Как найти объем пирамиды 6 класс

В данной публикации мы рассмотрим, как можно найти объем пирамиды и разберем примеры решения задач для закрепления материала.

  • Формула вычисления объема пирамиды

    • 1. Общая формула

    • 2. Объем правильной треугольной пирамиды

    • 3. Объем правильной четырехугольной пирамиды

    • 4. Объем правильной шестиугольной пирамиды

  • Примеры задач

Формула вычисления объема пирамиды

1. Общая формула

Объем (V) пирамиды равняется одной третьей произведения ее высоты на площадь основания.

Формула объема пирамиды

Объем пирамиды

  • ABCD – основание;
  • E – вершина;
  • h – высота, перпендикулярная основанию.

2. Объем правильной треугольной пирамиды

Объем правильной треугольной пирамиды

Основанием правильной треугольной пирамиды является равносторонний треугольник (ABC), площадь которого вычисляется так (а – сторона треугольника):

Формула площади равностороннего треугольника

Подставляем данное выражение в формулу расчета объема фигуры и получаем:

Формула объема правильной треугольной пирамиды

3. Объем правильной четырехугольной пирамиды

Объем правильной четырехугольной пирамиды

Основанием правильной четырехугольной пирамиды является квадрат, площадь которого считается так: S = a2, где а – длина его стороны.

Следовательно, формулу объема можно представить в виде:

Формула объема правильной четырехугольной пирамиды

4. Объем правильной шестиугольной пирамиды

Объем правильной шестиугольной пирамиды

Основанием правильной шестиугольной пирамиды является правильный шестиугольник, площадь которого вычисляется по формуле (а – сторона основания):

Формула площади основания правильного шестиугольника

С учетом этого, объем фигуры считается так:

Формула объема правильного шестиугольника

Примеры задач

Задание 1
Найдите объем правильной треугольной пирамиды, если известно, что ее высота составляет 16 см, а длина стороны ее основания – 8 см.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные значения:
Формула расчета объема правильной треугольной пирамиды

Задание 2
Высота правильной четырехугольной пирамиды равна 12 см, а сторона ее основания – 3 см. Найдите объем фигуры.

Решение:
Площадь квадрата, который является основанием пирамиды, равна 9 см2 (3 см ⋅ 3 см). Следовательно, объем равен:
Формула расчета объема правильной четырехугольной пирамиды

Объем пирамиды

{V= S cdot h}

На этой странице собраны формулы и калькуляторы для нахождения объема пирамиды. Просто введите известные данные в калькулятор и получите результат. Либо рассчитайте объем пирамиды по приведенным формулам самостоятельно.

Пирамида — многогранник, в основании которого лежит многоугольник, а остальные грани представляют собой треугольники, имеющие общую вершину.

Содержание:
  1. калькулятор объема пирамиды
  2. формула объема пирамиды
  3. объем правильной треугольной пирамиды
  4. объем правильной четырехугольной пирамиды
  5. объем правильной шестиугольной пирамиды
  6. объем правильной n-угольной пирамиды
  7. объем тетраэдра
  8. примеры задач

Формула объема пирамиды

Объем пирамиды

{V= dfrac{1}{3} S cdot h}

S – площадь основания пирамиды

h – высота пирамиды

Формула объема правильной треугольной пирамиды

Правильная треугольная пирамида – пирамида, в основании которой лежит равносторонний треугольник, а грани являются равнобедренными треугольниками.

Объем правильной треугольной пирамиды

{V= dfrac{h cdot a^2}{4 sqrt{3}}}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной четырехугольной пирамиды

Правильная четырехугольная пирамида – пирамида, в основании которой лежит квадрат, а грани являются равнобедренными треугольниками.

Объем правильной четырехугольной пирамиды

{V= dfrac{1}{3} cdot h cdot a^2}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной шестиугольной пирамиды

Правильная шестиугольная пирамида – пирамида, в основании которой лежит правильный шестиугольник, а грани являются равнобедренными треугольниками.

