Как найти касательную проведенную к графику функции

Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

Определения и понятия

Определение 1

Угол наклона прямой y=kx+b называется  угол α, который отсчитывается от положительного направления оси ох к прямой y=kx+b в положительном направлении.

Определения и понятия

На рисунке направление ох обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

Определение 2

Угловой коэффициент прямой y=kx+b называют числовым коэффициентом k.

Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k=tg α.

  • Угол наклона прямой равняется 0 только при параллельности ох и  угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0. Значит, вид уравнения будет y=b.
  • Если угол наклона прямой y=kx+b острый, тогда выполняются условия 0<α<π2 или 0°<α<90°. Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию tg α>0, причем имеется возрастание графика.
  • Если α=π2, тогда расположение прямой перпендикулярно ох. Равенство задается при помощи равенства x=c со значением с, являющимся действительным числом.
  • Если угол наклона прямой y=kx+b тупой, то соответствует условиям π2<α<π или 90°<α<180°, значение углового коэффициента k принимает отрицательное значение, а график убывает.
Определение 3

Секущей называют прямую, которая проходит через 2 точки функции f(x). Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

Определения и понятия

По рисунку видно, что АВ является секущей, а f(x) – черная кривая, α – красная дуга, означающая угол наклона секущей.

Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника АВС можно найти по отношению противолежащего катета к прилежащему.

Определение 4

Получаем формулу для нахождения секущей вида:

k=tg α=BCAC=f(xB)-fxAxB-xA, где абсциссами точек А и В являются значения xA, xB, а f(xA), f(xB) – это значения функции в этих точках.

Очевидно, что угловой коэффициент секущей определен при помощи равенства k=f(xB)-f(xA)xB-xA или k=f(xA)-f(xB)xA-xB, причем уравнение необходимо записать как y=f(xB)-f(xA)xB-xA·x-xA+f(xA) или
y=f(xA)-f(xB)xA-xB·x-xB+f(xB).

Секущая делит график визуально на 3 части: слева от точки А, от А до В, справа от В. На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

Определения и понятия

По определению видно, что прямая и ее секущая в данном случае совпадают.

Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у=0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

Определение 5

Касательная к графику функции f(x) в точке x0; f(x0) называется прямая, проходящая через заданную точку x0; f(x0),  с наличием отрезка, который имеет множество значений х, близких к x0.

Пример 1

Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y=x+1, считается касательной к y=2x в точке  с координатами (1; 2). Для наглядности, необходимо рассмотреть графики с приближенными к (1; 2) значениями. Функция y=2x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

Определения и понятия

Очевидно, что y=2x сливается с прямой у=х+1.

Для определения касательной следует рассмотреть поведение касательной АВ при бесконечном приближении точки В к точке А. Для наглядности приведем рисунок.

Определения и понятия

Секущая АВ, обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной αx.

Определение 6

Касательной к графику функции y=f(x) в точке А считается предельное положение секущей АВ при В стремящейся к А, то есть B→A.

Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

Геометрический смысл производной функции в точке

Перейдем к рассмотрению секущей АВ для функции f(x), где А и В с координатами x0, f(x0) и x0+∆x, f(x0+∆x), а ∆x обозначаем как приращение аргумента. Теперь функция примет вид ∆y=∆f(x)=f(x0+∆x)-f(∆x). Для наглядности приведем в пример рисунок.

Геометрический смысл производной функции в точке

Рассмотрим полученный прямоугольный треугольник АВС. Используем определение тангенса для решения, то есть получим отношение ∆y∆x=tg α. Из определения касательной следует, что lim∆x→0∆y∆x=tg αx. По правилу производной в точке имеем, что производную f(x) в точке x0 называют пределом отношений приращения функции к приращению аргумента, где ∆x→0, тогда обозначим как f(x0)=lim∆x→0∆y∆x.

Отсюда следует, что f'(x0)=lim∆x→0∆y∆x=tg αx=kx, где kx обозначают в качестве углового коэффициента касательной.

То есть получаем, что f’(x) может существовать  в точке x0 причем как и касательная к заданному графику функции в точке касания равной x0, f0(x0), где значение углового коэффициента касательной  в точке равняется производной  в точке x0. Тогда получаем, что kx=f'(x0).

Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

Уравнение касательной прямой

Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x0 при пересечении.

Уравнение касательной к графику функции y=f(x) в точке x0, f0(x0) принимает вид y=f'(x0)·x-x0+f(x0).

Имеется в виду, что конечным значением производной f'(x0) можно определить положение касательной, то есть вертикально при условии limx→x0+0f'(x)=∞ и limx→x0-0f'(x)=∞ или отсутствие вовсе при условии limx→x0+0f'(x)≠limx→x0-0f'(x).

Расположение касательной зависит от значения ее углового коэффициента kx=f'(x0). При параллельности к оси ох получаем, что kk=0, при параллельности к оу – kx=∞, причем вид уравнения касательной x=x0 возрастает при kx>0, убывает при kx<0.

Пример 2

Произвести составление уравнения касательной к графику функции y=ex+1+x33-6-33x-17-33 в точке  с координатами (1; 3) с определением угла наклона.

Решение

По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, (1; 3) является точкой касания, тогда x0=-1, f(x0)=-3.

Необходимо найти производную в точке со значением -1. Получаем, что

y’=ex+1+x33-6-33x-17-33’==ex+1’+x33′-6-33x’-17-33’=ex+1+x2-6-33y'(x0)=y'(-1)=e-1+1+-12-6-33=33

Значение f’(x) в точке касания является  угловым коэффициентом касательной, который равняется тангенсу наклона.

Тогда kx=tg αx=y'(x0)=33

Отсюда следует, что αx=arctg33=π6

Ответ: уравнение касательной приобретает вид

y=f'(x0)·x-x0+f(x0)y=33(x+1)-3y=33x-9-33

Для наглядности приведем пример в графической иллюстрации.

Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает  в увеличенном виде.

Уравнение касательной прямой

Пример 3

Выяснить наличие существования касательной к графику заданной функции
y=3·x-15+1 в точке с координатами (1;1). Составить уравнение и определить угол наклона.

