Как найти собственную скорость лодки против течения

Как найти собственную скорость лодки

Решение задач на «движение по воде» многим дается с трудом. В них существует несколько видов скоростей, поэтому решающие начинаю путаться. Чтобы научиться решать задачи такого типа, надо знать определения и формулы. Умение составлять схемы очень облегчает понимание задачи, способствует правильному составлению уравнения. А правильно составленное уравнение – самое главное в решении любого типа задач.

Как найти собственную скорость лодки

Инструкция

В задачах «на движение по реке» присутствуют скорости: собственная скорость (Vс), скорость по течению (Vпо теч.), скорость против течения (Vпр. теч.), скорость течения (Vтеч.). Необходимо отметить, что собственная скорость водного суда – это скорость в стоячей воде. Чтобы найти скорость по течению, надо к скорости течения прибавить собственную. Для того чтобы найти скорость против течения, надо из собственной скорости вычесть скорость течения.

Первое, что необходимо выучить и знать “на зубок” – формулы. Запишите и запомните:

Vпо теч=Vс+Vтеч.

Vпр. теч.=Vс-Vтеч.

Vпр. теч=Vпо теч. – 2Vтеч.

Vпо теч.=Vпр. теч+2Vтеч.

Vтеч.=(Vпо теч. – Vпр. теч)/2

Vс=(Vпо теч.+Vпр теч.)/2 или Vс=Vпо теч.+Vтеч.

На примере разберем, как находить собственную скорость и решать задачи такого типа.

Пример 1.Скорость лодки по течению 21,8км/ч, а против течения 17,2 км/ч. Найти собственную скорость лодки и скорость течения реки.

Решение: Согласно формулам: Vс=(Vпо теч.+Vпр теч.)/2 и Vтеч.=(Vпо теч. – Vпр. теч)/2, найдем:

Vтеч = (21,8 – 17,2)/2=4,62=2,3 (км/ч)

Vс = Vпр теч.+Vтеч=17,2+2,3=19,5 (км/ч)

Ответ: Vc=19,5 (км/ч), Vтеч=2,3 (км/ч).

Пример 2. Пароход прошел против течения 24 км и вернулся обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите его собственную скорость в неподвижной воде, если скорость течения равна 3 км/ч.

За Х примем собственную скорость парохода. Составим таблицу, куда занесем все данные.

Против теч. По течению

Расстояние 24 24

Скорость Х-3 Х+3

время 24/ (Х-3) 24/ (Х+3)

Зная, что на обратный путь пароход затратил на 20 минут времени меньше, чем на путь по течению, составим и решим уравнение.

20 мин=1/3 часа.

24/ (Х-3) – 24/ (Х+3) = 1/3

24*3(Х+3) – (24*3(Х-3)) – ((Х-3)(Х+3))=0

72Х+216-72Х+216-Х2+9=0

441-Х2=0

Х2=441

Х=21(км/ч) – собственная скорость парохода.

Ответ: 21 км/ч.

Обратите внимание

Скорость плота считается равной скорости водоема.

Источники:

  • решение задач на течение

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

подскажите пожалуйста формулы нахождения скорости собственной,скорость реки,по течению и против течения!



Ученик

(2),
закрыт



10 лет назад

Луношерстная

Профи

(584)


12 лет назад

V по теч. = V соб. + V теч.
V пр. теч. = V соб. – V теч.
V соб. = (V по теч. + V пр. теч. ) /2
V теч. = (V по теч. – V пр. теч.) /2

Источник: учебник математики, 6 класс, Г. В. Дрофеев, Л. Г. Петерсон

Анна Сергеева

Ученик

(126)


7 лет назад

V по теч. = V соб. + V теч.
V пр. теч. = V соб. – V теч.
V соб. = (V по теч. + V пр. теч. ) /2
V теч. = (V по теч. – V пр. теч.) /2
V по теч. = Vсоб. + Vтеч.

Vпр. теч = Vсоб. – Vтеч.