Объем правильной шестиугольной пирамиды

{V= dfrac{sqrt{3}}{2} cdot h cdot a^2}

a – длина стороны основания пирамиды

h – высота пирамиды

Формула объема правильной n-угольной пирамиды

Правильная пирамида имеет в основании правильный многоугольник (все стороны и углы равны между собой), а высота проходит через центр этого основания.

Объем правильной n-угольной пирамиды

{V= dfrac{n cdot h cdot a^2}{12 cdot tg(dfrac{180°​}{n} )}}

a – длина стороны основания пирамиды

h – высота пирамиды

n – число сторон многоугольника в основании пирамиды

Формула объема тетраэдра

Тетраэдр – правильный многогранник (четырехгранник), имеющий четыре грани, каждая из которых является правильным треугольником. У тетраэдра кроме четырех граней также 4 вершины и 6 ребер.

Объем тетраэдра

{V= dfrac{sqrt{2} a^3}{12}}

a – длина стороны тетраэдра

Примеры задач на нахождение объема пирамиды

Задача 1

Найдите объем пирамиды с высотой 2м, а основанием ее служит квадрат со стороной 3м.

Решение

Так как в основании пирамиды лежит квадрат, то воспользуемся формулой объема правильной четырехугольной пирамиды и подставим в нее значения высоты и стороны основания.

V= dfrac{1}{3} cdot h cdot a^2 = dfrac{1}{3} cdot 2 cdot 3^2 = dfrac{1}{3} cdot 2 cdot 9 = dfrac{1}{3} cdot 18 = 6 : м^3

Ответ: 6 м³

Используем калькулятор для проверки полученного ответа.

Задача 2

Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1см, а высота равна √3см.

Решение

Из условия следует, что пирамида правильная треугольная. Это значит, что для решения задачи необходимо воспользоваться формулой для правильной треугольной пирамиды. Подставим в нее значения и рассчитаем объем.

V= dfrac{h cdot a^2}{4 sqrt{3}} = dfrac{sqrt{3} cdot 1^2}{4 sqrt{3}} = dfrac{sqrt{3} cdot 1}{4 sqrt{3}} = dfrac{sqrt{3}}{4 sqrt{3}} = dfrac{cancel{sqrt{3}}}{4 cancel{sqrt{3}}} = dfrac{1}{4} = 0.25 : м^3

Ответ: 0.25 см³

Для проверки с помощью калькулятора извлечем квадратный корень из 3: √3 = 1.73205. Теперь можем подставить значения в калькулятор и проверить полученный ответ.

Определение пирамиды

Пирамида – это многогранник, основанием которого является многоугольник, а грани его являются треугольниками.

Онлайн-калькулятор объема пирамиды

obempiramidy.svg

У пирамиды есть ребра. Можно сказать, что они тянутся к точке, называемой вершиной данной пирамиды. Ее основанием может быть произвольный многоугольник. Грань — это фигура, которая образуется в результате объединения двух ближайших ребер со стороной основания. Гранью пирамиды является треугольник. Расстояние от вершины пирамиды до середины стороны основания называется апофемой. Высотой пирамиды называется длина перпендикуляра, опущенного из вершины к центру ее основания.

Типы пирамид

Различают следующие типы пирамид.

  1. Прямоугольная — у нее ребро образует угол в 90 градусов с основанием.
  2. Правильная — ее основание — какой-либо правильный многоугольник, а вершина проецируется в центр этого основания.
  3. Тетраэдр — пирамида, у которой в основании лежит треугольник.

Формулы объема пирамиды

Объем пирамиды находится несколькими способами.

По площади основания и высоте пирамиды

Простое умножение одной трети площади основания на высоту пирамиды и является ее объемом.

Объем пирамиды по площади основания и высоте

V=13⋅Sосн⋅hV=frac{1}{3}cdot S_{text{осн}}cdot h

SоснS_{text{осн}} — площадь основания пирамиды;
hh — высота данной пирамиды.

Задача 1

Площадь основания пирамиды равна 100 см2100text{ см}^2, а высота ее равна 30 см30text{ см}. Найдите объем тела.

