Как найти площадь треугольника видео 5 класс

ТРЕУГОЛЬНИКИ И ИХ ВИДЫ. Видеоурок | МАТЕМАТИКА 5 класс

ТРЕУГОЛЬНИКИ И ИХ ВИДЫ. Видеоурок | МАТЕМАТИКА 5 класс

КАК НАЙТИ ПЛОЩАДЬ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | МАТЕМАТИКА 5 класс

КАК НАЙТИ ПЛОЩАДЬ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | МАТЕМАТИКА 5 класс

ПЛОЩАДЬ. ПЛОЩАДЬ ПРЯМОУГОЛЬНИКА И КВАДРАТА. Видеоурок | МАТЕМАТИКА 5 класс

ПЛОЩАДЬ. ПЛОЩАДЬ ПРЯМОУГОЛЬНИКА И КВАДРАТА. Видеоурок | МАТЕМАТИКА 5 класс

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

33 131

Как найти площадь треугольника – все способы

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

формула площади прямоугольного треугольника

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Формула площади равнобедренного треугольника

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Формула площади равностороннего треугольника

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Формула площади треугольника по стороне и высоте

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Формула площади треугольника по сторонам и синусу угла

Если известны длины трех сторон

Делайте так:

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Площадь треугольника по трем сторонам

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

По сторонам и радиусу описанной окружности

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

По сторонам и вписанной окружности

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

( 32 оценки, среднее 4.44 из 5 )

Оцените статью

ЕЖЕНЕДЕЛЬНАЯ РАССЫЛКА

Получайте самые интересные статьи по почте и подписывайтесь на наши социальные сети

ПОДПИСАТЬСЯ


В этом онлайн уроке рассказывается о том, как найти площадь треугольника ABC (прямоугольного, с тупым углом, остроугольного), формула. Начинается обучение с нахождения площади прямоугольного треугольника, т.е. треугольника, в котором один угол равен 90 градусов. Площадь в этом случае вычисляется по очень простой формуле. Она равна половина произведения длин катетов, т.е. двух сторон прилегающих к прямому углу. Справедливость данной формулы объясняется тем, что любой прямоугольный треугольник можно достроить до прямоугольника, добавив точно такой же треугольник. А площадь прямоугольника вычисляется как произведение его длины на ширину, которые являются катетами составляющих его прямоугольных треугольников. Затем в видео уроке объясняется то, как найти площадь треугольника ABC с тупым и с острым углом. Площадь любого треугольника равна половине его основания умноженное на высоту. Эта формула легко доказывается, основываясь на формулу нахождения площади прямоугольного треугольника Видео урок «Как найти площадь треугольника ABC (прямоугольного, с тупым углом, остроугольного), формула» вы можете смотреть онлайн в любое удобное время совершенно бесплатно. Успехов!


  • Длительность: 11:02
  • Рейтинг: 3.9/21
  • 1
  • 2
  • 3
  • 4
  • 5


Если у Вас есть качественные видео уроки, которых нет на нашем сайте, то Вы можете добавить их в нашу коллекцию. Для этого Вам необходимо загрузить их на видеохостинг (например, YouTube) и добавить код видео в форму добавления уроков. Возможность добавлять свои материалы доступна только для зарегистрированных пользователей.

Содержание материала

  1. Треугольники [ править ]
  2. Видео
  3. Если известны длины трех сторон
  4. Для прямоугольного треугольника
  5. Площадь треугольника по гипотенузе и острому углу
  6. Площадь прямоугольного треугольника по катету и прилежащему углу
  7. Если он равнобедренный
  8. Как найти Полупериметр трапеции?

Треугольники [ править ]

В любом треугольнике расстояние вдоль границы треугольника от вершины до точки на противоположном крае, которой касается вневписанная окружность, равно полупериметру.

Полупериметр чаще всего используется для треугольников; формула для полупериметра треугольника со сторонами a , b и c имеет вид

Видео

Если известны длины трех сторон

Делайте так:

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Для прямоугольного треугольника

Для прямоугольного треугольника чаще всего используют одну формулу — половину произведения катетов. Потому что их всегда можно найти с помощью правил тригонометрии или теоремы Пифагора.

, где , — стороны.

Площадь треугольника по гипотенузе и острому углу

Площадь треугольника по гипотенузе и острому углу

, где — гипотенуза, — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежи

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу

, где — катет, — прилежащий угол.

Катетом принято называть одну из двух сторон, обра

Катетом принято называть одну из двух сторон, образующих прямой угол.

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Как найти Полупериметр трапеции?

Трапеция – это четырехугольник с двумя параллельными сторонами. Чтобы найти периметр трапеции, нужно сложить длины всех четырех сторон. Зачастую в задачах длины некоторых сторон не даны, но известны другие величины, например, высота или угол трапеции.

Теги

Добавить комментарий