Трапеция является несколько нестандартной фигурой среди четырехугольников. Она не является правильным многоугольником, однако обладает рядом отличительных свойств, среди которых – возможность вписать в равнобокую трапецию окружность. Это обусловлено тем, что для четырехугольников действует правило, согласно которому в него можно вписать окружность, если суммы его противоположных сторон равны. Не каждая трапеция соблюдает это правило, но если в нее все-таки вписана окружность, значит, сумма ее оснований равна сумме боковых сторон. Поскольку радиусы окружности, опущенные на основания трапеции, находятся по отношению к ним под прямым углом, следовательно, они совпадают с высотой трапеции, из чего можно вывести формулу радиуса окружности вписанной в трапецию через высоту:
Так как окружность можно вписать только в трапецию, у которой суммы противоположных сторон равны, то путем нехитрых преобразований через формулы квадрата разности и квадрата суммы можно получить, что высота трапеции равна среднему геометрическому ее оснований a и b.
Следовательно, не зная высоты, можно вычислить радиус окружности, вписанной в трапецию, через основания:
Существует и другой способ найти радиус вписанной в трапецию окружности. Для этого необходимо провести биссектрисы двух углов у боковой стороны. Точка их пересечения должна совпасть с центром вписанной окружности, а также образовать прямой угол. Соответственно, радиус в таком треугольнике станет высотой, которая, исходя из его свойств, равна среднему геометрическому проекций катетов на гипотенузу, то есть боковую сторону трапеции.
Окружность, вписанная в трапецию
Что такое окружность, вписанная в трапецию
Окружность можно вписать в любой треугольник. Однако это утверждение нельзя применить к любому из четырехугольников.
Прежде чем приступить к рассмотрению темы о вписанной в трапецию окружности, дадим определение вписанной окружности.
Вписанной в многоугольник окружностью называют окружность, которая касается каждой из сторон многоугольника в одной точке. Многоугольник в этом случае называют описанным около окружности.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Теорема 1
Теорема о вписанной окружности: в произвольный выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Доказательство: пусть имеется произвольный четырехугольник MNKL и вписанная в него окружность. Обозначим точки касания окружности со сторонами четырехугольника как O, P, R, S.
Если касательные проведены из одной точки, то отрезки, построенные от этой точки до точки касания с окружностью, равны. Тогда KS=KR, LS=LO, MO=MP, NR=NP. Вычислим суммы противоположных сторон: MN+KL=(MP+NP)+(KS+LS) и NK+ML=(NR+KR)+(MO+LO).
Из равенства отрезков получим, что MN+KL= NK+ML.
Примечание 1
Четырехугольник считают выпуклым, если он расположен в одной полуплоскости относительно линии, проходящей через любую из его сторон.
Трапеция является выпуклым четырехугольником. При этом две параллельные стороны трапеции называют основаниями, а две остальные — боковыми сторонами.
Тогда необходимым условием наличия вписанной окружности в трапецию будет равенство суммы ее оснований и боковых сторон.
Для обратного случая — окружность описана вокруг трапеции, трапеция должна быть равнобедренной, то есть ее боковые стороны должны быть равными.
Рассмотрим свойства вписанной в трапецию окружности.
Из свойства биссектрис при боковых сторонах трапеции следует, что радиусы вписанной окружности, проведенные к вершинам боковой стороны и лежащие на биссектрисах, образуют прямой угол.
Примечание 2
Биссектрисы трапеции пересекаются под углом 90°.
Радиус вписанной окружности, проведенный к точкам касания, перпендикулярен сторонам трапеции (по свойству перпендикулярности радиуса и касательной).
Из предыдущего свойства вытекает следующее: радиус вписанной окружности равен половине высоты трапеции, а диаметр — полной длине высоты.
Примечание 3
Высота трапеции — прямая, опущенная от одного основания к другому под прямым углом.
Где находится центр такой окружности
Для построения и решения задача необходимо определить, где расположен центр вписанной окружности.