Решение

По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

Перейдем к нахождению производной

y’=3·x-15+1’=3·15·(x-1)15-1=35·1(x-1)45

Если x0=1, тогда f’(x) не определена, но пределы записываются как  limx→1+035·1(x-1)45=35·1(+0)45=35·1+0=+∞ и limx→1-035·1(x-1)45=35·1(-0)45=35·1+0=+∞, что означает существование вертикальной касательной в точке (1;1).

Ответ: уравнение примет вид х=1, где угол наклона будет равен π2.

Для наглядности изобразим графически.

Уравнение касательной прямой

Пример 4

Найти точки графика функции y=115x+23-45×2-165x-265+3x+2, где

  1. Касательная не существует;
  2. Касательная располагается параллельно ох;
  3. Касательная параллельна прямой y=85x+4.

Решение

Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x∈-∞; 2 и [-2; +∞). Получаем, что

y=-115×3+18×2+105x+176, x∈-∞; -2115×3-6×2+9x+12, x∈[-2; +∞)

Необходимо продифференцировать функцию. Имеем, что

y’=-115×3+18×2+105x+176′, x∈-∞; -2115×3-6×2+9x+12′, x∈[-2; +∞)⇔y’=-15(x2+12x+35), x∈-∞; -215×2-4x+3, x∈[-2; +∞)

Когда х=-2, тогда производная не существует, потому что односторонние пределы не равны в этой точке:

limx→-2-0y'(x)=limx→-2-0-15(x2+12x+35=-15(-2)2+12(-2)+35=-3limx→-2+0y'(x)=limx→-2+015(x2-4x+3)=15-22-4-2+3=3

Вычисляем значение функции в точке х=-2, где получаем, что

  1. y(-2)=115-2+23-45(-2)2-165(-2)-265+3-2+2=-2, то есть касательная в точке (-2;-2) не будет существовать.
  2. Касательная параллельна ох, когда угловой коэффициент равняется нулю. Тогда kx=tg αx=f'(x0). То есть необходимо найти значения таких х, когда производная функции  обращает ее в ноль. То есть значения f’(x) и будут являться точками касания, где касательная является параллельной ох.

Когда x∈-∞; -2, тогда -15(x2+12x+35)=0, а при x∈(-2; +∞) получаем 15(x2-4x+3)=0.

Решим:

-15(x2+12x+35)=0D=122-4·35=144-140=4×1=-12+42=-5∈-∞; -2×2=-12-42=-7∈-∞; -2   15(x2-4x+3)=0D=42-4·3=4×3=4-42=1∈-2; +∞x4=4+42=3∈-2; +∞

Вычисляем соответствующие значения функции

y1=y-5=115-5+23-45-52-165-5-265+3-5+2=85y2=y(-7)=115-7+23-45(-7)2-165-7-265+3-7+2=43y3=y(1)=1151+23-45·12-165·1-265+31+2=85y4=y(3)=1153+23-45·32-165·3-265+33+2=43

Отсюда -5; 85, -4; 43, 1; 85, 3; 43 считаются искомыми точками графика функции.

Рассмотрим графическое изображение решения.

Уравнение касательной прямой

Черная линия – график функции, красные точки – точки касания.

  1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 85 . Для этого нужно решить уравнение вида y'(x)=85. Тогда, если x∈-∞; -2, получаем, что -15(x2+12x+35)=85, а если x∈(-2; +∞), тогда 15(x2-4x+3)=85.

Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

-15×2+12x+35=85×2+12x+43=0D=122-4·43=-28<0

Другое уравнение имеет два действительных корня, тогда

15(x2-4x+3)=85×2-4x-5=0D=42-4·(-5)=36×1=4-362=-1∈-2; +∞x2=4+362=5∈-2; +∞

Перейдем к нахождению значений функции. Получаем, что

y1=y(-1)=115-1+23-45(-1)2-165(-1)-265+3-1+2=415y2=y(5)=1155+23-45·52-165·5-265+35+2=83

Точки со значениями -1; 415, 5; 83 являются точками, в которых касательные параллельны прямой y=85x+4.

Ответ: черная линия – график функции, красная линия – график y=85x+4, синяя линия – касательные  в точках -1; 415, 5; 83.

Уравнение касательной прямой

Возможно существование бесконечного количества касательных для заданных функций.

Пример 5

Написать уравнения всех имеющихся касательных функции y=3cos32x-π4-13, которые располагаются перпендикулярно прямой y=-2x+12.

Решение

Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется -1, то есть записывается как kx·k⊥=-1. Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой  и равняется k⊥=-2, тогда kx=-1k⊥=-1-2=12.

Теперь необходимо найти координаты точек касания. Нужно найти х, после чего его значение для заданной функции. Отметим, что из геометрического смысла производной  в точке
x0 получаем, что kx=y'(x0).  Из данного равенства найдем значения х для точек касания.

Получаем, что

y'(x0)=3cos32x0-π4-13’=3·-sin32x0-π4·32×0-π4’==-3·sin32x0-π4·32=-92·sin32x0-π4⇒kx=y'(x0)⇔-92·sin32x0-π4=12⇒sin32x0-π4=-19

Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

32×0-π4=arcsin-19+2πk или 32×0-π4=π-arcsin-19+2πk

32×0-π4=-arcsin19+2πk или 32×0-π4=π+arcsin19+2πk

x0=23π4-arcsin19+2πk или x0=235π4+arcsin19+2πk, k∈Z

Z- множество целых чисел.

Найдены х точек касания. Теперь необходимо перейти к поиску значений у:

y0=3cos32x0-π4-13

y0=3·1-sin232x0-π4-13 или y0=3·-1-sin232x0-π4-13

y0=3·1–192-13 или y0=3·-1–192-13

y0=45-13 или y0=-45+13

Отсюда получаем, что 23π4-arcsin19+2πk; 45-13, 235π4+arcsin19+2πk; -45+13 являются точками касания.

Ответ: необходимы уравнения запишутся как

y=12x-23π4-arcsin19+2πk+45-13,y=12x-235π4+arcsin19+2πk-45+13, k∈Z

Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

Рисунок показывает, что расположение функции идет на промежутке [-10;10], где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y=-2x+12. Красные точки – это точки касания.

Уравнение касательной прямой

Касательная к окружности, эллипсу, гиперболе, параболе

Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

Касательная к окружности

Для задания окружности  с центром  в точке xcenter; ycenter и радиусом R применяется формула x-xcenter2+y-ycenter2=R2.

