Как найти экстремум функции по уравнению

Как найти точки минимума и максимума функции

Содержание:

  • Минимум и максимум функции

    • Точка минимума, минимум функции
    • Точка максимума, максимум функции
  • Исследование функций на экстремумы
  • Примеры задач

Минимум и максимум функции

Минимумом и максимумом функции, другими словами экстремумами, называют точки, в которых функция меняет характер монотонности (с возрастания на убывание и наоборот). Важно понимать, что экстремумы это не максимальные и минимальные значения функции. Обозначаются следующим образом: 

  • (y_{min}, y_{max}) — минимум, максимум функции или экстремумы;
  • (x_{min}, x_{max}) — точки минимума, максимума функции;
  • (y_{наиб}, y_{наим}) — наибольшее (максимальное), наименьшее (минимальное) значение функции.

Точка минимума, минимум функции

Точка минимума — такая точка (x_0), если у неё существует окрестность, для всех точек которой выполняется неравенство (f(x)geq f(x_0))

Минимум функции — значение функции в точке минимума (x_0)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Простыми словами, точка минимума — это та, где убывание функции меняется на возрастание.

Точка максимума, максимум функции

Точка максимума — такая точка (x_0), если у неё существует окрестность, для всех точек которой выполняется неравенство (f(x)leq f(x_0))

Максимум функции — значение функции в точке максимума (x_0)

Простыми словами, точка максимума — это та, где возрастание функции меняется на убывание.

Точки максимума и минимума на графике:

Точка экстремума

Источник: school-collection.edu.ru

Исследование функций на экстремумы

Теорема. Если функция f(x) имеет экстремум в точке (x=x_0,) то в ней производная либо равна 0, либо не существует.

Алгоритм нахождения экстремумов с помощью производной:

  1. Найти область определения функции — D(y).

  2. Определить производную — f ‘(x).

  3. Определить стационарные точки f(x), т.е. те, которые принадлежат D(y), f ‘(x) в них обращается в ноль, отыскать критические точки, в которых производной не существует (пример: (f^,(x)=frac1{2sqrt x}), производной не существует при x = 0).

  4. Исследовать характер изменения функции (x) и знак f ‘(x) в промежутках, на которые найденные критические точки делят область определения (при отрицательном знаке производной функция убывает, при положительном — возрастает).

  5. Относительно каждой критической точки определить, является ли она точкой максимума, минимума  (возрастание меняется на убывание — точка максимума, убывание на возрастание — минимума) или не является точкой экстремума (то есть, меняется ли знак производной при переходе через исследуемую точку).

  6. Вычислить значения функции в точках экстремума.

Примеры задач

Задача 1

Исследовать на экстремумы функцию (f(x)=x^3-3x^2.)

Решение задачи по алгоритму:

1) (D(y): xin(-infty;+infty)), т.е. x — любое число.

2) Производная: (f'(x)=3x^2-6x) .

3) Из пункта 1 следует, что критических точек нет. Найдем стационарные:

Приравниваем f ‘(x) к 0, решаем квадратное уравнение (3x^2-6x=0), получаем (x_1=0),(;x_2=2.)

4) Отметим на горизонтальной оси координат точки 0 и 2. Подставим любое x из интервала ((-infty;0)) в f'(x), например, пусть x = -1, тогда (f'(x)=3{(-1)}^2-6(-1)=3+6=9). Получаем f ‘(x)>0, значит на исследуемом интервале f(x) возрастает. Аналогично рассмотрим оставшиеся интервалы. Итого, на отрезке (0;2) производная отрицательна, функция убывает, а на интервале ((2;+infty)) производная положительна, возрастает. Из этого следует, что x=0 – точка максимума, а x=2 – минимума.

5) Найдем значение экстремумов функции.

(f(0)=0-3times0=0)

(f(2)=2^3-3times2^2=8-12=-4)

Ответ: (x_{min}=2,;y_{min}=-4;;x_{max}=0,;y_{max}=0) или (0;0) – минимум функции, (2;-4) – максимум.