Примечание 4
Центр окружности, вписанной в трапецию, лежит в точке пересечения биссектрис.
Биссектрисы трапеции пересекаются под прямым углом, отсюда можно сделать следующий вывод: треугольники MON и KOL — прямоугольные.
Формулы для расчета
Основными характеристиками любой окружности являются радиус и диаметр.
Точка касания окружности радиусом R и боковой стороны делит последнюю на два отрезка v и q. Тогда формула для вычисления радиуса будет иметь вид:
Формула 1
(R=sqrt{vcdot q})
Если трапеция равнобедренная и сумма длин оснований равна двум длинам боковой стороны, радиус вписанной окружности:
Формула 2
(R=frac{sqrt{vcdot q}}2)
Диаметр равен длине двух радиусов, значит:
Формула 3
(D=2sqrt{vcdot q})
Формула радиуса через высоту трапеции:
Диаметр через высоту:
Если значение высоты неизвестно, ее можно найти через длины диагоналей (d_1) и (d_2) и оснований a и b трапеции:
Формула 6
(h=frac{d_1cdot d_2}{a+b}singamma)
где γ — угол между диагоналями трапеции.
Площадь вписанной окружности через параметры трапеции (высоту, отрезки боковой стороны):
Формула 7
(S=pi R^2=frac14pi h^2)
или
Формула 8
(S=pi R^2=picdot vcdot q)
В случае равнобедренной трапеции:
Формула 9
(S=pi R^2=frac{picdot vcdot q}4)
Периметр вписанной окружности через параметры трапеции:
Формула 10
(P=2mathrm{πR}=mathrm{πh})
или
Формула 11
Если трапеция равнобедренная:
Формула 12
(P=2mathrm{πR}=mathrmpisqrt{mathrm{vq}})
Приведем формулы для вычисления произвольной и равнобедренной трапеции через радиус вписанной окружности R.
Площадь трапеции:
Формула 13
(S=frac{a+b}2h=(a+b)R)
Полусумма оснований a и b равна средней линии l, тогда:
Формула 14
(S=2cdot lcdot R)
Площадь равнобедренной трапеции:
Формула 15
( S=frac{4R^2}{sinalpha})
где α — угол между основанием и боковой стороной.
Насколько полезной была для вас статья?
Рейтинг: 5.00 (Голосов: 1)
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Текст с ошибкой:
Расскажите, что не так
Поиск по содержимому
Радиус вписанной окружности в трапецию, формула
Радиус вписанной окружности в трапецию равен половине высоты трапеции.
Главное чтобы выполнялось условие при котором в данную трапецию возможно вписать окружность. В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны. т.е.:
Иначе в данную трапецию нельзя вписать окружность.
бедро трапеции выражается через высоту по теореме Пифагора:
Отсюда — зная все стороны трапеции вычислим такую высоту трапеции, которая удовлетворяет условию вписанной окружности (3).
после небольших преобразований получим
используем формулы Квадрат суммы и Квадрат разности и после раскрытия скобок и упрощения получим
И соответственно радиус вписанной окружности в трапецию
Радиус окружности через периметр трапеции
Радиус вписанной окружности в трапецию, формула
Радиус вписанной окружности в трапецию равен половине высоты трапеции.
Главное чтобы выполнялось условие при котором в данную трапецию возможно вписать окружность. В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны. т.е.:
Иначе в данную трапецию нельзя вписать окружность.
бедро трапеции выражается через высоту по теореме Пифагора:
Отсюда — зная все стороны трапеции вычислим такую высоту трапеции, которая удовлетворяет условию вписанной окружности (3).
после небольших преобразований получим
используем формулы Квадрат суммы и Квадрат разности и после раскрытия скобок и упрощения получим
И соответственно радиус вписанной окружности в трапецию
Трапеция. Формулы, признаки и свойства трапеции
Параллельные стороны называются основами трапеции, а две другие боковыми сторонами
Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.
