Как найти разность одночлена

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Сложение и вычитание одночленов

Поддержать сайтспасибо

Вначале, необходимо понять, что называют подобными одночленами.

Запомните!
!

Одночлены, у которых одинаковый состав букв и их степеней,
называют подобными.

Примеры подобных и
неподобных одночленов

2ab и
−3ab => Одночлены подобные. Можно вычитать.
8y2 и
7x => Одночлены не подобные. Нельзя складывать.
xy и
9xy => Одночлены подобные. Можно складывать.
4a2 и
2a => Одночлены не подобные. Нельзя складывать.

Одночлены нужно рассматривать как единое целое.

То есть, частая ошибка когда, например, одночлены 3a и
2ab считают подобными, т.к.
в обоих одночленах присутствует буквенный множитель а.

Одночлены 3a и 2ab НЕ являются подобными,
потому что состав букв должен полностью совпадать в обоих одночленах.

В данном примере в одночлене из буквенных множителей только
а, а во втором одночлене
2ab — два буквенных множителя
а и b.

Запомните!
!

Складывать и вычитать можно только подобные одночлены.

Как складывать и вычитать одночлены

При сложении и вычитании одночленов работаем только с их числовыми коэффициентами.
Состав букв остается всегда прежним!

Разберем пример: 3a2b + 2a2b

  1. Сначала убедимся, что данные одночлены подобные.
    У первого одночлена 3a2b состав букв со степенями: a2b.
    У второго одночлена 2a2b состав букв со степенями: a2b.

    Важно!
    Галка

    Состав букв и их степеней у обоих одночленов одинаков, значит, одночлены подобные и их можно складывать.

  2. Теперь рассмотрим числовые коэффициенты одночленов.
    У первого одночлена 3a2b коэффициент: 3.
    У второго одночлена 2a2b коэффициент: 2.
  3. Сложим их коэффициенты: 3 + 2 = 5
  4. Запишем окончательный ответ в виде суммы одночленов.
    3a2b + 2a2b = 5a2b

Еще раз обратите внимание, что состав букв в итоговом одночлене НЕ поменялся.
3a2b + 2a2b = 5a2b

Запомните!
!

Противоположные одночлены взаимно уничтожаются.

−73x2z + 73x2z = 0

Примеры сложения и вычитания одночленов

  1. 7x2y − 2x2y = 5x2y
  2. 2a3 + 3a3 − a3 = 5a3 − a3 =
    5a3 − 1 a3 = 4a3
  3. ab3 + ab3 = 1ab3 + 1ab3 = 2ab3
  4. 5t − 6t = −t  (т.к. 5 − 6 = −1)
  5. 8xy − 10xy + 2xy = −2xy + 2xy = 0

    (т.к. при вычитании коэффициентов −2 + 2 = 0)


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Сложение и вычитание одночленов

  • Подобные одночлены
  • Сложение одночленов
  • Вычитание одночленов

Сложить одночлены или вычесть один одночлен из другого можно только в том случае, если одночлены являются подобными. Если одночлены не подобные, в этом случае сложение одночленов можно записать в виде суммы, а вычитание в виде разности.

Подобные одночлены

Подобные одночлены — одночлены, которые состоят из одних и тех же букв, но могут иметь разные или одинаковые коэффициенты (числовые множители). Одинаковые буквы в подобных одночленах должны иметь одинаковые показатели степени. Если у одной и той же буквы в разных одночленах степени не совпадают, то такие одночлены нельзя назвать подобными:

5ab2   и   -7ab2  — подобные одночлены;

5a2b   и   5ab  — не подобные одночлены.

Обратите внимание, что последовательность букв в подобных одночленах может не совпадать. Также одночлены могут быть представлены в виде выражения, которое можно упростить. Поэтому, прежде чем приступать к определению, подобны ли данные одночлены, или нет, стоит привести одночлены к стандартному виду. Например, возьмём два одночлена:

5abb   и   -7b2a.

Оба одночлена находятся в нестандартном виде, поэтому будет нелегко определить, являются ли они подобными. Чтобы это узнать, приведём одночлены к стандартному виду:

5ab2   и   -7ab2.

Теперь сразу видно, что данные одночлены являются подобными.

Два подобных одночлена, отличающиеся только знаком, называются противоположными. Например:

5a2bc   и   -5a2bc  — противоположные одночлены.

Приведение подобных одночленов — это упрощение выражения, содержащего подобные одночлены, путём их сложения. Сложение подобных одночленов производится по правилам приведения подобных слагаемых.

Сложение одночленов

Чтобы сложить одночлены, надо:

  1. Составить сумму, записав все слагаемые одно за другим.
  2. Привести все одночлены к стандартному виду.
  3. Раскрыть скобки, если они есть в выражении.
  4. Привести подобные слагаемые. Для этого нужно:
    1. сложить их численные множители;
    2. после получившегося коэффициента дописать буквенные множители без изменений.

Пример 1. Сложить одночлены  12ab,  -4a2b  и  -5ab.

Решение: Составим сумму одночленов:

12ab + (-4a2b) + (-5ab).

Все одночлены находятся в стандартном виде. Значит, можно приступить к раскрытию скобок. Правила раскрытия скобок смотрите тут.