Vсоб. = (Vпо теч. + Vпр. теч.) :2

Vтеч. = (Vпо теч. – Vпр. теч.) :2
ненавижу зачеты

Светлана

Знаток

(321)


6 лет назад

V по теч. = V соб. + V теч.
V пр. теч. = V соб. – V теч.
V соб. = (V по теч. + V пр. теч. ) /2
V теч. = (V по теч. – V пр. теч.) /2

Ирина Яньшина

Знаток

(372)


6 лет назад

V по теч. = V соб. + V теч.
V пр. теч. = V соб. – V теч.
V соб. = (V по теч. + V пр. теч. ) /2
V теч. = (V по теч. – V пр. теч.) /2
2 Нравится Пожаловаться

aysel qaxramanova

Ученик

(153)


6 лет назад

V течения = ( V по течению – V против течения )
V собственная = ( V по течению + V против течения )
V против течения = V собственная – V течения
V по течению = V собственная + V течения
Пишу для тупых по подробнее

Как рассчитать по формулам скорость лодки?

Собрали для Вас актуальные формулы, которые могут оказаться полезными каждому ??

8 июля 2020
4 293

✓ Формула 1

На примере разберем, как находить скорость лодки.

Скорость лодки по течению 21,8км/ч, а против течения 17,2 км/ч. Найти собственную скорость лодки и скорость течения реки.

Решение: Согласно формулам: Vс=(Vпо теч.+Vпр теч.)/2 и Vтеч.=(Vпо теч. — Vпр. теч)/2, найдем:

Vтеч = (21,8 — 17,2)/2=4,62=2,3 (км/ч)

Vс = Vпр теч.+Vтеч=17,2+2,3=19,5 (км/ч)

Ответ: Vc=19,5 (км/ч), Vтеч=2,3 (км/ч).

✓ Формула 2

Самым простым методом самостоятельного расчета предельной скорости лодки считается использование формулы, учитывающей параметры двигателя.

Для этого используется формула вычисления двигателя V = NK/R, где искомый параметр V – скорость километров в час, R – сопротивление движению (его вы можете взять в технической документации своего катера), K – коэффициент полезной деятельности винта. Определяется он в зависимости от типа лодки. Так, для спортивного катера его значение — 160, для крупных винтов — 140, для средних и малых — 120 и 100 соответственно.

Параметр N – мощность работы двигателя катера. Эту информацию вы можете рассчитать самостоятельно или обратиться за помощью к технической документации. Для того, чтобы вычислить предел скорости катера, возьмите максимально допустимую мощность. Этот метод позволяет рассчитать предел максимальной скорости катера достаточно точно, однако не следует забывать про вероятную погрешность.

Привет! У тех, кто готовится к ОГЭ, возникает много вопросов по поводу задач на движение из второй части. И один из возможных вариантов таких задач – это задача про лодку, которая плывёт по течению и против течения. Сегодня разберем конкретный пример такой задачи:

Моторная лодка прошла 45 км против течения реки и вернулась в пункт отправления. При этом на обратный путь она затратила на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч.

  • Шаг № 1

Давайте для начала разберемся в самой ситуации. У каждой моторной лодки есть двигатель (мотор), который приводит её в движение. Если лодка плывёт, например, по пруду со стоячей водой, то она двигается только благодаря мотору. Скорость лодки в данном случае называется собственная скорость лодки. Её ничего не подгоняет и ничего не тормозит. Именно скорость лодки в неподвижной (стоячей) воде (то есть её собственную скорость) и просят найти авторы задания. То, что нужно найти, в задачах обозначается за «Х».

Лодка в стоячей воде
Лодка в стоячей воде

Итак, собственная скорость лодки = Х.

Лодка будет плыть с собственной скоростью только в неподвижной воде. Если переместить её на реку, то мы столкнёмся с таким явлением, как течение. В реке вода не стоит на месте: она движется в определённую сторону. Скорость течения реки в нашем задании = 3 км/ч.

Что же произойдёт, если лодка будет плыть по течению? Во-первых, её будет приводить в движение мотор. А во-вторых, ее будет подгонять течение. Логично, что по течению лодка будет двигаться быстрее, чем в стоячей воде.

Но как же найти скорость лодки по течению? Очень просто! Она равна сумме собственной скорости лодки и скорости течения реки.

Задача про моторную лодку и течение из ОГЭ

Так как скорость течения нам известна по условию, а собственную скорость лодки мы уже обозначили за «Х», то нам лишь осталось подставить в формулу наши значения. То есть в нашем случае вычислить скорость лодки по течению можно так:

Vпо течению = Vсобственная + Vтечения

Vпо течению = Х + 3 км/ч.

Задача про моторную лодку и течение из ОГЭ

А если лодка будет плыть против течения? В этом случае течение будет её не подгонять, а тормозить. Ведь вода движется в одну сторону, а лодка – в противоположную.