Решение

Sосн=100S_{text{осн}}=100
h=30h=30

Все величины нам известны, подставляем их численные значения в формулу и находим:

V=13⋅Sосн⋅h=13⋅100⋅30=1000 см3V=frac{1}{3}cdot S_{text{осн}}cdot h=frac{1}{3}cdot 100cdot 30=1000text{ см}^3

Ответ

1000 см3.1000text{ см}^3.

Формула объема правильной треугольной пирамиды

Этот способ подходит, если пирамида правильная и треугольная.

Объем правильной треугольной пирамиды

V=h⋅a243V=frac{hcdot a^2}{4sqrt{3}}

hh — высота пирамиды;
aa — сторона основания пирамиды.

Задача 2

Вычислите объем правильной треугольной пирамиды, если в ее основании лежит равносторонний треугольник, в котором сторона равна 5 см5text{ см}, а высота пирамиды равна – 19 см19text{ см}.

Решение

a=5a=5
h=19h=19

Просто подставляем данные величины в формулу для объема:

V=h⋅a243=19⋅5243≈68.6 см3V=frac{hcdot a^2}{4sqrt{3}}=frac{19cdot 5^2}{4sqrt{3}}approx68.6text{ см}^3

Ответ

68.6 см3.68.6text{ см}^3.

Формула объема правильной четырехугольной пирамиды

Объем правильной четырехугольной пирамиды

V=13⋅h⋅a2V=frac{1}{3}cdot hcdot a^2

hh — высота пирамиды;
aa — сторона основания пирамиды.

Задача 3

Дана правильная четырехугольная пирамида. Вычислите ее объем, если ее высота равна 7 см7text{ см}, a сторона основания составляет – 2 см2text{ см}.

Решение

a=2a=2
h=7h=7

По формуле вычисляем:

V=13⋅h⋅a2=13⋅7⋅22≈9.3 см3V=frac{1}{3}cdot hcdot a^2=frac{1}{3}cdot 7cdot 2^2approx9.3text{ см}^3

Ответ

9.3 см3.9.3text{ см}^3.

Формула объема тетраэдра

Объем тетраэдра

V=2⋅a312V=frac{sqrt{2}cdot a^3}{12}

aa — длина ребра тетраэдра.

Задача 4

Длина ребра тетраэдра равна 13 см13text{ см}. Найдите его объем.

Решение

a=13a=13

Подставляем aa в формулу для объема тетраэдра:

V=2⋅a312=2⋅13312≈259 см3V=frac{sqrt{2}cdot a^3}{12}=frac{sqrt{2}cdot 13^3}{12}approx259text{ см}^3

Ответ

259 см3.259text{ см}^3.

Формула объема пирамиды как определитель

Наверное, самый экзотический способ вычисления объема данного тела.

Пусть даны векторы, на которых построена пирамида как на сторонах. Тогда ее объем будет равен одной шестой смешанного произведения векторов. Последний в свою очередь равен определителю составленному из координат этих векторов. Итак, если пирамида построена на трех векторах:

a⃗=(ax,ay,az)vec{a}=(a_x, a_y, a_z)
b⃗=(bx,by,bz)vec{b}=(b_x, b_y, b_z)
c⃗=(cx,cy,cz)vec{c}=(c_x, c_y, c_z),

тогда объем соответствующей пирамиды это такой определитель:

Объем пирамиды через определитель

V=16⋅∣axayazbxbybzcxcycz∣V=frac{1}{6}cdotbegin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}

Задача 5

Найти объем пирамиды через смешанное произведение векторов, координаты которых такие: a⃗=(2,3,5)vec{a}=(2,3,5) , b⃗=(1,4,4)vec{b}=(1,4,4), c⃗=(3,5,7)vec{c}=(3,5,7).