12ab – 4a2b – 5ab.

Теперь надо определить, есть ли среди слагаемых подобные одночлены и, если они есть, сделать приведение:

12ab – 4a2b5ab = (12 + (-5))ab – 4a2b = 7ab – 4a2b.

Пример 2. Сложить одночлены  5a2bc  и  -5a2bc.

Решение: Составим сумму одночленов:

5a2bc + (-5a2bc).

Раскроем скобки:

5a2bc – 5a2bc.

Эти два одночлена являются противоположными, то есть, отличаются только знаком. Значит, если мы сложим их численные множители, то получим нуль:

5a2bc – 5a2bc = (5 – 5)a2bc = 0a2bc = 0.

Следовательно, при сложении противоположных одночленов в результате получается нуль.

Общее правило сложения одночленов:

Чтобы сложить несколько одночленов, следует записать все слагаемые одно за другим с сохранением их знаков, отрицательные одночлены надо заключить в скобки и сделать приведение подобных слагаемых (подобных одночленов).

Вычитание одночленов

Чтобы произвести вычитание одночленов, надо:

  1. Составить разность, записав все одночлены один за другим, разделяя их знаком    (минус).
  2. Привести все одночлены к стандартному виду.
  3. Раскрыть скобки, если они есть в выражении.
  4. Сделать приведение подобных одночленов, то есть:
    1. сложить их численные множители,
    2. после получившегося коэффициента дописать буквенные множители без изменений.

Пример. Найти разность одночленов  8ab2,  -5a2b  и  –ab2.

Решение: Составим разность одночленов:

8ab2 – (-5a2b) – (-ab2).

Все одночлены находятся в стандартном виде. Значит, можно приступить к раскрытию скобок. Правила раскрытия скобок смотрите тут.

8ab2 + 5a2b + ab2.

Теперь надо определить, есть ли среди одночленов подобные и, если они есть, сделать приведение:

8ab2 + 5a2b + ab2 = (8 + 1)ab2 + 5a2b = 9ab2 + 5a2b.

Общее правило вычитания одночленов:

Для вычитания одного одночлена из другого следует к уменьшаемому одночлену приписать вычитаемый одночлен с противоположным знаком и сделать приведение подобных одночленов.

Складывать и вычитать можно только подобные одночлены.

Подобными одночленами называются такие одночлены, у которых произведения переменных равны, хотя их порядок может отличаться.

При сложении или вычитании одночленов нужно выполнить следующие действия:

1) сложить или вычесть коэффициенты одночленов;

2) переменные множители не менять.

При сложении или вычитании одночленов нужно помнить, что:

– коэффициенты одночленов обычно складываются и вычитаются в уме, и записывается упрощённая сумма;

– нельзя складывать или вычитать одночлены, у которых различаются произведения переменных;

– сумма противоположных одночленов всегда равна (0).

Раскрываются скобки и меняются знаки (т. к. перед скобками стоит минус, и 

−−=+

):

−2p3k−(−0,6p3k)−0,2p3k=−2p3k+0,6p3k−0,2p3k==0,6p3k−0,2p3k−2p3k=0,6p3k−2,2p3k=−1,6p3k;

Эти одночлены нельзя вычесть, т. к. произведения переменных различаются.

Сумма противоположных одночленов всегда равна (0).

Сложение и вычитание одночленов

Сложить одночлены или вычесть один одночлен из другого можно только в том случае, если одночлены являются подобными. Если одночлены не подобные, в этом случае сложение одночленов можно записать в виде суммы, а вычитание в виде разности.

Подобные одночлены

Подобные одночлены — одночлены, которые состоят из одних и тех же букв, но могут иметь разные или одинаковые коэффициенты (числовые множители). Одинаковые буквы в подобных одночленах должны иметь одинаковые показатели степени. Если у одной и той же буквы в разных одночленах степени не совпадают, то такие одночлены нельзя назвать подобными:

5ab 2 и -7ab 2 — подобные одночлены ;

5a 2 b и 5ab — не подобные одночлены .

Обратите внимание, что последовательность букв в подобных одночленах может не совпадать. Также одночлены могут быть представлены в виде выражения, которое можно упростить. Поэтому, прежде чем приступать к определению, подобны ли данные одночлены, или нет, стоит привести одночлены к стандартному виду. Например, возьмём два одночлена:

Оба одночлена находятся в нестандартном виде, поэтому будет нелегко определить, являются ли они подобными. Чтобы это узнать, приведём одночлены к стандартному виду:

Теперь сразу видно, что данные одночлены являются подобными.

Два подобных одночлена, отличающиеся только знаком, называются противоположными. Например:

5a 2 bc и -5a 2 bc — противоположные одночлены.

Приведение подобных одночленов — это упрощение выражения, содержащего подобные одночлены, путём их сложения. Сложение подобных одночленов производится по правилам приведения подобных слагаемых.

Сложение одночленов

Чтобы сложить одночлены, надо:

  1. Составить сумму, записав все слагаемые одно за другим.
  2. Привести все одночлены к стандартному виду.
  3. Раскрыть скобки, если они есть в выражении.
  4. Привести подобные слагаемые. Для этого нужно:
    1. сложить их численные множители;
    2. после получившегося коэффициента дописать буквенные множители без изменений.

