15 мая 2014
Иногда в задаче 6 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.
На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» заданий 6.
Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.
Если $S=xleft( t right)$, то $v$ мы можем посчитать следующим образом:
[v={S}’={x}’left( t right)]
Точно так же мы можем посчитать и ускорение:
[a={v}’={{S}’}’={{x}’}’left( t right)]
Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.
Давайте посмотрим, как это работает при решении реальных задач.
Пример № 1
Материальная точка движется по закону:
[xleft( t right)=-frac{1}{5}{{t}^{5}}+{{t}^{4}}-{{t}^{3}}+5t]
где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.
Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.
[v={S}’={x}’left( 2 right)]
Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.
Давайте решать. В первую очередь, посчитаем производную:
[{x}’left( t right)=-frac{1}{5}cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]
[{x}’left( t right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]
Нам требуется найти производную в точке 2. Давайте подставим:
[{x}’left( 2 right)=-{{2}^{4}}+4cdot {{2}^{3}}-3cdot {{2}^{2}}+5=]
[=-16+32-12+5=9]
Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.
Пример № 2
Материальная точка движется по закону:
[xleft( t right)=frac{1}{3}{{t}^{3}}-4{{t}^{2}}+19t-11]
где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?
Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.
В первую очередь, вновь ищем производную:
[{x}’left( t right)=frac{1}{3}cdot 3{{t}^{2}}-4cdot 2t+19]
[{x}’left( t right)={{t}^{2}}-8t+19]
От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:
[{{t}^{2}}-8t+19=3]
[{{t}^{2}}-8t+16=0]
[{{left( t-4 right)}^{2}}=0]
[t-4=0]
[t=4]
Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.
Ключевые моменты
В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.
Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.
Смотрите также:
- Не допускайте таких ошибок, когда видите график производной в задаче 6 из ЕГЭ по математике!
- ЕГЭ 2022, задание 6. Касательная и квадратичная функция с параметром
- Схема Бернулли. Примеры решения задач
- Комбинаторика в задаче B6: средний тест
- Как решать задачи про летающие камни?
- B4: счетчики на электричество
Применение производной в физике и технике
- Скорость и ускорение
- Физические величины как производные от других величин
- Примеры
п.1. Скорость и ускорение
Рассматривая физический смысл производной (см. §42 данного справочника), мы выяснили, что:
Производная функции (y=f(x)) в точке (x_0) равна скорости изменения функции в этой точке.
Например:
Рассмотрим прямолинейное равноускоренное движение.
Уравнение этого движения имеет вид: $$ x(t)=x_0+v_0t+frac{at^2}{2} $$ где (x(t)) – ккордината тела в произвольный момент времени (t, x_0) – начальная координата, (v_0) – начальная скорость, (a=const) – ускорение, действующее на тело.
Чтобы найти скорость тела из этого уравнения, нужно найти производную от координаты по времени: $$ v(t)=x'(t)=left(x_0+v_0t+frac{at^2}{2}right)’=0+v_0cdot 1+frac a2cdot 2t=v_0+at $$ Чтобы найти ускорение, нужно найти производную от скорости: $$ a(t)=v'(t)=x”(t)=(v_0+at)’=0+acdot 1=a=const $$
п.2. Физические величины как производные от других величин
Если рассматривать уравнение процесса (s=f(t)), его производной будет величина $$ f'(t)=lim_{triangle trightarrow 0}frac{triangle s}{triangle t} $$ Такие величины часто встречаются в различных разделах физики и техники.
Исходная величина (процесс)
Производная по времени
Координата (x(t))
Скорость (v(t)=x'(t))
Ускорение (a(t)=v'(t)=x”(t))
Угол поворота (varphi(t))
Угловая скорость (omega(t)=omega'(t))
Угловое ускорение (beta(t)=omega'(t)=varphi”(t))
Масса горючего ракеты (m(t))
Скорость расходования горючего (u(t)=m'(t))
Температура тела (T(t))
Скорость нагрева (v_T(t)=T'(t))
Заряд (q(t))
Сила тока (I(t)=q'(t))
Работа (A(t))
Мощность (N(t)=A'(t))
Магнитный поток (Ф(t))
ЭДС индукции (varepsilon(t)=-Ф'(t))
Число атомов радиоактивного вещества (N(t))
Скорость радиоактивного распада (I(t)=-N'(t))
Конечно же, в физике далеко не обязательно берут производную только по времени.