Задача 2

Найти промежутки монотонности функции (f(x)=frac x{x^2-4}).

1) (D(y): xinmathbb{R},;)кроме(;pm2)

2) (f'(x)=frac{1(x^2-4)-xtimes2x}{{(x^2-4)}^2}=-frac{x^2+4}{{(x^2-4)}^2})

3) Итак, как выяснилось в пункте 1, критические точки 2 и -2. Если мы приравняем f ‘(x) к 0, чтобы найти стационарные точки, то увидим, что уравнение не будет иметь корней. Значит, стационарных точек нет. Из этого следует, что функция монотонна на всей области определения. Проверим, возрастает она или убывает. Для этого решаем неравенство (-frac{x^2+4}{{(x^2-4)}^2}leq0) и получим, что неравенство верно при любом x, значит функция убывает.

Не забываем, что в ответе, указывая промежуток, обязательно нужно исключить критические точки -2 и 2 т.к. в них функция не определена.

Ответ: f(x) убывает на промежутке ((-infty;-2)cup(-2;2)cup(2;+infty)).

Задача 3

Докажите, что функция (f(x)=x^5+2x^3-4) возрастает на всех числовой прямой.

1) (D(y): xinmathbb{R}), значит критических точек нет.

2) (f'(x)=5x^4+6x)

3) Приравняем f'(x) к 0 и найдем корень: x = 0. Отметим 0 на числовой прямой и определим знак производной на промежутках ((-infty;0)) и ((0;+infty)). Получим, что производная положительна на обоих промежутках, следовательно функция возрастает на всей числовой прямой.

Утверждение доказано

Содержание:

Экстремум функции

Функция y=f(x) называется возрастающей (убывающей) в некотором интервале, если при Экстремум функции - определение и вычисление с примерами решения

Если дифференцируемая функция у = f(x) на отрезке Экстремум функции - определение и вычисление с примерами решения возрастает (убывает), то ее производная на этом отрезке Экстремум функции - определение и вычисление с примерами решения

Точка Экстремум функции - определение и вычисление с примерами решения называется точкой локального максимума (минимума) функции Экстремум функции - определение и вычисление с примерами решения если существует окрестность точки Экстремум функции - определение и вычисление с примерами решения для всех точек которой верно неравенство Экстремум функции - определение и вычисление с примерами решенияЭкстремум функции - определение и вычисление с примерами решения

Точки максимума и минимума называются точками экстремума, а значения функции в этих точках – ее экстремумами.

Необходимые условия экстремума. Если точка хо является точкой экстремума функции Экстремум функции - определение и вычисление с примерами решения то либо Экстремум функции - определение и вычисление с примерами решения не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек. Первое достаточное условие. Пусть Экстремум функции - определение и вычисление с примерами решения – критическая точка. Если f'(х) при переходе через точку Экстремум функции - определение и вычисление с примерами решения меняет знак плюс на минус, то в точке Экстремум функции - определение и вычисление с примерами решения функция имеет максимум, в противном случае – минимум. Если при переходе через критическую точку производная не меняет знак, то в точке хо экстремума нет.

Второе достаточное условие. Пусть функция Экстремум функции - определение и вычисление с примерами решения имеет производную f'(х) в окрестности точки Экстремум функции - определение и вычисление с примерами решения и вторую производную Экстремум функции - определение и вычисление с примерами решения в самой точке Экстремум функции - определение и вычисление с примерами решения. Если Экстремум функции - определение и вычисление с примерами решенияЭкстремум функции - определение и вычисление с примерами решения то точка Экстремум функции - определение и вычисление с примерами решения является точкой локального минимума (максимума) функции f(x). Если же Экстремум функции - определение и вычисление с примерами решения то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке Экстремум функции - определение и вычисление с примерами решения функция у = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка Экстремум функции - определение и вычисление с примерами решения.