Пример 1. Сложить одночлены 12ab, -4a 2 b и -5ab.

Решение: Составим сумму одночленов:

Все одночлены находятся в стандартном виде. Значит, можно приступить к раскрытию скобок. Правила раскрытия скобок смотрите тут.

Теперь надо определить, есть ли среди слагаемых подобные одночлены и, если они есть, сделать приведение:

Пример 2. Сложить одночлены 5a 2 bc и -5a 2 bc.

Решение: Составим сумму одночленов:

Эти два одночлена являются противоположными, то есть, отличаются только знаком. Значит, если мы сложим их численные множители, то получим нуль:

Следовательно, при сложении противоположных одночленов в результате получается нуль.

Общее правило сложения одночленов:

Чтобы сложить несколько одночленов, следует записать все слагаемые одно за другим с сохранением их знаков, отрицательные одночлены надо заключить в скобки и сделать приведение подобных слагаемых (подобных одночленов).

Вычитание одночленов

Чтобы произвести вычитание одночленов, надо:

  1. Составить разность, записав все одночлены один за другим, разделяя их знаком – (минус).
  2. Привести все одночлены к стандартному виду.
  3. Раскрыть скобки, если они есть в выражении.
  4. Сделать приведение подобных одночленов, то есть:
    1. сложить их численные множители,
    2. после получившегося коэффициента дописать буквенные множители без изменений.

Пример. Найти разность одночленов 8ab 2 , -5a 2 b и –ab 2 .

Решение: Составим разность одночленов:

Все одночлены находятся в стандартном виде. Значит, можно приступить к раскрытию скобок. Правила раскрытия скобок смотрите тут.

Теперь надо определить, есть ли среди одночленов подобные и, если они есть, сделать приведение:

Общее правило вычитания одночленов:

Для вычитания одного одночлена из другого следует к уменьшаемому одночлену приписать вычитаемый одночлен с противоположным знаком и сделать приведение подобных одночленов.

Одночлены

Определения и примеры

Одночлен — это произведение чисел, переменных и степеней. Например, выражения 5a , 3ab 2 и −6 2 aa 2 b 3 являются одночленами.

Приведём ещё примеры одночленов:

Одночленом также является любое отдельное число, любая переменная или любая степень. Например, число 9 является одночленом, переменная x является одночленом, степень 5 2 является одночленом.

Приведение одночлена к стандартному виду

Рассмотрим следующий одночлен:

Этот одночлен выглядит не очень аккуратно. Чтобы сделать его проще, нужно привести его к так называемому стандартному виду.

Приведение одночлена к стандартному виду заключается в перемножении однотипных сомножителей, входящих в этот одночлен. То есть числа нужно перемножать с числами, переменные с переменными, степени со степенями. В результате этих действий получается упрощённый одночлен, который тождественно равен предыдущему.

Ещё один нюанс заключается в том, что в одночлене степени можно перемножать только в том случае, если они имеют одинаковые основания.

Итак, приведём одночлен 3a 2 5a 3 b 2 к стандартному виду. В этом одночлене содержатся числа 3 и 5. Перемножим их, получим число 15. Записываем его:

Далее в одночлене 3a 2 5a 3 b 2 содержатся степени a 2 и a 3 , которые имеют одинаковое основание a . Из тождественных преобразований со степенями известно, что при перемножении степеней с одинаковыми основаниями, основание оставляют без изменений, а показатели складывают. Тогда перемножение степеней a 2 и a 3 даст в результате a 5 . Записываем a 5 рядом с числом 15

Далее в одночлене 3a 2 5a 3 b 2 содержится степень b 2 . Её не с чем перемножать, поэтому она остаётся без изменений. Записываем её как есть к новому одночлену:

Мы привели одночлен 3a 2 5a 3 b 2 к стандартному виду. В результате получили одночлен 15a 5 b 2

Числовой сомножитель 15 называют коэффициентом одночлена. Приводя одночлен к стандартному виду, коэффициент нужно записывать в первую очередь, и только потом переменные и степени.

Если коэффициент в одночлене отсутствует, то говорят, что коэффициент равен единице. Так, коэффициентом одночлена abc является 1, поскольку abc это произведение единицы и abc

А коэффициентом одночлена −abc будет −1 , поскольку −abc это произведение минус единицы и abc

Степенью одночлена называют сумму показателей всех переменных входящих в этот одночлен.

Например, степенью одночлена 15a 5 b 2 является 7 . Это потому что переменная a имеет показатель 5, а переменная b имеет показатель 2. Отсюда 5 + 2 = 7 . Показатель числового сомножителя 15 считать не нужно, поскольку нас интересуют только показатели переменных.

Ещё пример. Степенью одночлена 7ab 2 является 3. Здесь переменная a имеет показатель 1, а переменная b имеет показатель 2. Отсюда 1 + 2 = 3 .

Если одночлен не содержит переменных или степеней, а состоит из числа, то говорят, что степень такого одночлена равна нулю. Например, степень одночлена 11 равна нулю.

Не следует путать степень одночлена и степень числа. Степень числа это произведение из нескольких одинаковых множителей, тогда как степень одночлена это сумма показателей всех переменных входящих в этот одночлен. В одночлене 11 нет переменных, поэтому его степень равна нулю.