Например, для теплоты Q(T) теплоемкость равна C(T)=Q'(T), где T – температура.
А для процесса теплопереноса температура u(x,t) в точке с координатой x в момент времени t определяется уравнением теплопроводности: $$ frac{partial u(x,t)}{partial t}-a^2frac{partial^2 u(x,t)}{partial x^2}=f(x,t) $$ и производные берутся по времени (left(frac{partial u}{partial t}right)) и по координате (left(frac{partial u}{partial x}right)), причем по координате берется производная второго порядка (left(frac{partial^2 u}{partial x^2}right)).
Поэтому в физике для производных чаще используются обозначения Лейбница, в которых хорошо видна как функция, так и аргумент.
Например, для производных функции от одной переменной: (frac{partial varphi}{partial t}, frac{partial p}{partial V}, frac{partial Q}{partial T},…)
Для производных функций от многих переменных: (frac{partial u}{partial t}, frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial u}{partial z},…)
п.3. Примеры
Пример 1. Тело массой 6 кг движется прямолинейно по закону (x(t)=t^2+t+1) (м). Найдите: 1) кинетическую энергию тела через 3 с после начала движения; 2) силу, действующую на тело в это время.
1) Кинетическая энергия равна (E=frac{mv^2}{2})
Скорость тела: (v(t)=x'(t)=(t^2+t+1)’=2t+1)
Через 3 с: (v(3)=2cdot 3+1=7) (м/с)
Подставляем: (E=frac{6cdot 7^2}{2}=147) (Дж)
2) Сила по второму закону Ньютона: (F=ma)
Ускорение тела: (a(t)=v'(t)=(2t+1)’=2) (м/с^2)
Ускорение постоянно.
На тело действует постоянная сила: (F=6cdot 2=12) (Н)
Ответ: 147 Дж; 12 Н
Пример 2. Маховик вращается по закону (varphi (t)=4t-0,5t^2) (рад)
Найдите момент времени, в который маховик остановится.
Угловая скорость: (omega(t)=varphi ‘(t)=(4t-0,5t^2 )’=4-0,5cdot 2t=4-t)
В момент остановки угловая скорость равна 0. Решаем уравнение: $$ 4-t=0Rightarrow t=4 (c) $$ Ответ: 4 c
Пример 3. Ракету запустили вертикально вверх с начальной скоростью 40 м/с. В какой момент времени и на какой высоте ракета достигнет наивысшей точки (g≈10м/с2)?
Выберем начало отсчета на земле ((y_0=0)), направим ось y вверх.
Начальная скорость направлена вверх, её проекция на ось положительна.
Ускорение свободного падения направлено вниз, его проекция отрицательна.
Уравнение движения: $$ y(t)=y_0+v_{0y}t+frac{g_y t^2}{2}=0+40t-frac{10t^2}{2}=40t-5t^2 $$ В верхней точке траектории ракета останавливается, её скорость равна 0.
Найдем скорость: $$ v(t)=y'(t)=40-5cdot 2t=40-10t $$ Найдем момент остановки в верхней точке: $$ 40-10t_0=0Rightarrow t_0=frac{40}{10}=4 (c) $$ Найдем высоту подъема в верхней точке: $$ H_{max}=y(t_0)=40cdot 4-5cdot 4^2=80 (м) $$ Ответ: 4 с, 80 м
Пример 4. Через поперечное сечение проводника проходит заряд (q(t)=ln(t+1)) (Кл). В какой момент времени сила тока в проводнике равна 0,1 А?
Сила тока: $$ I(t)=q'(t)=(ln(t+1))’=frac{1}{t+1} $$ По условию: $$ frac{1}{t_0+1}=0,1Rightarrow t_0+1=frac{1}{0,1}=10Rightarrow t_0=9 (c) $$ Ответ: 9 c
Пример 5. Колесо вращается так, что угол его поворота пропорционален квадрату времени. Первый оборот оно сделало за 8 с. Найдите угловую скорость через 48 с после начала вращения.