Пример:

Найти экстремумы функции Экстремум функции - определение и вычисление с примерами решения

Решение:

Так как Экстремум функции - определение и вычисление с примерами решения то критические точки функции Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения Экстремумы могут быть только в этих точках. Так как при переходе через точку Экстремум функции - определение и вычисление с примерами решения производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку Экстремум функции - определение и вычисление с примерами решения производная меняет знак минус на плюс, поэтому в точке Экстремум функции - определение и вычисление с примерами решения у функции минимум. Вычислив значения функции в точках Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) =13.

Пример:

Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется а погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение:

Обозначим стороны площадки через Экстремум функции - определение и вычисление с примерами решения Площадь площадки равна Экстремум функции - определение и вычисление с примерами решения Пусть у – это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2х + у = а. Поэтому Экстремум функции - определение и вычисление с примерами решения (длина и ширина площадки не могут быть отрицательными). Экстремум функции - определение и вычисление с примерами решения откуда Экстремум функции - определение и вычисление с примерами решения Поскольку Экстремум функции - определение и вычисление с примерами решения– единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При Экстремум функции - определение и вычисление с примерами решения значит, в точке Экстремум функции - определение и вычисление с примерами решения функция S имеет максимум. Значение функции Экстремум функции - определение и вычисление с примерами решения

Поскольку S непрерывна на Экстремум функции - определение и вычисление с примерами решения и ее значения на концах Экстремум функции - определение и вычисление с примерами решения равны нулю, то найденное значение будет наибольшим значением функции.

Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является у = 2х.

Пример:

Требуется изготовить закрытый цилиндрический бак вместимостью Экстремум функции - определение и вычисление с примерами решения Экстремум функции - определение и вычисление с примерами решения Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение:

Площадь полной поверхности цилиндра равна Экстремум функции - определение и вычисление с примерами решения Мы знаем объем цилиндра Экстремум функции - определение и вычисление с примерами решения Значит, Экстремум функции - определение и вычисление с примерами решения Находим производную этой функции:Экстремум функции - определение и вычисление с примерами решенияследовательно, Экстремум функции - определение и вычисление с примерами решения

Экстремумы функции

Введём несколько новых понятий. Окрестностью точки Экстремум функции - определение и вычисление с примерами решения называется любой промежуток, для которого Экстремум функции - определение и вычисление с примерами решения является внутренней точкой.

Точка Экстремум функции - определение и вычисление с примерами решения называется точкой минимума (максимума) функции Экстремум функции - определение и вычисление с примерами решения если для всех Экстремум функции - определение и вычисление с примерами решения из некоторой окрестности точки Экстремум функции - определение и вычисление с примерами решения выполняется неравенство Экстремум функции - определение и вычисление с примерами решения

Точки минимума и максимума обозначают Экстремум функции - определение и вычисление с примерами решения соответственно.

Значение функции в точке минимума называется минимумом функции, а в точке максимума — максимумом функции. Обозначают их: Экстремум функции - определение и вычисление с примерами решения

Точки минимума и максимума функции называют точками экстремума (лат. extremum — край, конец). Значения функции в точках её экстремума — её экстремальные значения, или экстремумы.

Например, для функции Экстремум функции - определение и вычисление с примерами решения точка Экстремум функции - определение и вычисление с примерами решения является точкой максимума (рис. 77). Её максимум: Экстремум функции - определение и вычисление с примерами решения

Для функции Экстремум функции - определение и вычисление с примерами решения точка Экстремум функции - определение и вычисление с примерами решения является точкой минимума (рис. 78). Её минимум: Экстремум функции - определение и вычисление с примерами решения

Функция, график которой изображён на рисунке 75, имеет четыре экстремальные точки: Экстремум функции - определение и вычисление с примерами решения — точки максимума; Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения — точки минимума.

Точка экстремума функции не может принадлежать промежутку, на котором эта функция возрастает или убывает (почему?). Следовательно, те точки, в которых производная функции положительная или отрицательная, не могут быть точками её экстремума. Все остальные точки области определения функции являются её критическими точками. Поэтому точками экстремума функции могут быть только её критические точки. Это — необходимое условие существования экстремума.

Выбрать из критических точек функции точки экстремума позволяет достаточное условие существования экстремума.