Пример 1. Привести одночлен 5xx3ya 2 к стандартному виду

Перемножим числа 5 и 3, получим 15. Это будет коэффициент одночлена:

Далее в одночлене 5xx3ya 2 содержатся переменные x и x . Перемножим их, получим x 2 .

Далее в одночлене 5xx3ya 2 содержится переменная y , которую не с чем перемножать. Записываем её без изменений:

Далее в одночлене 5xx3ya 2 содержится степень a 2 , которую тоже не с чем перемножать. Её также оставляем без изменений:

Получили одночлен 15x 2 ya 2 , который приведён к стандартному виду. Буквенные сомножители принято записывать в алфавитном порядке. Тогда одночлен 15x 2 ya 2 примет вид 15a 2 x 2 y.

Пример 2. Привести одночлен 2m 3 n × 0,4mn к стандартному виду

Перемножим числа, переменные и степени по отдельности.

Числа, переменные и степени при перемножении разрешается заключать в скобки. Делается это для удобства. Так, в данном примере перемножение чисел 2 и 0,4 можно заключить в скобки. Также в скобки можно заключить перемножение m 3 × m и n × n

Но желательно выполнять все элементарные действия в уме. Так, решение можно записать значительно короче:

Но чтобы в уме приводить одночлен к стандартному виду, тема умножения целых чисел и умножения степеней должна быть изучена на хорошем уровне.

Сложение и вычитание одночленов

Одночлены можно складывать и вычитать. Чтобы это было возможно, они должны иметь одинаковую буквенную часть. Коэффициенты могут быть любыми. Сложение и вычитание одночленов это по сути приведение подобных слагаемых, которое мы рассматривали при изучении буквенных выражений.

Чтобы сложить (вычесть) одночлены, нужно сложить (вычесть) их коэффициенты, а буквенную часть оставить без изменений.

Пример 1. Сложить одночлены 6a 2 b и 2a 2 b

Сложим коэффициенты 6 и 2, а буквенную часть 6a 2 b оставим без изменений

Пример 2. Вычесть из одночлена 5a 2 b 3 одночлен 2a 2 b 3

Можно заменить вычитание сложением, и сложить коэффициенты одночленов, оставив буквенную часть без изменения:

Либо сразу из коэффициента первого одночлена вычесть коэффициент второго одночлена, а буквенную часть оставить без изменения:

Умножение одночленов

Одночлены можно перемножать. Чтобы перемножить одночлены, нужно перемножить их числовые и буквенные части.

Пример 1. Перемножить одночлены 5x и 8y

Перемножим числовые и буквенные части по отдельности. Для удобства перемножаемые сомножители будем заключать в скобки:

Пример 2. Перемножить одночлены 5x 2 y 3 и 7x 3 y 2 c

Перемножим числовые и буквенные части по отдельности. В процессе умножения будем применять правило перемножения степеней с одинаковыми основаниями. Перемножаемые сомножители будем заключать в скобки:

Пример 3. Перемножить одночлены −5a 2 bc и 2a 2 b 4

Пример 4. Перемножить одночлены x 2 y 5 и (−6xy 2 )

Пример 5. Найти значение выражения

Деление одночленов

Одночлен можно разделить на другой одночлен. Для этого нужно коэффициент первого одночлена разделить на коэффициент второго одночлена, а буквенную часть первого одночлена разделить на буквенную часть второго одночлена. При этом используется правило деления степеней.

Например, разделим одночлен 8a 2 b 2 на одночлен 4ab. Запишем это деление в виде дроби:

Первый одночлен 8a 2 b 2 будем называть делимым, а второй 4ab — делителем. А одночлен, который получится в результате, назовём частным.

Разделим коэффициент делимого на коэффициент делителя, получим 8 : 4 = 2 . В исходном выражении ставим знак равенства и записываем этот коэффициент частного:

Теперь делим буквенную часть. В делимом содержится a 2 , в делителе — просто a . Делим a 2 на a , получаем a , поскольку a 2 : a = a 2 − 1 = a . Записываем в частном a после 2

Далее в делимом содержится b 2 , в делителе — просто b . Делим b 2 на b , получаем b , поскольку b 2 : b = b 2 − 1 = b . Записываем в частном b после a

Значит, при делении одночлена 8a 2 b 2 на одночлен 4ab получается одночлен 2ab .

Сразу можно выполнить проверку. При умножении частного на делитель должно получаться делимое. В нашем случае, если 2ab умножить на 4ab , должно получиться 8a 2 b 2

Не всегда можно первый одночлен разделить на второй одночлен. Например, если в делителе окажется переменная, которой нет в делимом, то говорят, что деление невозможно.

К примеру, одночлен 6xy 2 нельзя разделить на одночлен 3xyz . В делителе 3xyz содержится переменная z , которая не содержится в делимом 6xy 2 .

Проще говоря, мы не сможем найти частное, которое при умножении на делитель 3xyz дало бы делимое 6xy 2 , поскольку такое умножение обязательно будет содержать переменную z, которой нет в 6xy 2 .

Но если в делимом содержится переменная, которая не содержится в делителе, то деление будет возможным. В этом случае переменная, которая отсутствовала в делителе, будет перенесена в частное без изменений.