По условию угол поворота (varphi (t)=At^2)
Один оборот (2pi) радиан был сделан за 8 с. Получаем уравнение: (Acdot 8^2=2pi)
Находим коэффициент (A=frac{2pi}{8^2}=frac{pi}{32})
Уравнение движения (varphi(t)=frac{pi}{32}t^2) (рад)
Угловая скорость (omega(t)=varphi ‘(t)=left(frac{pi}{32}t^2right)’=frac{pi}{32}cdot 2t=frac{pi}{16}t) (рад/с)
Через 48 секунд (omega(48)=frac{pi}{16}cdot 48=3pi) рад/с – полтора оборота в секунду.
Ответ: (3pi) рад/с
Пример 6. Для нагревания 1 кг жидкости от 0°С до t°C необходимо (Q(t)=1,7t+at^2+bt^3) Дж теплоты.
Известно, что теплоемкость жидкости при температуре 100°С равна 1,71 Дж/К, а для нагревания 1 кг этой жидкости 0°С до 50°C требуется 85,025 Дж теплоты. Найдите коэффициенты a и b.
Теплоемкость: (C(t)=Q'(t)=1,7cdot 1+acdot 2t+bcdot 3t^2=1,7+2at+3bt^2)
По условию: begin{gather*} C(100)=1,7+2acdot 100+3bcdot 100^2-1,71\ 200a+30000b=0,01 end{gather*} Кроме того: begin{gather*} Q(50)=1,7cdot 50+acdot 50^2+bcdot 50^3=85,025\ 2500a+125000b=0,025 end{gather*} Получаем линейную систему: begin{gather*} begin{cases} 200a+30000b=0,01 |:2\ 2500a+125000b=0,025 |:25 end{cases} Rightarrow begin{cases} 100a+15000b=0,005\ 100a+5000b=0,001 end{cases} \ 15000b-5000b=0,005-0,001\ 10000b=0,004\ b=4cdot 10^{-3}cdot 10^{-4}=4cdot 10^{-7} left(frac{Дж}{K^3}right)\ a=frac{0,001-5000b}{100}=frac{10^{-3}-5cdot 10^3cdot 4cdot 10^{-7}}{100}=frac{10^{-3}-2cdot 10^{-3}}{100}=-frac{10^{-3}}{100}\ a=-10^{-5} left(frac{Дж}{K^2}right) end{gather*} Ответ: (a=-10^{-5}frac{Дж}{K^2}; b=4cdot 10^{-7}frac{Дж}{K^3})
Пример 7*. Лестница длиной 5 м стояла вертикально. Потом её нижний конец стали перемещать по полу с постоянной скоростью (v=2) м/с. С какой по абсолютной величине скоростью в зависимости от времени опускается верхний конец лестницы? Постройте график полученной функции.
Лестница со стенами образует прямоугольный треугольник, для которого справедлива теорема Пифагора: $$ x^2(t)+y^2(t)=5^2 $$ Нижний конец движется с постоянной скоростью, его уравнение движения по полу: $$ x(t)=vt=2t $$ Отсюда получаем уравнение движения верхнего конца по стенке: begin{gather*} y^2(t)=25-x^2(t)=25-(2t)^2=25-4t^2\ y(t)=sqrt{25-4t^2} end{gather*} |
Время (tgeq 0) имеет ограничение сверху (25-4t^2geq 0Rightarrow t^2leq frac{25}{4}Rightarrow 0leq tleq 2,5 (с))
Скорость скольжения верхнего конца по стенке: begin{gather*} u_y(t)=y'(t)=left(sqrt{25-4t^2}right)’=frac{1}{2sqrt{25-4t^2}}cdot (25-4t^2)’=frac{-8t}{2sqrt{25-4t^2}}\ u_y(t)=-frac{4t}{sqrt{25-4t^2}} end{gather*} Знак «-» указывает на направление скорости вниз и связан с уменьшением координаты (y(t)) со временем. Абсолютная величина найденной скорости: begin{gather*} u(t)=|u_y(t)|=frac{4t}{sqrt{25-4t^2}} end{gather*} 1) ОДЗ: (0leq tleq 2,5)
2) Четность – нет, т.к. функция определена только на положительных t.