Экстремум функции - определение и вычисление с примерами решения

Экстремум функции - определение и вычисление с примерами решения

Пусть функция Экстремум функции - определение и вычисление с примерами решения непрерывна на промежутке Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения — её критическая точка, Экстремум функции - определение и вычисление с примерами решения Тогда: точка Экстремум функции - определение и вычисление с примерами решения при переходе через которую в направлении роста аргумента производная меняет знак с «плюса» на «минус», является точкой максимума, а точка, при переходе через которую производная меняет знак с «минуса» на «плюс» — точкой минимума.

Действительно, если производная функции Экстремум функции - определение и вычисление с примерами решения отрицательная, то при переходе через точку Экстремум функции - определение и вычисление с примерами решения возрастание функции изменяется на убывание (рис. 79). В этом случае Экстремум функции - определение и вычисление с примерами решения — точка максимума. Если же при переходе через точку Экстремум функции - определение и вычисление с примерами решения убывание функции изменяется на возрастание, то Экстремум функции - определение и вычисление с примерами решения — точка минимума (рис. 80).

Если же производная функции в точке Экстремум функции - определение и вычисление с примерами решения равна нулю, а слева и справа от Экстремум функции - определение и вычисление с примерами решения производная функции положительная (рис.81) или слева и справа отрицательная, то Экстремум функции - определение и вычисление с примерами решения не является точкой экстремума.

  • Заказать решение задач по высшей математике

Пример №552

Найдите точки экстремума и экстремальные значения функции Экстремум функции - определение и вычисление с примерами решения

Решение:

 Экстремум функции - определение и вычисление с примерами решения

Критические точки функции: Экстремум функции - определение и вычисление с примерами решения При переходе через точку Экстремум функции - определение и вычисление с примерами решения производная меняет знаке Экстремум функции - определение и вычисление с примерами решения поэтому Экстремум функции - определение и вычисление с примерами решения —точка максимума. При переходе через точку Экстремум функции - определение и вычисление с примерами решения производная меняет знак с Экстремум функции - определение и вычисление с примерами решения поэтому Экстремум функции - определение и вычисление с примерами решения — точка минимума (рис. 82).

Экстремум функции - определение и вычисление с примерами решения

Ответ. Экстремум функции - определение и вычисление с примерами решения

Нахождение экстремумов функции можно оформлять в виде таблицы, как на с. 176. Особенно это удобно при общем исследовании функции, когда находят не только её экстремумы, но и другие свойства, строят её график.

Чтобы исследовать функцию, можно пользоваться следующей схемой:

  1. найти область определения функции;
  2. исследовать функцию на чётность, нечётность, периодичность;
  3. найти точки пересечения графика функции с осями координат;
  4. исследовать функцию на монотонность, то есть найти промежутки возрастания и убывания функции;
  5. найти точки экстремума и экстремальные значения функции;
  6. найти асимптоты графика функции;
  7. построить график функции.

Пример №553

Исследуйте функцию Экстремум функции - определение и вычисление с примерами решения и постройте её график.

Решение:

Область определения функции — все действительные числа, кроме Экстремум функции - определение и вычисление с примерами решения Поскольку она не симметрична относительно нуля, то функция не может быть чётной или нечётной. Функция непериодическая.

Уравнение Экстремум функции - определение и вычисление с примерами решения не имеет решений, поэтому график функции не пересекает ось Экстремум функции - определение и вычисление с примерами решения Ось Экстремум функции - определение и вычисление с примерами решения он пересекает в точке с ординатой Экстремум функции - определение и вычисление с примерами решения

Экстремум функции - определение и вычисление с примерами решения

Критические точки: Экстремум функции - определение и вычисление с примерами решения

Составим и заполним таблицу.
Экстремум функции - определение и вычисление с примерами решения

На промежутках Экстремум функции - определение и вычисление с примерами решения функция возрастает, на промежутках  Экстремум функции - определение и вычисление с примерами решения функция убывает. Экстремум функции - определение и вычисление с примерами решения — точка максимума,  Экстремум функции - определение и вычисление с примерами решения Экстремум функции - определение и вычисление с примерами решения —точка минимума, Экстремум функции - определение и вычисление с примерами решения 

Область значений функции: Экстремум функции - определение и вычисление с примерами решения

График функции имеет вертикальную асимптоту Экстремум функции - определение и вычисление с примерами решения так как Экстремум функции - определение и вычисление с примерами решения

График этой функции изображён на рисунке 83.