Например, при делении одночлена 4x 2 y 2 z на 2xy , получается 2xyz . Сначала разделили 4 на 2 получили 2, затем x 2 разделили на x , получили x , затем y 2 разделили на y , получили y. Затем приступили к делению переменной z на такую же переменную в делителе, но обнаружили, что такой переменной в делителе нет. Поэтому перенесли переменную z в частное без изменений:

Для проверки умножим частное 2xyz на делитель 2xy . В результате должен получиться одночлен 4x 2 y 2 z

Но в некоторых дробях, если невозможно выполнить деление, бывает возможным выполнить сокращение. Делается это с целью упростить выражение.

Так, в предыдущем примере нельзя было разделить одночлен 6xy 2 на одночлен 3 xyz . Но можно сократить эту дробь на одночлен 3xy . Напомним, что сокращение дроби это деление числителя и знаменателя на одно и то же число (в нашем случае на одночлен 3 xy ). В результате сокращения дробь становится проще, но её значение не меняется:

В числителе и знаменателе мы пришли к делению одночленов, которое можно выполнить:

Процесс деления обычно выполняется в уме, записывая над числителем и знаменателем получившийся результат:

Пример 2. Разделить одночлен 12a 2 b 3 c 3 на одночлен 4a 2 bc

Пример 3. Разделить одночлен x 2 y 3 z на одночлен xy 2

Дополнительно упомянем, что деление одночлена на одночлен также невозможно, если одна из степеней, входящая в делимое, имеет показатель меньший, чем показатель той же степени из делителя.

Например, разделить одночлен 2x на одночлен x 2 нельзя, поскольку степень x , входящая в делимое, имеет показатель 1, тогда как степень x 2 , входящая в делитель, имеет показатель 2. Мы не сможем найти частное, которое при перемножении с делителем x 2 даст в результате делимое 2x .

Конечно, мы можем выполнить деление x на x 2 , воспользовавшись свойством степени с целым показателем:

и такое частное при перемножении с делителем x 2 будет давать в результате делимое 2x

Но нас пока интересуют только те частные, которые являются так называемыми целыми выражениями. Целые выражения это те выражения, которые не являются дробями, в знаменателе которых содержится буквенное выражение. А частное целым выражением не является. Это дробное выражение, в знаменателе которого содержится буквенное выражение.

Возведение одночлена в степень

Одночлен можно возвести в степень. Для этого используют правило возведения степени в степень.

Пример 1. Возвести одночлен xy во вторую степень.

Чтобы возвести одночлен xy во вторую степень, нужно возвести во вторую степень каждый сомножитель этого одночлена

Пример 2. Возвести одночлен −5a 3 b во вторую степень.

Пример 3. Возвести одночлен − a 2 bc 3 в пятую степень.

В данном примере коэффициентом одночлена является −1. Этот коэффициент тоже нужно возвести в пятую степень:

Когда коэффициент равен −1, то саму единицу не записывают. Записывают только минус и потом остальные сомножители одночлена. В приведенном примере сначала получился одночлен −1a 10 b 5 c 15 , затем он был заменён на тождественно равный ему одночлен −a 10 b 5 c 15 .

Пример 4. Представить одночлен 4x 2 в виде одночлена, возведённого в квадрат.

В данном примере нужно найти произведение, которое во второй степени будет равно выражению 4x 2 . Очевидно, что это произведение 2x. Если это произведение возвести во вторую степень (в квадрат), то получится 4x 2

Значит, 4x 2 = (2x) 2 . Выражение (2x) 2 это и есть одночлен, возведённый в квадрат.

Пример 5. Представить одночлен 121a 6 в виде одночлена, возведённого в квадрат.

Попробуем найти произведение, которое во второй степени будет равно выражению 121a 6 .

Прежде всего заметим, что число 121 получается, если число 11 возвести в квадрат. То есть первый сомножитель будущего произведения мы нашли. А степень a 6 получается в том случае, если возвести в квадрат степень a 3 . Значит вторым сомножителем будущего произведения будет a 3 .

Таким образом, если произведение 11a 3 возвести во вторую степень, то получится 121a 6

(11a 3 ) 2 = 11 2 × (a 3 ) 2 = 121a 6

Значит, 121a 6 = (11a 3 ) 2 . Выражение (11a 3 ) 2 это и есть одночлен, возведённый в квадрат.

Разложение одночлена на множители

Поскольку одночлен является произведением чисел, переменных и степеней, то он может быть разложен на множители, из которых состоит.

Пример 1. Разложить одночлен 3a 3 b 2 на множители

Данный одночлен можно разложить на множители 3, a, a, a, b, b

Либо степень b 2 можно не раскладывать на множители b и b

Либо степень b 2 разложить на множители b и b , а степень a 3 оставить без изменений

В каком виде представлять одночлен зависит от решаемой задачи. Главное, чтобы разложение было тождественно равно исходному одночлену.

Пример 2. Разложить одночлен 10a 2 b 3 c 4 на множители.

Разложим коэффициент 10 на множители 2 и 5, степень a 2 разложим на множители aa , степень b 3 — на множители bbb , степень c 4 — на множители cccc

Сложение и вычитание одночленов: правило и примеры

Знакомство с одночленами продолжим материалом статьи ниже: разберем выполнение базовых действий с одночленами, таких как сложение и вычитание. Рассмотрим, в каких случаях эти действия подлежат выполнению и что дадут в итоге; сформулируем правило сложения и вычитания и применим его при решении типовых задач.