Значит теперь скорость будет меньше, чем в стоячей воде. Найти её можно так: вычесть из собственной скорости лодки скорость течения реки:

Задача про моторную лодку и течение из ОГЭ

Вычислим скорость против течения для нашего случая:

Vпротив течения = Vсобственная – Vтечения

Vпротив течения = Х – 3 км/ч.

Задача про моторную лодку и течение из ОГЭ

Отлично! Перед тем, как перейти к дальнейшим действиям, вспомним формулы для задач на движение:

Задача про моторную лодку и течение из ОГЭ
  • Шаг №2

Теперь давайте оформим таблицу, в которую занесем все наши данные. Так мы точно не запутаемся!

Задача про моторную лодку и течение из ОГЭ

Для начала заполним столбик «Расстояние». Для пути против течения оно равно 45 км. Сказано, что лодка вернулась назад. В этом случае на обратном пути по течению она проплыла ровно столько же!

Задача про моторную лодку и течение из ОГЭ
Задача про моторную лодку и течение из ОГЭ

Со скоростями мы уже разобрались. Скорость по течению = Х + 3 км/ч, а против течения = Х – 3 км/ч.

Задача про моторную лодку и течение из ОГЭ

Теперь разберемся со временем. Напомню, что оно вычисляется по формуле: расстояние поделить на скорость. Расстояния у нас есть, скорости тоже, и записать время нам ничего не мешает!

Задача про моторную лодку и течение из ОГЭ

Отлично, все данные записаны, теперь переходим к основному решению!

  • Шаг №3

Обратимся к условию ещё раз. Сказано, что на обратный путь по течению лодка затратила на 2 часа меньше, чем на путь против течения. Так что теперь работаем со временем.

Давайте обозначим время движения против течения за t1, а время движения по течению t2. Если на обратный путь было затрачено на 2 часа меньше, то путь «туда» на 2 часа больше.

Из вышесказанного делаем вывод, что t1 > t2 на 2 часа. Это значит, что если из t1 вычесть t2, то получится 2.

t1 – t2 = 2

А теперь подставим в наше выражение t1 – t2 = 2 вместо t1 и t2 наши значения из таблицы. Тогда мы получим замечательное уравнение, которое и поможет нам прийти к ответу.

Задача про моторную лодку и течение из ОГЭ
  • Шаг №4

Мы получили дробно-рациональное уравнение. Это значит, что неизвестный «Х» стоит в знаменателе.

И первый шаг в решении подобных уравнений – это запись ОДЗ (области допустимых значений). ОДЗ показывает, каким числом «Х» может быть, а каким – нет.

«Х» стоит в знаменателе, а основное, что мы знаем про знаменатель – это то, что он не может быть равен нулю, потому что на ноль делить нельзя. Запишем знаменатели наших дробей и отметим, что они не равны нулю:

1) Х – 3 ≠ 0

2) Х + 3 ≠ 0

Продолжаем работать с этой записью, как с уравнением:

1) Х ≠ 3

2) Х ≠ – 3

Значит, ОДЗ: Х ≠ ±3. “Х” также должен быть больше нуля, так как скорость (а за “Х” мы обозначили именно её) не может быть отрицательной.

Итог шага №4: ОДЗ: Х ≠ ±3; Х > 0

  • Шаг №5

Продолжаем работу с уравнением. Мы разобрались с ОДЗ, а значит, можем с чистой совестью избавиться от знаменателя. Для этого умножим обе части уравнения на наименьший общий знаменатель.

Наименьший общий знаменатель (НОЗ) – это наименьшее число, которое делится на все знаменатели рассматриваемых дробей. В нашем случае это (Х – 3) (Х + 3). Он делится и на (Х – 3), и на (Х + 3). Вперед!

Чтобы лучше разобраться в сложных числовых махинациях, обратимся к подробной записи:

Задача про моторную лодку и течение из ОГЭ
Задача про моторную лодку и течение из ОГЭ

Обратите внимание, что дроби слева сокращаются, таким образом исчезает знаменатель.

Итак, вот что у нас получается:

45(х + 3) – 45(х – 3) = 2(х – 3)(х + 3)

Обратим внимание на скобки (х – 3)(х + 3). Они представляют собой разложенную разность квадратов. Вспомним эту формулу:

Формула разности квадратов
Формула разности квадратов

Скобки (х – 3)(х + 3) соответствуют части (a + b)(a – b) в формуле. Чтобы свернуть её обратно, нам нужно записать квадрат первого числа(Х^2), поставить знак минус, а затем записать квадрат второго числа (3^2 = 9).