Экстремум функции - определение и вычисление с примерами решения

Пример №554

Может ли нечётная функция иметь экстремум в точке Экстремум функции - определение и вычисление с примерами решения А чётная функция?

Решение:

Нечётная функция не может. Если в окрестности точки Экстремум функции - определение и вычисление с примерами решения функция имеет экстремум, то с одной стороны от нуля она возрастает, а с другой — убывает, или наоборот. А нечётная функция — или только возрастает, или только убывает в окрестности точки Экстремум функции - определение и вычисление с примерами решения Чётная функция может. Например, функция Экстремум функции - определение и вычисление с примерами решения

Пример №555

Существуют ли такие числа Экстремум функции - определение и вычисление с примерами решения при которых имеет экстремум функция Экстремум функции - определение и вычисление с примерами решения

Решение:

При любых действительных значениях Экстремум функции - определение и вычисление с примерами решенияЭкстремум функции - определение и вычисление с примерами решения В каждой точке Экстремум функции - определение и вычисление с примерами решенияпроизводная данной функции неотрицательная. Функция Экстремум функции - определение и вычисление с примерами решениявозрастает на Экстремум функции - определение и вычисление с примерами решения поэтому не может иметь экстремумов.

Ответ. Не существуют.

Пример №556

Исследуйте функцию Экстремум функции - определение и вычисление с примерами решения и постройте её график.

Решение. Экстремум функции - определение и вычисление с примерами решения

2) Функция — нечётная, поскольку Экстремум функции - определение и вычисление с примерами решения

Следовательно, её график симметричен относительно начала координат и достаточно исследовать функцию на промежутке Экстремум функции - определение и вычисление с примерами решения

3) если Экстремум функции - определение и вычисление с примерами решения — график пересекает оси координат только в точке Экстремум функции - определение и вычисление с примерами решения

4) Найдём производную функции:

Экстремум функции - определение и вычисление с примерами решения

Очевидно, что Экстремум функции - определение и вычисление с примерами решения для всех х из области определения. Следовательно, функция убывает на каждом из промежутков Экстремум функции - определение и вычисление с примерами решения и не имеет максимумов и минимумов.

Для более точного построения вычислим значение функции в нескольких точках:

Экстремум функции - определение и вычисление с примерами решения

График функции имеет вертикальные асимптоты Экстремум функции - определение и вычисление с примерами решения и Экстремум функции - определение и вычисление с примерами решения (Убедитесь самостоятельно.)

График функции изображён на рисунке 84.

Экстремум функции - определение и вычисление с примерами решения

  • Методы решения систем линейных алгебраических уравнений (СЛАУ)
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Определитель матрицы
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод

Экстремумы функции

Необходимое условие экстремума функции одной переменной

Достаточное условие экстремума функции одной переменной

Если в точке x * выполняется условие:

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке [1; 3].
Решение.

Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 /2, f(3)=3 8 /81
Ответ: fmin= 5 /2 при x=2; fmax=9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π /3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π /3+2πk, k∈Z – точки минимума функции; , значит x=- π /3+2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x – первое слагаемое. Тогда (49-x) – второе слагаемое.
Произведение будет максимальным: x·(49-x) → max
или
49x – x 2

Максимумы, минимумы и экстремумы функций

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

– Производная положительна там, где функция возрастает.
– Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после – производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

Все вышесказанное можно обобщить следующими выводами:

– Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
– Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)).
  2. Найдите корни уравнения (f'(x)=0).
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов).
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью).
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    – если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    – если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    – если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

Теперь очевидно, что точкой максимума является (-2).