Результат сложения и вычитания одночленов

Сложение и вычитание одночленов будем изучать, опираясь на действия с многочленами, поскольку, в общем, результат сложения или вычитания одночленов – многочлен, и только в частных ситуациях – одночлен.

Иначе говоря, сложение и вычитание на множестве одночленов можно ввести лишь с ограничениями. Уточним, что это означает, проведя аналогию с вычитанием натуральных чисел. На множестве натуральных чисел действие вычитания рассматривается также с ограничением: чтобы результатом стало натуральное число, вычитание необходимо произвести только по схеме: из большего натурального числа меньшее.

Другое дело, если речь идет о множестве целых чисел, включающем в себя и натуральные: здесь вычитание производится без ограничений.

То же самое можно применить, когда речь идет о сложении или вычитании двух одночленов. Чтобы в итоге получить одночлен, на множестве одночленов сложение или вычитание возможно осуществить с ограничением: исходные складываемые или вычитаемые одночлены должны быть подобными слагаемыми (тогда их называют подобными одночленами), или один из них должен быть нулем. В прочих случаях результат осуществления действий – уже не одночлен.

А вот на множестве многочленов, которое содержит все одночлены, сложение и вычитание одночленов изучается в качестве частного случая сложения и вычитания многочленов. В этом случае действия рассматриваются без указанных выше ограничений, так как итог их выполнения – многочлен (или одночлен как частный случай многочлена).

Правило сложения и вычитания одночленов

Сформулируем правило сложения и вычитания одночленов в виде последовательности действий:

Чтобы осуществить действие сложения или вычитания двух одночленов необходимо:

  • записать сумму или разность одночленов в зависимости от поставленной задачи: одночлены необходимо заключить в скобки, поставив между ними знак плюс или минус соответственно;
  • если одночлены в скобках присутствуют в нестандартном виде, привести их к стандартному виду;
  • раскрыть скобки;
  • привести подобные слагаемые, если таковые есть, и исключить слагаемые, равные нулю.

Теперь применим озвученное правило для решения задач.

Примеры сложения и вычитания одночленов

Заданы одночлены 8 · x и − 3 · x . Необходимо выполнить их сложение и вычитание.

Решение

  1. Выполним действие сложения. Запишем сумму, заключив исходные одночлены в скобки и поставив между ними знак плюс: ( 8 · x ) + ( − 3 · x ) . Одночлены в скобках имеют стандартный вид, значит второй шаг алгоритма правила можно пропустить. Следующим действием раскроем скобки: 8 · x − 3 · x , а затем приведем подобные слагаемые: 8 · x − 3 · x = ( 8 − 3 ) · x = 5 · x .

Кратко решение запишем так: ( 8 · x ) + ( − 3 · x ) = 8 · x − 3 · x = 5 · x .

  1. Аналогично произведем действие вычитания: ( 8 · x ) − ( − 3 · x ) = 8 · x + 3 · x = 11 · x .

Ответ: ( 8 · x ) + ( − 3 · x ) = 5 · x и ( 8 · x ) − ( − 3 · x ) = 11 · x .

Рассмотрим пример, где один из одночленов – нуль.

Необходимо найти разность между одночленом – 5 · x 3 · 2 3 · 0 · x · z 2 и одночленом x · 2 3 · y 5 · z · – 3 8 · x · y .

Решение

Действуем по алгоритму согласно правилу. Запишем разность: – 5 · x 3 · 2 3 · 0 · x · z 2 – x · 2 3 · y 5 · z · – 3 8 · x · y . Заключенные в скобки одночлены приведем к стандартному виду и тогда получим: 0 – – 1 4 · x 2 · y 6 · z . Раскроем скобки, что даст нам следующий вид выражения: 0 + 1 4 · x 2 · y 6 · z , оно, в силу свойства прибавления нуля, будет тождественно равно 1 4 · x 2 · y 6 · z .

Таким образом, краткая запись решения будет такой:

– 5 · x 3 · 2 3 · 0 · x · z 2 – x · 2 3 · y 5 · z · – 3 8 · x · y = = 0 – – 1 4 · x 2 · y 6 · z = 1 4 · x 2 · y 6 · z

Ответ: – 5 · x 3 · 2 3 · 0 · x · z 2 – x · 2 3 · y 5 · z · – 3 8 · x · y = 1 4 · x 2 · y 6 · z

Рассмотренные примеры дали в результате сложения и вычитания одночлены. Однако, как уже упоминалось, в общем случае результат действий сложения и вычитания – многочлен.

Заданы одночлены − 9 · x · z 3 и − 13 · x · y · z . Необходимо найти их сумму.

Решение

Записываем сумму: ( − 9 · x · z 3 ) + ( − 13 · x · y · z ) . Одночлены имеют стандартный вид, поэтому осуществляем раскрытие скобок: ( − 9 · x · z 3 ) + ( − 13 · x · y · z ) = − 9 · x · z 3 − 13 · x · y · z . Подобных членов в полученном выражении нет, приводить нам нечего, значит полученное выражение и будет являться результатом вычисления: − 9 · x · z 3 − 13 · x · y · z .