- Основы трапеции — параллельные стороны
- Боковые стороны — две другие стороны
- Средняя линия — отрезок, соединяющий середины боковых сторон.
- Равнобедренная трапеция — трапеция, у которой боковые стороны равны
- Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Основные свойства трапеции
AK = KB, AM = MC, BN = ND, CL = LD
3. Средняя линия трапеции параллельна основаниям и равна их полусумме:
BC : AD = OC : AO = OB : DO
d 1 2 + d 2 2 = 2 a b + c 2 + d 2
Сторона трапеции
Формулы определения длин сторон трапеции:
a = b + h · ( ctg α + ctg β )
b = a — h · ( ctg α + ctg β )
a = b + c· cos α + d· cos β
b = a — c· cos α — d· cos β
4. Формулы боковых сторон через высоту и углы при нижнем основании:
Средняя линия трапеции
Формулы определения длины средней линии трапеции:
1. Формула определения длины средней линии через длины оснований:
2. Формула определения длины средней линии через площадь и высоту:
Высота трапеции
Формулы определения длины высоты трапеции:
h = c· sin α = d· sin β
2. Формула высоты через диагонали и углы между ними:
h = | sin γ · | d 1 d 2 | = | sin δ · | d 1 d 2 |
a + b | a + b |
3. Формула высоты через диагонали, углы между ними и среднюю линию:
h = | sin γ · | d 1 d 2 | = | sin δ · | d 1 d 2 |
2 m | 2 m |
4. Формула высоты трапеции через площадь и длины оснований:
5. Формула высоты трапеции через площадь и длину средней линии:
Диагонали трапеции
Формулы определения длины диагоналей трапеции:
d 1 = √ a 2 + d 2 — 2 ad· cos β
d 2 = √ a 2 + c 2 — 2 ac· cos β
2. Формулы диагоналей через четыре стороны:
d 1 = | √ | d 2 + ab — | a ( d 2 — c 2 ) |
a — b |
d 2 = | √ | c 2 + ab — | a ( c 2 — d 2 ) |
a — b |
d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2
d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2
d 1 = √ c 2 + d 2 + 2 ab — d 2 2
d 2 = √ c 2 + d 2 + 2 ab — d 1 2
Площадь трапеции
Формулы определения площади трапеции:
1. Формула площади через основания и высоту:
3. Формула площади через диагонали и угол между ними:
S = | d 1 d 2 | · sin γ | = | d 1 d 2 | · sin δ |
2 | 2 |
4. Формула площади через четыре стороны:
S = | a + b | √ | c 2 — | ( | ( a — b ) 2 + c 2 — d 2 | ) | 2 |
2 | 2( a — b ) |
5. Формула Герона для трапеции
S = | a + b | √ ( p — a )( p — b )( p — a — c )( p — a — d ) |
| a — b | |
p = | a + b + c + d | — полупериметр трапеции. |
2 |
Периметр трапеции
Формула определения периметра трапеции:
1. Формула периметра через основания:
Окружность описанная вокруг трапеции
Формула определения радиуса описанной вокруг трапеции окружности:
1. Формула радиуса через стороны и диагональ:
R = | a·c·d 1 |
4√ p ( p — a )( p — c )( p — d 1) |
a — большее основание
Окружность вписанная в трапецию
Формула определения радиуса вписанной в трапецию окружности
1. Формула радиуса вписанной окружности через высоту:
Другие отрезки разносторонней трапеции
Формулы определения длин отрезков проходящих через трапецию:
1. Формула определения длин отрезков проходящих через трапецию:
KM = NL = | b | KN = ML = | a | TO = OQ = | a · b |
2 | 2 | a + b |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Все формулы для радиуса вписанной окружности
Радиус вписанной окружности в треугольник
a , b , c — стороны треугольника
p — полупериметр, p=( a + b + c )/2
Формула радиуса вписанной окружности в треугольник ( r ):
Радиус вписанной окружности в равносторонний треугольник
a — сторона треугольника
r — радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Радиус вписанной окружности равнобедренный треугольник
1. Формулы радиуса вписанной окружности если известны: стороны и угол