Решение

a⃗=(2,3,5)vec{a}=(2,3,5)
b⃗=(1,4,4)vec{b}=(1,4,4)
c⃗=(3,5,7)vec{c}=(3,5,7)

По формуле:

V=16⋅∣235144357∣=16⋅(2⋅4⋅7+3⋅4⋅3+5⋅1⋅5−5⋅4⋅3−2⋅4⋅5−3⋅1⋅7)=16⋅(56+36+25−60−40−21)=16⋅(−4)=−23≈−0.7V=frac{1}{6}cdotbegin{vmatrix}
2 & 3 & 5 \
1 & 4 & 4 \
3 & 5 & 7 \
end{vmatrix}=frac{1}{6}cdot(2cdot4cdot7 + 3cdot4cdot3 + 5cdot1cdot5 – 5cdot4cdot3 – 2cdot4cdot5 – 3cdot1cdot7) =frac{1}{6}cdot( 56 + 36 + 25 – 60 – 40 – 21)=frac{1}{6}cdot(-4)=-frac{2}{3}approx-0.7

Мы должны взять модуль этого числа, так как объем это неотрицательная величина:

V=0.7 см3V=0.7text{ см}^3

Ответ

0.7 см3.0.7text{ см}^3.

Не знаете, где можно оформить заказ контрольных работ недорого? Наши эксперты помогут вам с решением работ по объемам фигур!

Тест по теме “Объем пирамиды”

В основу курса наглядной геометрии для 5 и 6 классов РКШ была положена программа по математике церковно-приходской школы. Эта программа содержала массу геометрических сведений, часть из которых изучается только в старших классах современной школы; например, объёмы геометрических тел проходят в курсе геометрии 11 класса, а в дореволюционной России ― в начальной школе. Конечно, эту тему в младших классах изучают без строгих обоснований, на конкретных примерах. Точно так же и весь курс наглядной геометрии не вводит точных определений, не занимается доказательствами, а имеет своей целью формирование представлений о геометрических формах, развитие пространственного воображения. Методика преподавания наглядной геометрии согласована с природой ребёнка, деятельной и творческой по своей сути.

Использование наглядных пособий поможет сформировать ясные представления о геометрических телах, фигурах, мерах длины, площади и объёма.

В следующем видео приведён фрагмент объяснения нового материала в 6 классе по теме «Объём пирамиды». В нём мы показываем, как с помощью наглядных пособий ― прямоугольного параллелепипеда и четырёхугольной пирамиды ― вывести формулу для вычисления объёма последней.

Источник

Пирамида (др.-греч. πυραμίς, πυραμίδος) — многогранник, одна из граней которого (называемая основанием) — произвольный многоугольник, а остальные грани (называемые боковыми гранями) — треугольники, имеющие общую вершину. По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д. Пирамида является частным случаем конуса.

Лемма

Две пирамиды, имеющие равные высоты и равновеликие основания, имеют равные объемы.

Теорема

Объем пирамиды равен одной трети произведения площади основания на высоту: (V={1over3}S*H) , где S – площадь основания, H – высота пирамиды.

Теорема 

Объем V усеченной пирамиды может быть найден по формуле (V={1over3}H(S1+{{sqrt {S1S2}}}+S2)), где H – высота усеченной пирамиды, S1 и S2 – площади ее оснований.

Часто даны координаты вершин пирамиды ABCD и требуется найти ее объем. Даная задача может быть решена методами аналитической геометрии. Покажем ее решение на примере.

Пусть даны координаты вершин пирамиды ABCD и требуется найти ее объем: A(10;6;6), B(-2;8;2), C(6;8;9), D(7;10;3).

Решение

Объем пирамиды равен (1over6) объема параллелепипеда, построенного на векторах AB, AC, AD. Найдем координаты этих векторов, для этого из соответствующей координаты конца вектора вычтем координату его начала:

AB=(-12;2;-4), AC=(-4;2:3), AD=(-3;4;-3).

Тогда объем параллелепипеда равен значению детерминанта (определителя) матрицы, составленной из координат векторов (строка матрицы – координаты вектора). Определитель третьего порядка находим по правилу треугольников.

Автор – Дмитрий Айстраханов

Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Добавить комментарий