Ответ: ( − 9 · x · z 3 ) + ( − 13 · x · y · z ) = − 9 · x · z 3 − 13 · x · y · z .

По такой же схеме осуществляется действие сложения или вычитания трех и более одночленов.

Необходимо решить пример: 0 , 2 · a 3 · b 2 + 7 · a 3 · b 2 − 3 · a 3 · b 2 − 2 , 7 · a 3 · b 2 .

Решение

Все заданные одночлены имеют стандартный вид и являются подобными. Приведем подобные члены, выполнив сложение и вычитание числовых коэффициентов, а буквенную часть оставляя исходной: 0 , 2 · a 3 · b 2 + 7 · a 3 · b 2 − 3 · a 3 · b 2 − 2 , 7 · a 3 · b 2 = = ( 0 , 2 + 7 − 3 − 2 , 7 ) · a 3 · b 2 = 1 , 5 · a 3 · b 2

Ответ: 0 , 2 · a 3 · b 2 + 7 · a 3 · b 2 − 3 · a 3 · b 2 − 2 , 7 · a 3 · b 2 = 1 , 5 · a 3 · b 2 .

Заданы одночлены: 5 , − 3 · a , 15 · a , − 0 , 5 · x · z 4 , − 12 · a , − 2 и 0 , 5 · x · z 4 . Необходимо найти их сумму.

Решение

Запишем сумму: ( 5 ) + ( − 3 · a ) + ( 15 · a ) + ( − 0 , 5 · x · z 4 ) + ( − 12 · a ) + ( − 2 ) + ( 0 , 5 · x · z 4 ) . В результате раскрытия скобок получим: 5 − 3 · a + 15 · a − 0 , 5 · x · z 4 − 12 · a − 2 + 0 , 5 · x · z 4 . Сгруппируем подобные слагаемые: ( 5 − 2 ) + ( − 3 · a + 15 · a − 12 · a ) + ( − 0 , 5 · x · z 4 + 0 , 5 · x · z 4 ) и приведем их: 3 + 0 + 0 = 3

Ответ: ( 5 ) + ( − 3 · a ) + ( 15 · a ) + ( − 0 , 5 · x · z 4 ) + ( − 12 · a ) + ( − 2 ) + ( 0 , 5 · x · z 4 ) = 3 .

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/vyrazhenija/slozhenie-i-vychitanie-odnochlenov/

[/spoiler]

Одночлены — это любое число, переменная, любая степень, а также произведение чисел, переменных и степеней, с которыми можно совершать разные математические действия. Примеры одночленов: 9, 52, x, 5a; 3ab2 ;  −62aa2b3

Приведение одночлена к стандартному виду

Приведение одночлена к стандартному виду заключается в умножении однотипных множителей, входящих в этот одночлен. То есть числа нужно перемножать с числами, переменные с переменными, степени со степенями. В результате этих действий получается упрощённый одночлен, который тождественно равен предыдущему. Важно: в одночлене степени можно перемножать только в том случае, если они имеют одинаковые основания.

Рассмотрим следующий одночлен:  3a25a3b2
 — числа 3 и 5 перемножим и получим число 15,
— степени a2 и a3 имеют одинаковое основание a,  поэтому мы можем записать результат a5,
— степень b2 остаётся без изменений.
Получили результат: 3a25a3b2 = 15a5b2

Для того, чтобы далее рассматривать одночлены и действия с ними, вспомним тему «Степень с натуральным показателем«

где: a — основание степени; n — показатель степени.

Коэффициент одночлена

  • Числовой сомножитель (в примере 15) называют коэффициентом одночлена. Приводя одночлен к стандартному виду, коэффициент нужно записывать в первую очередь, и только потом переменные и степени.
  • Если коэффициент в одночлене отсутствует, то говорят, что коэффициент равен единице.
    Например, для одночлена ab коэффициентом является 1, поскольку ab это произведение единицы и ab: abc = 1×ab.
  • Если перед одночленом стоит знак минуса, то коэффициент равен минус единице. Например, для одночлена —ab коэффициентом является -1, поскольку ab это произведение -1 и ab.

Степень одночлена

Степенью одночлена называют сумму показателей степеней всех переменных входящих в этот одночлен.  Показатель числового множителя при этом не считается.
Если одночлен не содержит переменных или степеней, а состоит из числа, то говорят, что степень такого одночлена равна нулю.  

Примеры:

  • Степенью одночлена 15a5b2 является 7: переменная a имеет степень 5, а переменная b — 2. Отсюда 5 + 2 = 7. Показатель числового сомножителя 15 считать не нужно, поскольку нас интересуют только показатели переменных.
  • Степенью одночлена 7ab2 является 3:  переменная a имеет показатель 1, а переменная b — 2. 
  • Степень одночлена 11 равна нулю, так как это число.

Не следует путать степень одночлена и степень числа:

  • Степень числа это произведение из нескольких одинаковых множителей.
  • Степень одночлена это сумма показателей всех переменных входящих в этот одночлен.

Сложение и вычитание одночленов

Чтобы сложить (вычесть) одночлены, нужно сложить (вычесть) их коэффициенты, а буквенную часть оставить без изменений.