Периодичность – нет.
3) Асимптоты:
1. Вертикальная
Рассмотрим односторонние пределы begin{gather*} lim_{trightarrow +0}left(frac{4t}{sqrt{25-4t^2}}right)=frac05=0\ lim_{trightarrow 2,5-0}left(frac{4t}{sqrt{25-4t^2}}right)=frac{10}{0}=+infty end{gather*} При подходе к правой границе (t=2,5) слева функция стремится к (+infty).
В точке (t=2,5) – вертикальная асимптота.
2. Горизонтальных асимптот нет, т.к. ОДЗ ограничено интервалом.
3. Наклонных асимптот нет.
4) Первая производная begin{gather*} u'(t)=4cdotfrac{1cdotsqrt{25-4t^2}-tcdotfrac{-8t}{2sqrt{25-4t^2}}}{25-4t^2}=4cdotfrac{25-4t^2+8t^2}{2(25-4t^2)^{frac32}}=frac{2(4t^2+25)}{(25-4t^2)^{frac32}} end{gather*} (u'(t)gt 0) на всей ОДЗ, функция возрастает.
5) Вторая производная begin{gather*} u”(t)=frac{2(4t^2+25)}{(25-4t^2)^{frac32}}=2cdotfrac{8tcdot(25-4t^2)^{frac32}-(4t^2+25)cdot frac32sqrt{25-4t^2}cdot (-8t)}{(25-4t^3)}=\ =2cdotfrac{8tcdot(25-4t^2)+8tcdotfrac32cdot (4t^2+25)}{(25-4t^2)^{frac52}}=8tcdotfrac{50-8t^2+12t^2+75}{(25-4t^2)^{frac52}}=frac{8t(4t^2+25)}{(25-4t^2)^{frac52}} end{gather*} (u”(t)gt 0) на всей ОДЗ, функция выпуклая вниз.
6) Пересечение с осями
В начале координат: (t=0, u=0)
7) График
Ответ: (u(t)=frac{4t}{sqrt{25-4t^2}})
Пример 8. Под действием нагрузки деталь с поперечным сечением в виде прямоугольника площадью 17 см2 начинает деформироваться. Одна из сторон прямоугольника растет с постоянной скоростью 1 см/ч, а вторая – уменьшается со скоростью 0,5 см/ч. Найдите скорость изменения площади поперечного сечения через 45 мин после начала деформации, если известно, что в этот момент его площадь равна 20 см2.
Длина первой стороны в зависимости от времени: (a(t)=a_0+1cdot t) (см),
время – в часах.
Длина второй стороны: (b(t)=b_0-0,5cdot t).
Площадь в начальный момент: (S_0=a_0 b_0=17 (см^2))
Площадь в произвольный момент t: begin{gather*} S(t)=a(t)cdot b(t)=(a_0+t)(b_0-0,5t)=a_0 b_0+(-0,5a_0+b_0)t-0,5t^2=\ =17+(-0,5a_0+b_0)t-0,5t^2 end{gather*} По условию при (t=45 мин=frac34 ч): begin{gather*} Sleft(frac34right)=17+(-0,5a_0+b_0)cdotfrac34-0,5cdotleft(frac34right)^2=20\ (-0,5a_0+b_0)cdotfrac34=20-17+frac{9}{32}=3+frac{9}{32}\ (-0,5a_0+b_0)=frac43left(3+frac{9}{32}right)=4+frac38=4frac38 end{gather*} Получаем: begin{gather*} S(t)=17+4frac38t-0,5t^2 end{gather*} Скорость изменения площади: begin{gather*} S'(t)=0+4frac38cdot 1-0,5cdot 2t=4frac38-t end{gather*} Через 45 мин: begin{gather*} S’left(frac34right)=4frac38-frac34=3+frac{11}{8}-frac34=3+frac{11-6}{8}=3frac58=3,625 (см^2/ч) end{gather*} Ответ: 3,625 см2/ч
Для школьников.
Пусть вам предстоит решить задачу, в которой известно только уравнение зависимости пути (или координаты) от времени для движущегося тела. Надо подробнее описать это движение, т. е. узнать скорость, ускорение этого тела в конкретные моменты времени; узнать характер движения этого тела и т. д.
Для этого надо уметь находить производную пути по времени, производную скорости по времени. Как это делать? Об этом и идёт речь в данном занятии. Сначала уясним физический смысл математических понятий.
Итак, взяв производную пути по времени, получим выражение для мгновенной скорости движущейся материальной точки.
Аналогично, взяв производную скорости по времени, получим выражение для тангенциального ускорения
Пусть нам дано такое уравнение зависимости пути от времени:
Здесь показатель степени времени (т.е. 2) уменьшили на единицу, а 2 поставили перед символом времени.
Ниже на примере показано, как получается уравнение скорости, если известно уравнение пути.
Надо ещё получить уравнение траектории.
Попробую дать понятие производной как можно проще на примере нахождения мгновенной скорости движения тела (материальной точки). Пусть тело двигается с переменной скоростью вдоль оси Х и нам известно уравнение его движения:
За время
тело переместится на
или пройдёт путь
Тогда средняя скорость движения тела запишется так:
Если перейти к предельному случаю, когда время движения стремится к нулю (к мгновению), то от средней скорости перейдём к мгновенной:
Отношение
называется производной пути по времени. Отсюда следует физический смысл мгновенной скорости:
Мгновенная скорость – это физическая величина, численно равная пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени.
Теперь перейдём к определению производной, данному в математике, в “начале дифференциального и интегрального исчисления”: Производной функции
в точке
называется предел отношения приращения функции
к приращению независимой переменной
при её стремлении к нулю:
Производная в точке есть определённое число, равное тангенсу угла наклона касательной к графику.
Вернёмся к нашему примеру нахождения мгновенной скорости тела, движущегося вдоль оси х с переменной скоростью.
Вдоль оси абсцисс откладываем время, вдоль оси ординат – пройденный телом путь. Тогда наша кривая покажет зависимость пути от времени движения тела вдоль оси х.
Проведя касательную к нашему графику в некоторой точке, найдём тангенс угла, то есть найдём мгновенную скорость тела (материальной точки) в данный момент времени
К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Спасибо.
Предыдущая запись: Решение задач 3 и 4 на равнопеременное движение
Следующая запись: Занятие 7
Первая запись: Занятие 1.
Видеоурок: Физический смысл производной
Лекция: Физический смысл производной, нахождение скорости для процесса, заданного формулой или графиком
Как уже было сказано в предыдущем вопросе, производная характеризует скорость изменения функции. Таким образом, можно рассматривать любое изменение любой величины, изменение которой описывается некоторой функции.
Итак, давайте представим, что некоторое тело двигается, и за определенный промежуток времени проходит заданное перемещение. Описанные величины можно показать на графике:
Итак, рассмотрим промежуток времени ∆t = 5с, за это время тело проходит ∆S = 40м. Чтобы найти скорость, мы должны поделить изменение перемещения на изменение времени. Иными словами,
Подобное выражение мы уже видели с вами в предыдущем вопросе.
Исходя из этого, можно сделать вывод, что скорость – это производная перемещения по времени. Это и есть физический смысл производной.
Например, если движение тела задано уравнением S = 5 + 3v.
Зная, что скорость – производная от перемещения, можем найти скорость, равную 3 м/с.
Производная используется не только для нахождения скорости. Производная скорости по времени – это ускорение, производная заряда по времени – это сила тока и т.д.
Алгебра и начала математического анализа, 11 класс
Урок №10. Определение производной. Физический смысл производной.
Перечень вопросов, рассматриваемых в теме
1) Определение производной;
2) Физический смысл производной;
2) Приращение функции;
3) Скорость материальной точки в заданный момент времени по данному закону движения.
Глоссарий по теме
Пусть функция y=f(x) определена в точках x0 и x1. Разность x1−x0 называют приращением аргумента (при переходе от точки x0 к точке x1), а разность f(x1)-f(x0) называют приращением функции.
Определение. Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.
Основная литература:
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Изучая поведение функции y=f(x) около конкретной точки x0, важно знать, как меняется значение функции при изменении значения аргумента. Для этого используют понятия приращений аргумента и функции.
Пусть функция y=f(x) определена в точках x0 и x1. Разность x1−x0 называют приращением аргумента (при переходе от точки x0 к точке x1), а разность f(x1)-f(x0) называют приращением функции.
Приращение аргумента обозначают Δx (читают: дельта икс; Δ — прописная буква греческого алфавита “дельта”; соответствующая строчная буква пишется так: δ). Приращение функции обозначают Δy или Δf.
Итак, x1-x0=Δx, значит, x1=x0+Δx.
f(x1)-f(x0)=Δy, значит,
Δy=f(x0+Δx)-f(x0). (1)
Нельзя истолковывать термин “приращение” как “прирост”.
Примеры и разбор решения заданий тренировочного модуля
Пример 1.
Найдем приращение Δx и Δf в точке x0, если f(x)= x2, x0=2 и х=1,9
Решение:
Δx= x1−x0=1,9-2=-0,1
Δf= f(1,9) –f(2)=1,92-22=-0,39
Ответ: Δx=-0,1; Δf =-0,39
Пример 2.
Найдем приращение Δx и Δf в точке x0, если f(x)= x2, x0=2 и х=2,1
Решение:
Δx= x1−x0=2,1-2=0,1
Δf= f(1,9) –f(2)=2,12-22=0,41
Ответ: Δx=0,1; Δf =0,41
Пример 3.
Найдем приращение Δf функции в точке x0,если приращение аргумента равно x0.
Решение:
по формуле (1) находим:
.
Ответ: .
С помощью введенных обозначений приращений удобно также выражать среднюю скорость движения за промежуток времени [t0; t0+∆t]. Если точка движется по прямой и известна ее координата x(t), то
Эта формула верна и для ∆t<0 (для промежутка [t0+∆t; t0]).
Аналогично выражение называют средней скорость изменения функции на промежутке с концами х0 и х0+∆х.
Определение. Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.
Обозначение: y’ или f’(x)
Если функция f(x) имеет производную в точке х, то эта функция называется дифференцируемой в этой точке. Если функция f(x) имеет производную в каждой точке некоторого промежутка, то эта функция дифференцируема на этом промежутке. Операция нахождения производной называется дифференцированием.
Схема вычисления производной функции
- Найти приращение функции на отрезке [x; x+Δx]:
∆y=y(x+∆x)-y(x)
- Разделить приращение функции на приращение аргумента:
- Найти предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.
Пример 4.
Вычислить производную функции y=x2
Решение: Используем схему вычисления производной по действиям:
- ∆y=y(x+∆x)-y(x)= (х+∆х)²-х²= х²+2х·∆х+ ∆х²-х²= 2х·∆х+ ∆х²
Ответ: y’=2x.
Физический смысл производной: если положение точки при её движении задаётся функцией пути S(t), где t – время движения, то производная функции S есть мгновенная скорость движения в момент времени t: v(t)=S’(t).
Таким образом, скорость – есть производная от пути по времени.
Пример 5.
Точка движется по закону s(t)=1-2t. Найдите среднюю скорость движения за промежуток времени от t=0,8 до t=1.
Решение:
найдем ∆t= 1-0,8=0,2
S(0,8)= 1-2·0,8= -0,6=S(t)
S(1)= 1-2·1= -1=S(t+∆t)
.
Ответ: .
Необходимое и достаточное условие дифференцируемости
Теорема 1. Для того, чтобы функция f(x) была дифференцируема в точке x0, необходимо и достаточно, чтобы в этой точке она имела конечную производную. Следствие. Функция, дифференцируемая в точке, непрерывна в этой точке.
Замечание. Дифференциалом dx независимой переменной будем считать приращение Δx, т.е. dx ≡ Δx.