45(х + 3) – 45(х – 3) = 2(х^2 – 9)

Предлагаю перенести все элементы в одну сторону. Напомню, что при переходе в противоположную сторону элемент должен поменять знак. То есть если справа мы видим 2(х^2 – 9), то перенести влево должны
– 2(х^2 – 9). При этом справа ничего не остаётся, поэтому ставим ноль. Приступим!

45(х + 3) – 45(х – 3) – 2(х^2 – 9) = 0

Теперь давайте раскроем скобки и приведем подобные слагаемые.

45(х + 3) – 45(х – 3) – 2(х^2 – 9) = 0

45х + 135 – 45х + 135 – 2х^2 + 18 = 0

Слагаемые 45х и – 45х в сумме дают ноль, поэтому их можно больше не записывать. Они «взаимоуничтожаются»

288 – 2х^2 = 0

Теперь перенесем все числовые значения вправо, а буквенные оставим слева, а затем продолжим решение:

– 2х^2 = – 288

x^2 = – 288/- 2

х^2 = 144

х = ±√144 = ±12.

Мы получили два корня. Корень – 12 нам не подходит, так как он отрицательный, а выше мы писали, что х > 0. А вот корень 12 удовлетворяет всем условиям, он нам подходит. Так как за “Х” мы обозначили собственную скорость лодки, которую и требуется найти в задании, то, решив это уравнение, мы получили ответ!

Ответ: 12 км/ч.

А вот решение без лишних пояснений:

Решение, которое можно переписать в тетрадь)
Решение, которое можно переписать в тетрадь)

Надеюсь, все было максимально понятно:)

До новых встреч!!

Как найти собственную скорость

Согласно учебной программе по математикедети должны научиться решать задачи на движение еще в начальной школе. Однако задачи такого вида часто вызывают уучащихся затруднение. Важно,чтоб ребенок понял, что такое собственная скорость, скорость течения, скорость по течению и скорость против течения. Только при этом условии школьник сможет легко решать задачина движение.Как найти собственную скоростьВам понадобится

Собственная – это скорость катера или другого средства передвижения в неподвижной воде. Обозначьте ее – V собств.
Вода в реке находится в движении. Значит она имеет свою скорость, которая называется скоростью течения (V теч.)
Скорость катера по течению реки обозначьте – V по теч., а скорость против течения – V пр. теч.

Теперь запомните формулы, необходимые для решения задач на движение:
V пр. теч.= V собств. – V теч.
V по теч.= V собств. + V теч.

Итак, исходя из этих формул, можно сделать следующие выводы.
Если катер движется против течения реки, то V собств. = V пр. теч. + V теч.
Если катер движется по течению, то V собств. = V по теч. – V теч.

Решим несколько задач на движение по реке.
Задача 1. Скорость катера против течения реки 12,1 км/ч. Найдите собственную скорость катера, зная , что скорость течения реки 2 км/ч.
Решение: 12,1 + 2 = 14, 1 (км/ч) – собственная скорость катера.
Задача 2. Скорость катера по течению реки 16,3 км/ч, скорость течения реки 1,9 км/ч. Сколько метров прошел бы это катер за 1 мин., если находился в стоячей воде?
Решение: 16,3 – 1,9 = 14,4 (км/ч) – собственная скорость катера. Переведем км/ч в м/мин: 14,4 / 0,06 = 240 (м/мин.). Значит, за 1 минуту катер прошел бы 240 м.
Задача 3. Два катера отправились одновременно навстречу друг другу из двух пунктов. Первый катер двигался по течению реки, а второй – против течения. Встретились они через три часа. За это время первый катер прошел 42 км, а второй – 39 км.Найдите собственную скорость каждого катера, если известно, что скорость течения реки 2 км/ч.
Решение: 1) 42 / 3 = 14 (км/ч) – скорость движения по течению реки первого катера.
2) 39 / 3 = 13 (км/ч) – скорость движения против течения реки второго катера.
3) 14 – 2 = 12 (км/ч) – собственная скорость первого катера.
4) 13 + 2 = 15 (км/ч) – собственная скорость второго катера.

Добавить комментарий