Экстремумы функции: признаки существования, примеры решений

Экстремумы функции, их необходимый и достаточный признаки

Точка экстремума функции – это точка области определения функции, в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции.

Нахождение эктремумов функции может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графиков. Кстати, будет полезным открыть в новом окне материал Свойства и графики элементарных функций. И ещё потребуются таблица производных простых функций и таблица производных сложных функций (откроются в новом окне), так как в примерах указано, какая именно табличная производная найдена.

Рассмотрим график непрерывной функции (рисунок снизу).

Определение. Точка x 1 области определения функции f(x) называется точкой максимума функции, если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f(x 0 ) > f(x 0 + Δx) ). В этом случае говорят, что функция имеет в точке x 1 максимум.

Определение. Точка x 2 области определения функции f(x) называется точкой минимума функции, если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f(x 0 ) 0 + Δx) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 – точка максимума функции f(x) . Тогда в интервале до x 1 функция возрастает, поэтому производная функции больше нуля ( f ‘(x) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля ( f ‘(x) ). Тогда в точке x 1 производная функции равна нулю или не существует.

Допустим также, что точка x 2 – точка минимума функции f(x) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля ( f ‘(x) ), а в интервале после x 2 функция возрастает, а производная функции больше нуля ( f ‘(x) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции). Если точка x 0 – точка экстремума функции f(x) , то в этой точке производная функции равна нулю ( f ‘(x) = 0 ) или не существует.

Определение. Точки, в которых производная функции равна нулю или не существует, называются критическими точками.

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками, позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно – максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f(x) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с “плюса” на “минус”, то точкой максимума, а если с “минуса” на “плюс”, то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее:

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с “плюса” на “минус”, то критическая точка является точкой максимума, а если с “минуса” на “плюс”, то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции (в таблице производных сложных функций – производная 6):

.

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений “икса” знаменатель не равен нулю, то приравняем нулю числитель:

.

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 – знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности – знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

.

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f(x) , если вторая производная функции в этой точке не равна нулю ( f ”(x) ≠ 0 ), причём, если вторая производная больше нуля ( f ”(x) > 0 ), то точкой максимума, а если вторая производная меньше нуля ( f ”(x) ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер – это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок – максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок – минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума – наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума – точками локального максимума.

Ищем экстремумы функции вместе

Пример 3. Найти экстремумы функции и построить её график.

Решение. Функция определена и непрерывна на всей числовой прямой. Её производная (и первое, и второе слагаемые – табличная производная 3) существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную (каждое слагаемое находим как табличную производную 3) и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок – в начале примера.

Найти экстремумы функции самостоятельно, а затем посмотреть решение

Пример 5. Найти экстремумы функции .

Пример 6. Найти экстремумы функции .

Пример 7. Найти экстремумы функции .

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции (производная вида 2 в таблице производных сложной функции):

Найдём критические точки функции:

Точки и не могут быть точками экстремума, так как находятся на границе области определения функции. В точке производная функции меняет знак с плюса на минус, а в точке – с минуса на плюс. Следовательно, – точка максимума, а точка – точка минимума функции.

Найдём значения функции в этих точках:

Таким образом, экстремумы функции:

.

Пример 9. Найти экстремумы функции .

Решение. Найдём область определения функции.

Найдём критические точки функции:

Таким образом, у данной функции две критические точки: и . Определим значения производной в критических точках. При переходе через точку производная функции продолжает убывать (сохраняет знак минус), а при переходе через точку – начинает возрастать (меняет знак с минуса на плюс). Следовательно, – точка минимума функции.

Найдём значение функции в точке минимума:

Таким образом, минимум функции:

.

Пример 10. Найти экстремумы функции .

Решение. Найдём первую производную функции (первое слагаемое – производная вида 12 в таблице производных простых функций, второе – производная вида 6 в таблице производных сложной функции):

.

Найдём критические точки функции:

.

Так как для любого действительного x должно выполняться условие , то

.