Чтобы складывать и вычитать одночлены, они должны иметь одинаковую буквенную часть. Коэффициенты могут быть любыми. Сложение и вычитание одночленов это по сути представляет собой приведение подобных слагаемых.

Пример 1. Сложить одночлены 6a2b и 2a2b:
сложим коэффициенты 6 и 2, а буквенную часть 6a2b оставим без изменений.
Получим: 6a2b + 2a2b = 8a2b

Пример 2. Вычесть из одночлена 5a2b3 одночлен 2a2b3
Решение: 5a2b3 − 2a2b3 = 5a2b3 −2a2b3 = 3a2b3

Умножение одночленов

Чтобы перемножить одночлены, нужно перемножить их числовые и буквенные части.

Пример 3. Перемножить одночлены 5x и 8y
Перемножим числовые и буквенные части по отдельности: 5x × 8y = (5 × 8) × (x × y) = 40xy

Пример 4. Перемножить одночлены 5x2y3 и 7x3y2c
Перемножим числовые и буквенные части по отдельности. В процессе умножения будем применять правило перемножения степеней с одинаковыми основаниями. Перемножаемые сомножители будем заключать в скобки:
5x2y3 × 7x3y2c = (5 × 7) × (x2x3) × (y3y2) × c = 35x5y5c

Пример 5. Перемножить одночлены −5a2bc и 2a2b4
−5a2bc × 2a2b4 = (−5 × 2) × (a2a2) × (bb4) × c = −10a4b5c

Деление одночленов

Для того, чтобы разделит один многочлен на другой, нужно коэффициент первого одночлена разделить на коэффициент второго одночлена, а буквенную часть первого одночлена разделить на буквенную часть второго одночлена. При этом используется правило деления степеней.

Пример 6. Разделить одночлен 8a2b2 на одночлен 4ab. 
Разделим коэффициент делимого на коэффициент делителя, получим 8 : 4 = 2.
Теперь делим буквенную часть:
— в делимом содержится a2, в делителе — просто a. Делим a2 на a, получаем a, поскольку a2 : a = a2 − 1 = a
— в делимом содержится b2, в делителе — просто b. Делим b2 на b, получаем b, поскольку bb2 − 1 = b. Значит, при делении одночлена 8a2b2 на одночлен 4ab получается одночлен 2ab.

Если переменная есть только в одном многочлене:

Если в делителе окажется переменная, которой нет в делимом, то  деление невозможно.

Например, одночлен 6xy2 нельзя разделить на одночлен 3xyz, так как в делителе 3xyz содержится переменная z, которая не содержится в делимом 6xy2.

Но в некоторых дробях, если невозможно выполнить деление, бывает возможным выполнить сокращение. Делается это с целью упростить выражение.

*сокращение дроби это деление числителя и знаменателя на одно и то же число.
Так, в примере нельзя разделить одночлен 6xy2 на одночлен 3xyzНо можно сократить эту дробь на одночлен 3xy.

Если в делимом содержится переменная, которая не содержится в делителе, то деление будет возможным. В этом случае переменная, которая отсутствовала в делителе, будет перенесена в частное без изменений.

Например, при делении одночлена 4x2y2z на 2xy, получается 2xyz

Если одна из степеней, входящая в делимое, имеет показатель меньший, чем показатель той же степени из делителя, то деление одночлена на одночлен также невозможно.

Например, разделить одночлен 2x на одночлен x2 нельзя, поскольку степень x, входящая в делимое, имеет показатель 1, тогда как степень x2, входящая в делитель, имеет показатель 2. Мы не сможем найти частное, которое при перемножении с делителем x2 даст в результате делимое 2x.

Возведение одночлена в степень

При возведении степень одночлена каждый из множителей возводится в степень. Затем полученные результаты перемножаются: (a × b)n = a× b

Пример 7. Возвести одночлен xy во вторую степень.
Чтобы возвести одночлен xy во вторую степень, нужно возвести во вторую степень каждый множитель этого одночлена: (xy)2 = x2y2

Пример 8. Возвести одночлен −a2bc3 в пятую степень.
В данном примере коэффициентом одночлена является −1. Этот коэффициент тоже нужно возвести в пятую степень: 
(−a2bc3)5 = (−1)5 × (a2)5 × b5 × (c3)5 = −1a10b5c15 = −a10b5c15
Когда коэффициент равен −1, то саму единицу не записывают. Записывают только минус и потом остальные множители одночлена.

Пример 9. Представить одночлен 121a6 в виде одночлена, возведённого в квадрат.
— число 121 получается, если число 11 возвести в квадрат — это первый множитель.
— степень a6 получается, если возвести в квадрат степень a3 — это второй множитель.
Таким образом, если произведение 11a3 возвести во вторую степень, то получится  121a6
(11a3)2 = 112 × (a3)2 = 121a6

Разложение одночлена на множители

Поскольку одночлен является произведением чисел, переменных и степеней, то он может быть разложен на множители, из которых состоит.

Пример 10. Разложить одночлен 3a3b2 на множители
Данный одночлен можно разложить на множители:
3a3b= 3×a×a×a× b×b =  3×a×a×a×b2 = 3×a3×b×b

Добавить комментарий