Данное равенство может быть записано как объединение двух функций:

y=R2-x-xcenter2+ycentery=-R2-x-xcenter2+ycenter

Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

Касательная к окружности, эллипсу, гиперболе, параболе

Для составления уравнения окружности  в точке x0; y0, которая располагается  в верхней или нижней полуокружности, следует найти уравнение графика функции вида y=R2-x-xcenter2+ycenter или y=-R2-x-xcenter2+ycenter в указанной точке.

Когда в точках xcenter; ycenter+R и xcenter; ycenter-R касательные могут быть заданы уравнениями y=ycenter+R и y=ycenter-R, а  в точках xcenter+R; ycenter и
xcenter-R; ycenter будут являться параллельными оу, тогда получим уравнения вида x=xcenter+R и x=xcenter-R.

Касательная к окружности, эллипсу, гиперболе, параболе

Касательная к эллипсу

Когда эллипс имеет центр  в точке xcenter; ycenter с полуосями a и b, тогда он может быть задан при помощи уравнения x-xcenter2a2+y-ycenter2b2=1.

Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

y=ba·a2-(x-xcenter)2+ycentery=-ba·a2-(x-xcenter)2+ycenter

Касательная к окружности, эллипсу, гиперболе, параболе

Если  касательные располагаются на вершинах эллипса, тогда они параллельны ох или оу. Ниже для наглядности рассмотрим рисунок.

Касательная к окружности, эллипсу, гиперболе, параболе

Пример 6

Написать уравнение касательной к эллипсу x-324+y-5225=1 в точках со значениями x равного х=2.

Решение

Необходимо найти точки касания, которые соответствуют значению х=2. Производим подстановку в имеющееся уравнение эллипса и получаем, что

x-324x=2+y-5225=114+y-5225=1⇒y-52=34·25⇒y=±532+5

Тогда 2; 532+5 и 2; -532+5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

Перейдем к нахождению и разрешению уравнения эллипса относительно y. Получим, что

x-324+y-5225=1y-5225=1-x-324(y-5)2=25·1-x-324y-5=±5·1-x-324y=5±524-x-32

Очевидно, что верхний полуэллипс задается с помощью функции вида y=5+524-x-32, а нижний y=5-524-x-32.

Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2; 532+5 будет иметь вид

y’=5+524-x-32’=52·124-(x-3)2·4-(x-3)2’==-52·x-34-(x-3)2⇒y'(x0)=y'(2)=-52·2-34-(2-3)2=523⇒y=y'(x0)·x-x0+y0⇔y=523(x-2)+532+5

Получаем, что уравнение второй касательной со значением в точке
2; -532+5 принимает вид

y’=5-524-(x-3)2’=-52·124-(x-3)2·4-(x-3)2’==52·x-34-(x-3)2⇒y'(x0)=y'(2)=52·2-34-(2-3)2=-523⇒y=y'(x0)·x-x0+y0⇔y=-523(x-2)-532+5

Графически касательные обозначаются  так:

Касательная к окружности, эллипсу, гиперболе, параболе

Касательная к гиперболе

Когда гипербола имеет центр в точке xcenter; ycenter и вершины xcenter+α; ycenter и xcenter-α; ycenter, имеет место задание неравенства x-xcenter2α2-y-ycenter2b2=1, если с вершинами xcenter; ycenter+b и xcenter; ycenter-b, тогда задается при помощи неравенства x-xcenter2α2-y-ycenter2b2=-1.

Касательная к окружности, эллипсу, гиперболе, параболе

Гипербола может быть представлена в виде двух объединенных функций вида

y=ba·(x-xcenter)2-a2+ycentery=-ba·(x-xcenter)2-a2+ycenter или y=ba·(x-xcenter)2+a2+ycentery=-ba·(x-xcenter)2+a2+ycenter

Касательная к окружности, эллипсу, гиперболе, параболе

В первом случае имеем, что касательные параллельны оу, а во втором параллельны ох.

Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

Пример 7

Составить уравнение касательной к гиперболе x-324-y+329=1 в точке 7; -33-3.

Решение

Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

x-324-y+329=1⇒y+329=x-324-1⇒y+32=9·x-324-1⇒y+3=32·x-32-4 или y+3=-32·x-32-4⇒y=32·x-32-4-3y=-32·x-32-4-3

Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7; -33-3.

Очевидно, что для проверки первой функции необходимо y(7)=32·(7-3)2-4-3=33-3≠-33-3, тогда точка графику не принадлежит, так как равенство не выполняется.

Для второй функции имеем, что y(7)=-32·(7-3)2-4-3=-33-3≠-33-3, значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

Получаем, что

y’=-32·(x-3)2-4-3’=-32·x-3(x-3)2-4⇒kx=y'(x0)=-32·x0-3×0-32-4×0=7=-32·7-37-32-4=-3

Ответ: уравнение касательной можно представить как

y=-3·x-7-33-3=-3·x+43-3

Наглядно изображается так:

Касательная к окружности, эллипсу, гиперболе, параболе

Касательная к параболе

Чтобы составить уравнение касательной к параболе y=ax2+bx+c в точке x0, y(x0), необходимо использовать стандартный алгоритм, тогда уравнение примет вид y=y'(x0)·x-x0+y(x0). Такая касательная в вершине параллельна ох.

Следует задать параболу x=ay2+by+c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у. Получаем, что

x=ay2+by+c⇔ay2+by+c-x=0D=b2-4a(c-x)y=-b+b2-4a(c-x)2ay=-b-b2-4a(c-x)2a

Графически изобразим как:

Касательная к окружности, эллипсу, гиперболе, параболе

Для выяснения принадлежности точки x0, y(x0) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна оу относительно параболы.

Пример 8

Написать уравнение касательной к графику x-2y2-5y+3, когда имеем угол наклона касательной 150°.

Решение

Начинаем решение с представления параболы в качестве двух функций. Получим, что

-2y2-5y+3-x=0D=(-5)2-4·(-2)·(3-x)=49-8xy=5+49-8x-4y=5-49-8x-4

Значение углового коэффициента равняется значению производной в точке x0 этой функции и равняется тангенсу угла наклона.

Получаем:

kx=y'(x0)=tg αx=tg 150°=-13

Отсюда определим значение х для точек касания.

Первая функция запишется как

y’=5+49-8x-4’=149-8x⇒y'(x0)=149-8×0=-13⇔49-8×0=-3

Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150° для такой функции не существует.

Вторая функция запишется как

y’=5-49-8x-4’=-149-8x⇒y'(x0)=-149-8×0=-13⇔49-8×0=-3×0=234⇒y(x0)=5-49-8·234-4=-5+34

Имеем, что точки касания – 234; -5+34.

Ответ: уравнение касательной принимает вид

y=-13·x-234+-5+34

Графически изобразим это таким образом:

Касательная к окружности, эллипсу, гиперболе, параболе

п.1. Уравнение касательной

Рассмотрим кривую (y=f(x)).
Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
Уравнение касательной
Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
Для (A(x_0,y_0), B(x,y)) получаем: begin{gather*} (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end{gather*}

Уравнение касательной к кривой (y=f(x)) в точке (x_0) имеет вид: $$ y=f'(x_0)(x-x_0)+f(x_0) $$ при условии, что производная (f'(x_0)=aneinfty) – существует и конечна.

Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace{f'(x_0)}_{=k}x+underbrace{f(x_0)-f'(x_0)cdot x_0}_{=b} $$

Уравнение касательной с угловым коэффициентом: begin{gather*} y=kx+b\ k=f'(x_0), b=f(x_0)-f'(x_0)cdot x_0 end{gather*}

п.2. Алгоритм построения касательной

На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
Шаг 1. Найти значение функции в точке касания (f(x_0))
Шаг 2. Найти общее уравнение производной (f’ (x))
Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
На выходе: уравнение касательной в виде (y=kx+b)

Например:

Алгоритм построения касательной Пусть (f(x)=x^2+3).
Найдем касательную к этой параболе в точке (x_0=1).

(f(x_0)=1^2+3=4 )
(f'(x)=2x )
(f'(x_0)=2cdot 1=2)
Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: (y=2x+2)

п.3. Вертикальная касательная

В случае, если производная (f'(x_0)=pminfty) – существует, но бесконечна, в точке (x_0) проходит вертикальная касательная (x=x_0).

Внимание!

Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).

Вертикальные касательные характерны для радикалов вида (y=sqrt[n]{x}).

Например:

Вертикальная касательная Пусть (f(x)=sqrt[5]{x-1}+1).
Найдем касательную к этой кривой в точке (x_0=1).

(f(x_0)=sqrt[5]{1-1}+1=1)
(f'(x)=frac15(x-1)^{frac15-1}+0=frac15(x-1)^{-frac45}=frac{1}{5(x-1)^{frac45}} )
(f'(x_0)=frac{1}{5(1-1)^{frac45}}=frac10=+infty)
В точке (x_0) проходит вертикальная касательная.
Её уравнение: (x=1)
Ответ: (y=2x+2)

п.4. Примеры

Пример 1. Для функции (f(x)=2x^2+4x)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.

Пример 1а Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin{array}{l} x=0\ x=-2 end{array} right. $$ Две точки на оси: (0;0) и (-2;0).
Касательная в точке (x_0=0): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end{gather*} Касательная в точке (x_0=-2): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end{gather*}

б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.

Пример 1б Общее уравнение касательной: (f'(x)=4x+4)
По условию (f'(x_0)=tgalpha=tg45^circ=1)
Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin{gather*} f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac{15}{8} end{gather*} Уравнение касательной: begin{gather*} y=1cdotleft(x+frac34right)-frac{15}{8}=x-frac98 end{gather*}

в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.

Пример 1в Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2).
Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin{gather*} f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end{gather*} Точка касания (x_0=-frac32) begin{gather*} f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end{gather*} Уравнение касательной: begin{gather*} y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end{gather*} Или, в каноническом виде: begin{gather*} 2x+y+frac92=0 end{gather*}

г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.

Пример 1г У горизонтальной прямой (k=0).
Получаем уравнение: (f'(x_0)=0). begin{gather*} 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end{gather*} Точка касания (x_0=-1) begin{gather*} f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end{gather*} Уравнение касательной: begin{gather*} y=0cdot(x+1)-2=-2 end{gather*}

Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)

Пример 2. Напишите уравнение касательной к графику функции в заданной точке:
a) ( f(x)=frac5x+frac x5, x_0=4 ) begin{gather*} f(x_0)=frac54+frac45=frac{25+16}{20}=frac{41}{20}\ f'(x)=left(frac5xright)’+left(frac x5right)’=-frac{5}{x^2}+frac15=frac{-25+x^2}{5x^2}=frac{x^2-25}{5x^2}\ f'(x_0)=frac{4^2-25}{5cdot 4^2}=-frac{9}{80} end{gather*} Уравнение касательной: $$ y=-frac{9}{80}(x-4)+frac{41}{20}=-frac{9}{80}x+frac{9}{20}+frac{41}{20}=-frac{9}{80}x+2,5 $$
б) ( f(x)=frac{x^2+5}{3-x}, x_0=2 ) begin{gather*} f(x_0)=frac{2^2+5}{3-2}=frac91=9\ f'(x)=frac{(x^2+5)'(3-x)-(x^2+5)(3-x)’}{(3-x)^2}=frac{2x(3-x)+(x^2+5)}{(3-x)^2}=\ =frac{6x-2x^2+x^2+5}{(3-x)^2}=frac{-x^2+6x+5}{(3-x)^2}\ f'(x_0)=frac{-2^2+6cdot 2+5}{(3-2)^2}=13 end{gather*} Уравнение касательной: $$ y=13(x-2)+9=13x-26+9=13x-17 $$

Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac{x^2+2}{x+3}-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.

Угловой коэффициент данной прямой (k_1=11).
Угловой коэффициент перпендикулярной прямой (k_2=-frac{1}{k_1}=-frac{1}{11}) begin{gather*} f'(x)=left(frac{x^2+2}{x+3}right)’-x’=frac{2x(x+3)-(x^2+2)cdot 1}{(x+3)^2}-1=frac{2x^2+6x-x^2-2-(x+3)^2}{(x+3)^2}=\ =frac{x^2+6x-2-x^2-6x-9}{(x+3)^2}=- frac{11}{(x+3)^2} end{gather*} В точке касания: begin{gather*} f'(x_0)=k_2Rightarrow=-frac{11}{(x+3)^2}=-frac{1}{11}Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin{array}{l} x=-14\ x=8 end{array} right. end{gather*} Пример 3
Уравнение касательной при (x_0=-14) begin{gather*} f(x_0)=frac{(-14)^2+2}{-14+3}+14=frac{198}{-11}+14=-18+14=-4\ y=-frac{1}{11}(x+14)-4=-frac{x+58}{11} end{gather*} Уравнение касательной при (x_0=8) begin{gather*} f(x_0)=frac{8^2+2}{8+3}-8=frac{66}{11}-8=-2\ y=-frac{1}{11}(x-8)-2=-frac{x+14}{11} end{gather*}
Ответ: точка касания (-14;-4), уравнение (y=-frac{x+58}{11})
и точка касания (8;-2), уравнение (-frac{x+14}{11})

Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.

Найдем производные функций: begin{gather*} f_1′(x)=2x-5, f_2′(x)=2x+1 end{gather*} Пусть a – абсцисса точки касания для первой параболы, b – для второй.
Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin{gather*} g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end{gather*} Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin{gather*} begin{cases} 2a-5=2b+1\ 6-a^2=1-b^2 end{cases} Rightarrow begin{cases} 2(a-b)=6\ a^2-b^2=5 end{cases} Rightarrow begin{cases} a-b=3\ (a-b)(a+b)=5 end{cases} Rightarrow begin{cases} a-b=3\ a+b=frac53 end{cases} Rightarrow \ Rightarrow begin{cases} 2a=3+frac53\ 2b=frac53-3 end{cases} Rightarrow begin{cases} a=frac73\ b=-frac23 end{cases} end{gather*} Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac{49}{9}=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$ Пример 4
Точки касания: begin{gather*} a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac{49}{9}-frac{35}{3}+6=frac{49-105+54}{9}=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac{4-6+9}{9}=frac79 end{gather*}
Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))

Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.

Решим уравнение: (x^4+3x^2+2x=2x-1) begin{gather*} x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac{-3pmsqrt{5}}{2} end{gather*} Оба корня отрицательные, а квадрат не может быть отрицательным числом.
Значит, (xinvarnothing) – решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.

Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin{gather*} 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin{array}{l} x=0\ 2x^2+3=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=-frac32 end{array} right. Rightarrow left[ begin{array}{l} x=0\ xinvarnothing end{array} right. Rightarrow x=0 end{gather*} Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
Уравнение касательной: (y=2(x-0)+0=2x)

Пример 5 Ищем расстояние между двумя параллельными прямыми:
(y=2x) и (y=2x-1).
Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0).

Уравнение перпендикуляра: (y=-frac x2).
Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin{gather*} 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac{0,4}{2}=-0,2 end{gather*} Точка пересечения A(0,4;-0,2).
Находим расстояние (OA=sqrt{0,4^2+(-0,2)^2}=0,2sqrt{2^2+1^2}=frac{sqrt{5}}{5})
Ответ: (frac{sqrt{5}}{5})

Геометрический смысл производной

Если плохо разбираешься в производной, то вот тебе полноценный гид по ней, с текстом, примерами и вебинарами: «Производная функции – геометрический смысл и правила дифференцирования»!

Рассмотрим график какой-то функции ( y=fleft( x right)):

Выберем на линии графика некую точку ( A). Пусть ее абсцисса ( {{x}_{0}}), тогда ордината равна ( fleft( {{x}_{0}} right)).

Затем выберем близкую к точке ( A) точку ( B) с абсциссой ( {{x}_{0}}+Delta x); ее ордината – это ( fleft( {{x}_{0}}+Delta x right)):

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии).

Обозначим угол наклона прямой к оси ( Ox) как ( alpha ).

Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.

Какие значения может принимать угол ( alpha )?

Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол – ( 180{}^circ ), а минимально возможный – ( 0{}^circ ).

Значит, ( alpha in left[ 0{}^circ ;180{}^circ right)). Угол ( 180{}^circ ) не включается, поскольку положение прямой в этом случае в точности совпадает с ( 0{}^circ ), а логичнее выбирать меньший угол.

Возьмем на рисунке такую точку ( C), чтобы прямая ( AC) была параллельна оси абсцисс, а ( BC) – ординат:

По рисунку видно, что ( AC=Delta x), а ( BC=Delta f).

Тогда отношение приращений:

( frac{Delta f}{Delta x}=frac{BC}{AC}={tg}alpha )

(так как ( angle C=90{}^circ ), то ( triangle ABC) – прямоугольный).

Давай теперь уменьшать ( Delta x).

Тогда точка ( B) будет приближаться к точке ( A). Когда ( Delta x) станет бесконечно малым ( left( Delta xto 0 right)), отношение ( frac{Delta f}{Delta x}) станет равно производной функции в точке ( {{x}_{0}}).

Что же при этом станет с секущей?

Точка ( B) будет бесконечно близка к точке ( A), так что их можно будет считать одной и той же точкой.

Но прямая, имеющая с кривой только одну общую точку – это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке – вблизи точки ( A), но этого достаточно).

Говорят, что при этом секущая занимает предельное положение.

Угол наклона секущей к оси ( displaystyle Ox) назовем ( varphi ). Тогда получится, что производная

( {f}’left( {{x}_{0}} right)underset{Delta xto 0}{mathop{=}},frac{Delta f}{Delta x}= {tg}varphi ),

то есть

Производная равна тангенсу угла наклона касательной к графику функции в данной точке

Поскольку касательная – это прямая, давай теперь вспомним уравнение прямой:

( y=kx+b).

За что отвечает коэффициент ( displaystyle k)? За наклон прямой. Он так и называется: угловой коэффициент.

Что это значит? А то, что равен он тангенсу угла между прямой и осью ( displaystyle Ox)!

То есть вот что получается:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k).

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей?

Посмотрим: Теперь углы ( alpha ) и ( displaystyle varphi ) тупые. А приращение функции ( Delta f) – отрицательное.

Снова рассмотрим ( triangle ABC): ( angle B=180{}^circ -alpha text{ }Rightarrow text{ } {tg}angle B=- {tg}alpha ).

С другой стороны, ( {tg}angle B=frac{AC}{BC}=frac{-Delta f}{Delta x}).

Получаем: ( frac{-Delta f}{Delta x}=- {tg}alpha text{ }Rightarrow text{ }frac{Delta f}{Delta x}= {tg}alpha ), то есть все, как и в прошлый раз.

Снова устремим точку ( displaystyle B) к точке ( displaystyle A), и секущая ( displaystyle AB) примет предельное положение, то есть превратится в касательную к графику функции в точке ( displaystyle A).

Итак, сформулируем окончательно полученное правило:

Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k)

Это и есть геометрический смысл производной.

Окей, все это интересно, но зачем оно нам? Вот пример:

На рисунке изображен график функции ( displaystyle y=mathsf{f}left( x right)) и касательная к нему в точке с абсциссой ( {{x}_{0}}).

Найдите значение производной функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}).

Решение.

Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: 

( displaystyle f’left( x right)=k= {tg}varphi).

Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной.

На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси ( displaystyle Ox) – это ( displaystyle angle BAC). Найдем тангенс этого угла:

( displaystyle {tg}angle BAC=frac{BC}{AC}=frac{6}{5}=1,2).

Таким образом, производная функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}) равна ( displaystyle 1,2).

Ответ: ( displaystyle 1,2).

Теперь попробуй сам.

Уравнение касательной к графику функций

А сейчас сосредоточимся на произвольных касательных.

Предположим, у нас есть какая-то функция, например, ( fleft( x right)=left( {{x}^{2}}+2 right)). Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке ( {{x}_{0}}). Например, в точке ( {{x}_{0}}=2).

Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости?

Поскольку прямая – это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты ( k) и ( b) в уравнении

( y=kx+b).

Но ведь ( k) мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

( k={f}’left( {{x}_{0}} right)).

В нашем примере будет так:

( {f}’left( x right)={{left( {{x}^{2}}+2 right)}^{prime }}=2x;)

( k={f}’left( {{x}_{0}} right)={f}’left( 2 right)=2cdot 2=4.)

Теперь остается найти ( b) . Это проще простого: ведь ( b) – значение ( y) при ( displaystyle x=0).

Графически ( b) – это координата пересечения прямой с осью ординат (ведь ( displaystyle x=0) во всех точках оси ( displaystyle Oy)):

Проведём ( BCparallel Ox) (так, что ( triangle ABC) – прямоугольный).

Тогда ( angle ABC=alpha )(тому самому углу между касательной и осью абсцисс). Чему равны ( displaystyle AC) и ( displaystyle BC)?

По рисунку явно видно, что ( BC={{x}_{0}}), а ( AC=fleft( {{x}_{0}} right)-b). Тогда получаем:

( {f}’left( {{x}_{0}} right)= {tg}alpha =frac{AC}{BC}=frac{fleft( {{x}_{0}} right)-b}{{{x}_{0}}}text{ }Rightarrow text{ }b=fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right)).

Соединяем все полученные формулы в уравнение прямой:

( y=kx+b={f}’left( {{x}_{0}} right)cdot x+fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right);)

( y={f}’left( {{x}_{0}} right)cdot left( x-{{x}_{0}} right)+fleft( {{x}_{0}} right))

Это и есть уравнение касательной к графику функции ( fleft( x right)) в точке ( {{x}_{0}}).

Пример:

Найди уравнение касательной к графику функции ( fleft( x right)={{x}^{2}}-2x+3) в точке ( {{x}_{0}}=3).

Решение:

На этом примере выработаем простой…

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике

ЕГЭ №7. Производная функции — геометрический смысл, дифференцирование

На этом видео мы вспомним, что такое функция и её график, научимся искать производную некоторых функций, например, такой: y = 2×3 – 3×2 + x + 5. 

Мы разберём от А до Я все 7 типов задач, которые могут попасться в задаче №7 из ЕГЭ. Узнаем, на какие 3 фразы в условии задачи нужно обратить особое внимание, чтобы с лёгкостью решить задачу и не потерять баллы на ровном месте.  

Разберём все возможные ошибки, которые можно допустить в этих задачах. Мы поймём, что многие из этих задач решаются обычным подсчётом клеточек на графике! Главное – не перепутать, что нужно считать.

P.S. Не забудьте потом посмотреть родственную тему: «Интегралы на ЕГЭ. Первообразные элементарных функций».

Уравнение касательной к графику функции

2 апреля 2011

Пусть дана функция f, которая в некоторой точке x0 имеет конечную производную f (x0). Тогда прямая, проходящая через точку (x0; f (x0)), имеющая угловой коэффициент f ’(x0), называется касательной.

А что будет, если производная в точке x0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример — функция y = |x| в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π/2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b, где k — угловой коэффициент. Касательная — не исключение, и чтобы составить ее уравнение в некоторой точке x0, достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f (x), которая имеет производную y = f ’(x) на отрезке [a; b]. Тогда в любой точке x0 ∈ (a; b) к графику этой функции можно провести касательную, которая задается уравнением:

y = f ’(x0) · (xx0) + f (x0)

Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.

Задача. Дана функция y = x3. Составить уравнение касательной к графику этой функции в точке x0 = 2.

Уравнение касательной: y = f ’(x0) · (xx0) + f(x0). Точка x0 = 2 нам дана, а вот значения f (x0) и f ’(x0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f (x0) = f (2) = 23 = 8;
Теперь найдем производную: f ’(x) = (x3)’ = 3x2;
Подставляем в производную x0 = 2: f ’(x0) = f ’(2) = 3 · 22 = 12;
Итого получаем: y = 12 · (x − 2) + 8 = 12x − 24 + 8 = 12x − 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f (x) = 2sin x + 5 в точке x0 = π/2.

В этот раз не будем подробно расписывать каждое действие — укажем лишь ключевые шаги. Имеем:

f (x0) = f (π/2) = 2sin (π/2) + 5 = 2 + 5 = 7;
f ’(x) = (2sin x + 5)’ = 2cos x;
f ’(x0) = f ’(π/2) = 2cos (π/2) = 0;

Уравнение касательной:

y = 0 · (xπ/2) + 7 ⇒ y = 7

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет — просто мы наткнулись на точку экстремума.

Смотрите также:

  1. Правила вычисления производных
  2. Вводный урок по вычислению производных степенной функции
  3. Что такое логарифм
  4. Тест к уроку «Площади многоугольников без координатной сетки» (легкий)
  5. Текстовые задачи про рельсы
  6. Задача B4: Семья из трех человек едет из Москвы в Нижний Новгород

Вы уже знаете, какую прямую называют касательной к окружности. А что понимают, например, под касательной к синусоиде? Прямая Касательная к графику функции и производная с примерами решения

Пусть даны график функции Касательная к графику функции и производная с примерами решения и на ней точка Касательная к графику функции и производная с примерами решения которая не является концом графика (рис. 60). Обозначим на данном графике по разные стороны от Касательная к графику функции и производная с примерами решения произвольные точки Касательная к графику функции и производная с примерами решения Прямые Касательная к графику функции и производная с примерами решения — секущие. Если же точки Касательная к графику функции и производная с примерами решения двигаясь по графику, приближать достаточно близко к Касательная к графику функции и производная с примерами решения как угодно близко будут приближаться к некоторой прямой Касательная к графику функции и производная с примерами решения Такую прямую Касательная к графику функции и производная с примерами решения (если она существует) называют касательной к графику функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Если график функции такой, как показано на рисунке 61, то при неограниченном приближении точек Касательная к графику функции и производная с примерами решения к точке Касательная к графику функции и производная с примерами решения предельные положения секущих — прямые Касательная к графику функции и производная с примерами решения — не совпадут. Говорят, что в точке Касательная к графику функции и производная с примерами решения касательной к графику функции  не существует.

Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

И если Касательная к графику функции и производная с примерами решения — крайняя точка графика, то касательной к нему в точке Касательная к графику функции и производная с примерами решения не существует.

Понятие касательной к графику часто используют для исследования функций. Рассмотрим этот вопрос сначала в общем виде.

Касательная — это прямая. Её уравнение имеет вид Касательная к графику функции и производная с примерами решения где Касательная к графику функции и производная с примерами решения — угловой коэффициент — тангенс угла между лучом касательной, расположенным выше оси Касательная к графику функции и производная с примерами решения и положительным направлением этой оси. Обратите внимание на угловой коэффициент Касательная к графику функции и производная с примерами решения касательной, проведённой к графику какой-либо функции в его точке с абсциссой Касательная к графику функции и производная с примерами решения Если число Касательная к графику функции и производная с примерами решения принадлежит промежутку возрастания функции, то соответствующее значение Касательная к графику функции и производная с примерами решения положительное (рис. 62). Если Касательная к графику функции и производная с примерами решения принадлежит промежутку убывания функции, то Касательная к графику функции и производная с примерами решения — отрицательное (рис. 63). И наоборот: если каждому значению Касательная к графику функции и производная с примерами решения из некоторого промежутка Касательная к графику функции и производная с примерами решения соответствует положительное значение Касательная к графику функции и производная с примерами решения то на Касательная к графику функции и производная с примерами решения данная функция возрастает; если каждому значению Касательная к графику функции и производная с примерами решения из некоторого промежутка Касательная к графику функции и производная с примерами решения соответствует отрицательное значение Касательная к графику функции и производная с примерами решения то на  функция убывает. Заслуживают внимания и те точки графика функции, в которых касательная не существует, и в которых она параллельна оси Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Итак, зная угловые коэффициенты касательных к графику функции в тех или иных точках, можно сделать вывод, возрастает данная функция в этих точках, или убывает.

Поскольку для исследования функций важно уметь определять угловой коэффициент касательной к её графику, то рассмотрим подробнее связь этого коэффициента с исследуемой функцией.

Пусть даны график функции Касательная к графику функции и производная с примерами решения и на ней точку Касательная к графику функции и производная с примерами решения в которой существует касательная к графику (рис. 64). Если абсцисса точки Касательная к графику функции и производная с примерами решения равна Касательная к графику функции и производная с примерами решения то её ордината — Касательная к графику функции и производная с примерами решения Дадим значению аргумента Касательная к графику функции и производная с примерами решения приращение Касательная к графику функции и производная с примерами решения Тогда значению аргумента Касательная к графику функции и производная с примерами решения на графике функции соответствует точка Касательная к графику функции и производная с примерами решения с абсциссой Касательная к графику функции и производная с примерами решения и ординатой Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Через точки Касательная к графику функции и производная с примерами решения проведём прямые Касательная к графику функции и производная с примерами решения параллельные осям абсцисс и ординат. Они пересекутся в некоторой точке Касательная к графику функции и производная с примерами решения Тогда Касательная к графику функции и производная с примерами решения — приращение аргумента, а Касательная к графику функции и производная с примерами решения — приращение функции на Касательная к графику функции и производная с примерами решения

Угловой коэффициент секущей Касательная к графику функции и производная с примерами решения равен тангенсу угла Касательная к графику функции и производная с примерами решения т. е. отношению Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Если Касательная к графику функции и производная с примерами решения то секущая Касательная к графику функции и производная с примерами решения поворачиваясь вокруг точки Касательная к графику функции и производная с примерами решения приближается к касательной, проведённой в точке Касательная к графику функции и производная с примерами решения к графику данной функции. Итак, если Касательная к графику функции и производная с примерами решения — угловой коэффициент этой касательной и Касательная к графику функции и производная с примерами решения то

Касательная к графику функции и производная с примерами решения

Так определяется угловой коэффициент касательной к графику функции Касательная к графику функции и производная с примерами решения в некоторой точке Касательная к графику функции и производная с примерами решения если касательная в ней не параллельна оси Касательная к графику функции и производная с примерами решения Если касательная к графику функции в некоторой точке параллельна оси Касательная к графику функции и производная с примерами решения то угловой коэффициент этой касательной равен нулю.

К вычислению значения выражения Касательная к графику функции и производная с примерами решения  или Касательная к графику функции и производная с примерами решения приводит решение многих задач по механике, электричеству, биологии, экономике, статистике и т. д. Именно поэтому это выражение получило специальное название — производная.

Производной функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения называют предел отношения приращения функции в точке Касательная к графику функции и производная с примерами решения к приращению аргумента, если приращение аргумента стремится к нулю, а предел существует.

Производную функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения обозначают Касательная к графику функции и производная с примерами решения Её определение записывают также в виде равенства:

Касательная к графику функции и производная с примерами решения

Пример:

Найдите производную функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Решение:

Дадим аргументу Касательная к графику функции и производная с примерами решения приращение Касательная к графику функции и производная с примерами решения Соответствующее приращение функции Касательная к графику функции и производная с примерами решения

Тогда Касательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения

Следовательно, Касательная к графику функции и производная с примерами решения

Ответ. Касательная к графику функции и производная с примерами решения

Так решают задачу, пользуясь определением производной функции в точке.

До сих пор речь шла о производной функции в точке. А можно рассматривать производную функции и как функцию. Пусть, например, дана функция Касательная к графику функции и производная с примерами решенияНайдём её производную в произвольной точке Касательная к графику функции и производная с примерами решения Для этого дадим значению Касательная к графику функции и производная с примерами решенияприращение Касательная к графику функции и производная с примерами решения Соответствующее ему приращение функции

Касательная к графику функции и производная с примерами решения

Поэтому Касательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения

Имеем Касательная к графику функции и производная с примерами решения

Следовательно, производная функции Касательная к графику функции и производная с примерами решения в каждой её точке Касательная к графику функции и производная с примерами решения равна Касательная к графику функции и производная с примерами решения Пишут: Касательная к графику функции и производная с примерами решения или, если Касательная к графику функции и производная с примерами решения

Обратите внимание! Производная функции в точке — это число. Когда же говорят о производной, не указывая «в точке», подразумевают производную как функцию: производной функции Касательная к графику функции и производная с примерами решения есть функция Касательная к графику функции и производная с примерами решения производной функции Касательная к графику функции и производная с примерами решения есть функция Касательная к графику функции и производная с примерами решения и т. д.

Зная это, производную функции в точке можно вычислять проще, чем по определению производной функции в точке. Пример 2. Дана функция Касательная к графику функции и производная с примерами решенияНайдите Касательная к графику функции и производная с примерами решения Решение. Производной функции Касательная к графику функции и производная с примерами решения является функция Касательная к графику функции и производная с примерами решения Поэтому Касательная к графику функции и производная с примерами решенияКасательная к графику функции и производная с примерами решения

 Нахождение производной называется дифференцированием.  Функция, которая имеет производную в точке Касательная к графику функции и производная с примерами решения называется дифференцируемой в точке Касательная к графику функции и производная с примерами решения Функция, дифференцируемая в каждой точке некоторого промежутка, называется дифференцируемой на этом промежутке.

Докажем, например, что линейная функция Касательная к графику функции и производная с примерами решения дифференцируема в каждой точке Касательная к графику функции и производная с примерами решения Действительно, приращению Касательная к графику функции и производная с примерами решения её аргумента Касательная к графику функции и производная с примерами решения соответствует приращение функции Касательная к графику функции и производная с примерами решения Поэтому Касательная к графику функции и производная с примерами решения и если Касательная к графику функции и производная с примерами решения А это и значит, что в каждой точке Касательная к графику функции и производная с примерами решения функция Касательная к графику функции и производная с примерами решения имеет производную Касательная к графику функции и производная с примерами решения

 Пишут Касательная к графику функции и производная с примерами решения

 В частности: Касательная к графику функции и производная с примерами решения

 Производная постоянной равна нулю.

Из курса планиметрии известно, что уравнение прямой, проходящей через заданную точку Касательная к графику функции и производная с примерами решения имеет вид Касательная к графику функции и производная с примерами решения где Касательная к графику функции и производная с примерами решения — угловой коэффициент прямой.

Поскольку для касательной к графику функции Касательная к графику функции и производная с примерами решения угловой коэффициент равен значению производной в точке касания Касательная к графику функции и производная с примерами решения то можем записать общий вид уравнения касательной, проведённой к графику функции Касательная к графику функции и производная с примерами решения в точке касания Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

До сих пор речь шла о касательных к криволинейным графикам. Но графиком функции может быть и прямая или часть прямой. Поэтому для обобщения договариваются касательной к прямой в любой её точке считать эту самую прямую. Касательной к отрезку или лучу в любой его внутренней точке считают прямую, которой принадлежит этот отрезок или луч.

Выше было установлено, что производная линейной функции равна коэффициенту при переменной, т.е Касательная к графику функции и производная с примерами решения

Полученный результат имеет очевидный геометрический смысл: касательная к прямой — графику функции Касательная к графику функции и производная с примерами решения — есть эта самая прямая, её угловой коэффициент равен Касательная к графику функции и производная с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Найдите угол, который образуете положительным направлением оси Касательная к графику функции и производная с примерами решениякасательная к графику функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Решение:

Определим сначала угловой коэффициент этой касательной по формуле Касательная к графику функции и производная с примерами решения — приращения функции и приращения аргумента соответственно.

Найдем приращение функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Найдём угловой коэффициент касательной:

Касательная к графику функции и производная с примерами решения

Поскольку Касательная к графику функции и производная с примерами решения

Известно также, что Касательная к графику функции и производная с примерами решения поэтому Касательная к графику функции и производная с примерами решения отсюда Касательная к графику функции и производная с примерами решения

Пример:

Докажите, что для функции Касательная к графику функции и производная с примерами решения производной есть функция Касательная к графику функции и производная с примерами решения

Решение:

 Касательная к графику функции и производная с примерами решенияКасательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения А это и означает, что производной функции Касательная к графику функции и производная с примерами решения является функция Касательная к графику функции и производная с примерами решения

Пример:

Напишите уравнение касательной к графику функции Касательная к графику функции и производная с примерами решения в его точке с абсциссой Касательная к графику функции и производная с примерами решения

Решение:

Способ 1. Уравнение касательной имеет вид Касательная к графику функции и производная с примерами решения Угловой коэффициент Касательная к графику функции и производная с примерами решения равен значению производной функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения Значит, уравнение касательной Касательная к графику функции и производная с примерами решенияКоординаты точки касания Касательная к графику функции и производная с примерами решения Точка с такими координатами принадлежит касательной, поэтому Касательная к графику функции и производная с примерами решения отсюда Касательная к графику функции и производная с примерами решенияСледовательно, уравнение касательной имеет вид: Касательная к графику функции и производная с примерами решения

Способ 2. Запишем общий вид уравнения касательной:

Касательная к графику функции и производная с примерами решения

Найдём Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Подставим найденные значения в уравнение касательной:

Касательная к графику функции и производная с примерами решения

  • Предел и непрерывность функции
  • Свойства функций, непрерывных в точке и на промежутке
  • Предел функции на бесконечности
  • Применение производной к исследованию функции
  • Иррациональные неравенства
  • Производная в математике
  • Как найти производную функции
  • Асимптоты графика функции

Добавить комментарий