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
α — угол при основании
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :
2. Формулы радиуса вписанной окружности если известны: сторона и высота
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
h — высота
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :
Все формулы для радиуса вписанной окружности
Радиус вписанной окружности в треугольник
a , b , c – стороны треугольника
p – полупериметр, p=( a + b + c )/2
Формула радиуса вписанной окружности в треугольник ( r ):
Радиус вписанной окружности в равносторонний треугольник
a – сторона треугольника
r – радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Радиус вписанной окружности равнобедренный треугольник
1. Формулы радиуса вписанной окружности если известны: стороны и угол
a – равные стороны равнобедренного треугольника
b – сторона ( основание)
α – угол при основании
О – центр вписанной окружности
r – радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :
2. Формулы радиуса вписанной окружности если известны: сторона и высота
a – равные стороны равнобедренного треугольника
b – сторона ( основание)
h – высота
О – центр вписанной окружности
r – радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :
[spoiler title=”источники:”]
http://b4.cooksy.ru/articles/radius-okruzhnosti-cherez-perimetr-trapetsii
http://www-formula.ru/2011-09-24-00-40-48
[/spoiler]
Радиус вписанной окружности в трапецию, формула
Радиус вписанной окружности в трапецию равен половине высоты трапеции.
[r=frac{h}{2}]
Радиус вписанной окружности в трапецию
Главное чтобы выполнялось условие при котором в данную трапецию возможно вписать окружность.
В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны. т.е.:
[ AB+DC = AD+BC]
или
[ 2a = b+c]
Иначе в данную трапецию нельзя вписать окружность.
бедро трапеции выражается через высоту по теореме Пифагора:
[ BC = a = sqrt{h^2 + Big(frac{c-b}{2}Big)^2} ]
Отсюда — зная все стороны трапеции вычислим такую высоту трапеции, которая удовлетворяет условию вписанной окружности (3).
[b+c = 2 sqrt{h^2 + Big(frac{c-b}{2}Big)^2}]
после небольших преобразований получим
[h = sqrt{ Big(frac{c+b}{2}Big)^2 – Big(frac{c-b}{2}Big)^2}]
[h = frac{1}{2} sqrt{ (c+b)^2 – (c-b)^2}]
используем формулы Квадрат суммы и Квадрат разности и после раскрытия скобок и упрощения получим
[h=sqrt{bc}]
И соответственно радиус вписанной окружности в трапецию
[r=frac{h}{2}=frac{sqrt{bc}}{2}]
Вычислить, найти радиус вписанной окружности в трапецию по формуле (1,2,3,4,5)
Радиус вписанной окружности в трапецию |
стр. 259 |
---|
Когда в трапецию можно вписать окружность? Какими свойствами обладает вписанная в трапецию окружность? Где находится центр этой окружности? Чему равен ее радиус?
1. В трапецию можно вписать окружность тогда и только тогда когда суммы ее противоположных сторон равны.
1) В трапецию ABCD можно вписать окружность, если AD+BC=AB+CD.
2) Обратно, если AD+BC=AB+CD, то в трапецию ABCD можно вписать окружность.
2. Центр вписанной в трапецию окружности — точка пересечения её биссектрис.
O — точка пересечения
биссектрис трапеции ABCD.
3. По свойству биссектрис трапеции, прилежащие к её боковой стороне,
и точка O лежит на средней линии трапеции.
4. Точки касания, лежащие на сторонах, выходящих из одной вершины, равноудалены от этой вершины:
AK=AP,
BK=BF,
CF=CN,
DN=DP (как отрезки касательных, проведённых из одной точки).
5.
(как радиусы, проведенные в точку касания).
6. Диаметр вписанной в трапецию окружности равен высоте трапеции, радиус — половине высоты: