']

    [y'=-sin(5x+7) cdot 5=-5sin(5x+7)]

Ответ:

    [y'=-5sin(5x+7)]

Пример 5

Пользуясь правилами дифференцирования и таблицей производных, найдите производную функции y=sqrt{2x^2+5x+4}

Решение: У нас сложная функция, так как под корнем стоит не просто x, а квадратная функция.

То есть мы имеем функцию вида y=sqrt{u(x)}.

Возьмем производную этой функции:

    [y'=frac{(2x^2+5x+4)'}{2 sqrt{2x^2+5x+4}}]

    [y'=frac{4x+5}{2 sqrt{2x^2+5x+4}}]

Ответ:

    [y'=frac{4x+5}{2 sqrt{2x^2+5x+4}}]

Пример 6

Найдите скорость тела, если траектория его движения задана уравнением x(t)=3t+4 м

Решение: скорость тела – это первая производная траектории по времени: v(t)=x'(t). м/с.

Находим скорость тела:

    [v(t)=(3t+4)']

    [v(t)=3]

Ответ: 3 м/с.

Итак, таблица производных и правила дифференцирования дают возможность легко брать производные и простых, и сложных функций.

Добавить комментарий