Таким образом, данная функция имеет одну критическую точку. Определим значения производной в критической точке. При переходе через точку производная функции начинает убывать (меняет знак с плюса на минус). Следовательно, – точка максимума функции.

Найдём значение функции в точке максимума:

.

Таким образом, максимум функции:

.

[spoiler title=”источники:”]

http://cos-cos.ru/math/327/

http://function-x.ru/function_extremum.html

[/spoiler]

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

на графике функции отмечены локальные минимумы и максимумы

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная
равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

найдите количество точек экстремумов функции

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

на графике функции отмечены локальные минимумы и максимумы         график производной и отмеченные на ней точки минимумов и максимумов функции

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

– Производная положительна там, где функция возрастает.
– Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

найдите количество точек экстремумов функции

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

по графику производной определить минимумы и максимумы функции

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после – производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

(-7): минимум.

(3): максимум.

Все вышесказанное можно обобщить следующими выводами:

– Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
– Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)). 
  2. Найдите корни уравнения (f'(x)=0). 
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов). 
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью). 
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    – если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    – если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    – если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.

нахождение минимума и максимума

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

схематичное изображение функции

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

(15x^4-60x^2=0)      (|:15)
(x^4-4x^2=0)
(x^2 (x^2-4)=0)
(x=0)       (x^2-4=0)
               (x=±2)

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

поиск минимумов и максимумов

Теперь очевидно, что точкой максимума является (-2).

Ответ. (-2).

Смотрите также:
Связь функции и её производной | 7 задача ЕГЭ
Разбор задач на поиск экстремумов, минимумов и максимумов

Скачать статью

Лекция
№ 11

Условный экстремум

Пусть на открытом
множестве

заданы функции
,
,
,
.
Обозначим

– множество точек, координаты которых
удовлетворяют уравнениям:

, ,. (*)

Уравнения (*)
называют ограничениями или уравнениями
связи.

Определение.
Точка

называется точкой условного
строгого максимума
,
если

выполняется неравенство
.

Если

выполняется неравенство
,
то точку

называют точкой условного
строгого минимума
.

Методы нахождения
точек условного экстремума.

  1. Метод исключения.
    Рассмотрим уравнения связи
    ,
    .
    Если уравнения связи удается разрешить
    относительно каких-то

    переменных:
    ,
    ,,,
    то исследование функции на условный
    экстремум сводится к исследованию на
    обычный экстремум функции

    переменных.

Пример 1. Найти
экстремум функции

при условии, что

и

удовлетворяют уравнению связи
.

Решение. Разрешим
уравнение связи относительно переменной
:
.
Подставив выражение для

в функцию, получим
.
Исследуем на экстремум функцию одной
переменной.

, .

Следовательно,

точка минимума функции. Исходная функция
в точке

имеет условный минимум.

Пример 2. Найти
условные экстремумы функции

относительно уравнений связи
,
.

Решение. Разрешим
уравнения связи относительно переменных

и
:
,
.

Подставив найденные
значения

и

в выражения для
,
сведем задачу к исследованию на обычный
(безусловный) экстремум функции
. .
Стационарные точки

и
.

, , .
Следовательно, в точке

функция имеет максимум
,
а в точке

– минимум
.

Исходная функция
при заданных ограничениях имеет один
условный максимум

и один условный минимум
.

  1. Метод неопределенных
    множителей Лагранжа.

Пусть

и


непрерывно дифференцируемы в окрестности
точки

и ранг матрицы Якоби

в этой точке равен
.

Функцию

называют функцией Лагранжа. Коэффициенты

– неопределенные множители Лагранжа.

Необходимые
условия существования условного
экстремума.

Для того, чтобы
точка

являлась точкой условного экстремума
функции

при связях


необходимо, чтобы её координаты при
некоторых значениях

удовлетворяли системе уравнений

,

т.е.

– стационарная точка функции Лагранжа
и её координаты удовлетворяют уравнениям
связи.

Достаточные
условия существования условного
экстремума.

Пусть

и


дважды непрерывно дифференцируемы в
окрестности точки
,
в которой выполняются необходимые
условия существования условного
экстремума функции

при ограничениях

.

Если при выполнении
условий

,

(1)

второй дифференциал

является положительно (отрицательно)
определенной квадратичной формой, то
функция

в точке

имеет условный минимум (максимум).

Если при условиях
(1)

является неопределенной квадратичной
формой, то в точке

условного экстремума нет.

Пример
3
. Найти
экстремум функции

при условии, что переменные

и

удовлетворяют уравнению
.

Пример 4.
Найти условный экстремум функции

относительно
уравнения связи
.

Решение. Функции

и

дважды непрерывно дифференцируемы.
Матрица Якоби
,
.

Строим функцию
Лагранжа
.

Необходимые
условия:

В точках

и

может быть условный экстремум.

Достаточные
условия:

, , .
,
.

В точках

и


и

связаны соотношением
,
поэтому

и
.

Точке

соответствует

поэтому

и в точке

условный максимум.

Точке

соответствует

поэтому

и в точке

условный минимум.

Наибольшее и
наименьшее значение функции.

Hаибольшим
значением функции


в области

называется число
,
если

и для всех точек

этой области выполняется неравенство
.

Наименьшим
значением функции


в области

называется число
,
если

и для всех точек

этой области выполняется неравенство
.

Теорема
Вейерштрасса.

Для функции, непрерывной на ограниченном
замкнутом множестве, существует на этом
множестве точка, в которой функция
принимает наибольшее значение и точка,
в которой функция принимает наименьшее
значение.

Функция,
дифференцируемая в ограниченной области
и непрерывная на её границе, достигает
своего наибольшего и наименьшего
значений либо в стационарных точках,
либо в граничных точках области.

Пример 4.
Определить
наибольшее и наименьшее значения функции

в области D:
,
,
.

Решение.
Указанная область есть треугольник
(рис. 1). Стационарных точек функция не
имеет, так как
,
.

Исследуем функцию
на границах области. Граница состоит
из трех отрезков [ОА],
[АВ],
[ОВ].
На отрезке


,

значит, для точек этого отрезка
,
.

Таким образом,
задача свелась к нахождению наименьшего
и наибольшего значений функции

на отрезке
.
Так как
,
то функция принимает эти значения на
концах отрезка, т. е. в точках

и
.
Находим
,
.

Аналогично, для
отрезка


задача
сводится к отысканию наибольшего и
наименьшего значений функции

на отрезке
.
Они реализуются на концах отрезка, т.
е. в точках

и
,
так как
.
Находим
.

Отрезок

определяется уравнением

или

при
.
Для этого отрезка имеем

или

и
,
т. е. наибольшее и наименьшее значения
функция принимает на концах отрезка
,
в точках

и
.
Сравнивая все полученные значения,
заключаем, что

, .

Пример 5.
Положительное число

требуется разбить на три неотрицательных
слагаемых так, чтобы их произведение
было наибольшим.

Решение. Обозначим
слагаемые
,

и
.
Ищем максимум функции
.
По смыслу задачи функция рассматривается
внутри замкнутого треугольника
,
,
.

.
Внутренняя стационарная точка
.

, , .

Матрица Гессе в
стационарной точке
.
Так как
,
а
,
то в точке

функция достигает максимума
.

Поскольку на
контуре треугольника
,
то этот максимум будет наибольшим
значением.

Пример 6. (КИМ
ЕГЭ 2006) Три числа, принадлежащих
соответственно отрезкам
,

и
,
являются первыми членами арифметической
прогрессии. Найдите, какие значения
может принимать величина
,
где

– первый член, а

– разность прогрессии.

Решение.
Из условия
задачи имеем:
.
Рассмотрим функцию
,
определенную на шестиугольнике
.
,
Стационарная точка

не принадлежит шестиугольнику
.

Найдем координаты
вершин шестиугольника:
,
,
,
,
,
.
Вычислим значения функции в вершинах:
,
,
,
,
.

Значит, функция
может принимать значения из отрезка
.

5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий