Формулы для нахождения высоты треугольника
В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.
Нахождение высоты треугольника
Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.
Высота в разностороннем треугольнике
Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:
1. Через площадь и длину стороны
где S – площадь треугольника.
2. Через длины всех сторон
где p – это полупериметр треугольника, который рассчитывается так:
3. Через длину прилежащей стороны и синус угла
4. Через стороны и радиус описанной окружности
где R – радиус описанной окружности.
Высота в равнобедренном треугольнике
Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:
Высота в прямоугольном треугольнике
Высота, проведенная к гипотенузе, может быть найдена:
1. Через длины отрезков, образованных на гипотенузе
2. Через стороны треугольника
Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.
Высота в равностороннем треугольнике
Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:
Примеры задач
Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.
Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:
Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.
Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:
Как найти площадь треугольника
На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.
Треугольник – это многоугольник с тремя сторонами.
По формуле Герона
Формула Герона для нахождения площади треугольника:
Через основание и высоту
Формула нахождения площади треугольника с помощью половины его основания и высоту:
Через две стороны и угол
Формула нахождения площади треугольника через две стороны и угол между ними:
Через сторону и два прилежащих угла
Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
Площадь прямоугольного треугольника
Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.
Формула нахождения площади прямоугольного треугольника через катеты:
Площадь равнобедренного треугольника через стороны
Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.
Формула нахождения площади равнобедренного треугольника через две стороны:
Площадь равнобедренного треугольника через основание и угол
Формула нахождения площади равнобедренного треугольника через основание и угол:
Площадь равностороннего треугольника через стороны
Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.
Формула нахождения площади равностороннего треугольника через сторону:
Площадь равностороннего треугольника через высоту
Формула нахождения площади равностороннего треугольника через высоту:
Площадь равностороннего треугольника через радиус вписанной окружности
Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:
Площадь равностороннего треугольника через радиус описанной окружности
Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:
Площадь треугольника через радиус описанной окружности и три стороны
Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:
Площадь треугольника через радиус вписанной окружности и три стороны
Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:
Формула Герона для нахождения площади треугольника
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы рассмотрим еще один способ вычисления площади треугольника – с помощью формулы Герона. Она позволяет вычислить площадь треугольника, зная лишь его стороны, что может очень пригодиться, особенно в практических вычислениях. Мы выпишем и докажем формулу Герона, а также решим несколько задач на применение этой формулы.
[spoiler title=”источники:”]
http://mozgan.ru/Geometry/AreaTriangle
http://interneturok.ru/lesson/geometry/8-klass/ploschad/formula-gerona-dlya-nahozhdeniya-ploschadi-treugolnika
[/spoiler]
Фо́рмула Герона — формула для вычисления площади треугольника по длинам его сторон :
- ,
где — полупериметр треугольника: .
Формула содержится в «Метрике» Герона Александрийского (I век н. э.) и названа в его честь (хотя она была известна ещё Архимеду). Герон интересовался треугольниками с целочисленными сторонами, площади которых тоже являются целыми, такие треугольники носят название героновых, простейшим героновым треугольником является египетский треугольник.
Доказательство 1 (тригонометрическое):
Доказательство 2 (на основе теоремы Пифагора):
Треугольник со сторонами a, b, c и высотой
h, разделяющей основание
c на
d и (c − d).
По теореме Пифагора имеем следующие равенства для гипотенуз: a2 = h2 + (c − d)2 и b2 = h2 + d2 — см. рисунок справа. Вычитая из первого равенства второе, получаем a2 − b2 = c2 − 2cd. Это уравнение позволяет нам выразить d через стороны треугольника:
Для высоты h у нас было равенство h2 = b2 − d2, в которое можно подставить полученное выражение для d и применить формулы для квадратов:
Замечая, что , , , , получаем:
Используя основное равенство для площади треугольника и подставляя в него полученное выражение для h, в итоге имеем:
ч.т.д.
Вариации и обобщения[править | править код]
- Формулу Герона можно записать с помощью определителя в виде[1]:
- Первый определитель последней формулы является частным случаем определителя Кэли — Менгера[en] для вычисления гиперобъёма симплекса.
- через длины высот , и и полусумму их обратных величин [3]:
- ;
- через углы треугольника , и , полусумму их синусов и диаметр описанной окружности [4]:
- Площадь вписанного в окружность четырёхугольника вычисляется по формуле Брахмагупты:
- ,
- где — полупериметр четырёхугольника; в данном случае треугольник оказывается предельным случаем вписанного четырёхугольника при устремлении длины одной из сторон к нулю. Та же формула Брахмагупты через определитель[5]:
- где:
- .
- где — полупериметр.
Примечания[править | править код]
- ↑ Weisstein, Eric W. Heron’s Formula. Архивная копия от 5 сентября 2015 на Wayback Machine From MathWorld–A Wolfram Web Resource.
- ↑ Benyi, Arpad, “A Heron-type formula for the triangle, « Mathematical Gazette» 87, July 2003, 324—326.
- ↑ Mitchell, Douglas W., “A Heron-type formula for the reciprocal area of a triangle, ” Mathematical Gazette 89, November 2005, 494.
- ↑ Mitchell, Douglas W., “A Heron-type area formula in terms of sines, ” Mathematical Gazette 93, March 2009, 108—109.
- ↑ Стариков В. Н. Заметки по геометрии// Научный поиск: гуманитарные и социально-экономические науки: сборник научных трудов. Выпуск 1/ Гл ред. Романова И .В Чебоксары: ЦДИП «INet», 2014. С. 37-39
- ↑ W. Kahan, «What has the Volume of a Tetrahedron to do with Computer Programming Languages?», [1] Архивная копия от 27 июня 2013 на Wayback Machine, pp. 16-17.
- ↑ Маркелов С. Формула для объёма тетраэдра// Математическое просвещение. Вып. 6. 2002. С. 132
Литература[править | править код]
- § 258 в А. П. Киселёв, Геометрия по Киселёву, arΧiv:1806.06942 [math.HO].
- Николаев Н. О площади треугольника // В.О.Ф.Э.М.. — 1890. — № 108. — С. 227—228.
- Raifaizen, Claude H. A Simpler Proof of Heron’s Formula (англ.) // Mathematics Magazine : magazine. — 1971. — Vol. 44. — P. 27—28. — доказательство формулы Герона на основе теоремы Пифагора
Расчёт высоты треугольника по сторонам
Значащих цифр:
Определение треугольника
Треугольник это геометрическая фигура, которая состоит из трёх точек не лежащих на одной прямой и трёх отрезков попарно соединяющих эти точки. У треугольника сумма любых двух длинн сторон должна быть меньше третьей.
Определение высоты треугольника
Высота треугольника это перпендикуляр опущенный с вершины на противоположную сторону.
Формулу высоты выведем из формулы Герона
color{#0000FF}{p = Large{frac{a + b + c}{2}}}
color{#0000FF}{S = sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c – длины сторон треугольника, p – полупериметр
и формулы площади треугольника
color{#0000FF}{S = Largefrac{1}{2}normalsize*b*h_b}
Выведем высоту треугольника
color{#0000FF}{Largefrac{1}{2}normalsize*b*h_b = sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
color{#0000FF}{h_b = Largefrac{2sqrt{p(p-a)(p-b)(p-c)}}{b}}
color{#0000FF}{h_a = Largefrac{2sqrt{p(p-a)(p-b)(p-c)}}{a}}
color{#0000FF}{h_c = Largefrac{2sqrt{p(p-a)(p-b)(p-c)}}{c}}
В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.
-
Нахождение высоты треугольника
- Высота в разностороннем треугольнике
- Высота в равнобедренном треугольнике
- Высота в прямоугольном треугольнике
- Высота в равностороннем треугольнике
- Примеры задач
Нахождение высоты треугольника
Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.
Высота в разностороннем треугольнике
Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:
1. Через площадь и длину стороны
где S – площадь треугольника.
2. Через длины всех сторон
где p – это полупериметр треугольника, который рассчитывается так:
3. Через длину прилежащей стороны и синус угла
4. Через стороны и радиус описанной окружности
где R – радиус описанной окружности.
Высота в равнобедренном треугольнике
Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:
Высота в прямоугольном треугольнике
Высота, проведенная к гипотенузе, может быть найдена:
1. Через длины отрезков, образованных на гипотенузе
2. Через стороны треугольника
Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.
Высота в равностороннем треугольнике
Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:
Примеры задач
Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.
Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:
Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.
Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:
Как найти высоту в треугольнике
При решении различного рода задач, как сугубо математического, так и прикладного характера (особенно в строительстве), нередко требуется определить значение высоты определенной геометрической фигуры. Как рассчитать данную величину (высоту) в треугольнике?
Если мы попарно совместим 3 точки, расположенные не на единой прямой, то полученная фигура будет треугольником. Высота – часть прямой из любой вершины фигуры, которая при пересечении с противоположной стороной образует угол 90°.
1
Найти высоту в разностороннем треугольнике
Определим значение высоты треугольника в случае, когда фигура имеет произвольные углы и стороны.
Формула Герона
h(a)=(2√(p(p-a)*(p-b)*(p-c)))/a, где
p – половина периметра фигуры, h(a) – отрезок к стороне a, проведенный под прямым углом к ней,
b, c – 2 другие стороны треугольника,
p=(a+b+c)/2 – расчет полупериметра.
В случае наличия площади фигуры для определения ее высоты можно воспользоваться соотношением h(a)=2S/a.
Тригонометрические функции
Для определения длины отрезка, который составляет при пересечении со стороной a прямой угол, можно воспользоваться следующими соотношениями: если известна сторона b и угол γ или сторона c и угол β, то h(a)=b*sinγ или h(a)=c*sinβ.
Где:
γ – угол между стороной b и a,
β – угол между стороной c и a.
Взаимосвязь с радиусом
Если исходный треугольник вписан в окружность, для определения величины высоты можно воспользоваться радиусом такой окружности. Центр ее расположен в точке, где пересекаются все 3 высоты (из каждой вершины) – ортоцентре, а расстояние от него и до вершины (любой) – радиус.
Тогда h(a)=bc/2R, где:
b, c – 2 другие стороны треугольника,
R – радиус описывающей треугольник окружности.
2
Найти высоту в прямоугольном треугольнике
В данном виде геометрической фигуры 2 стороны при пересечении образуют прямой угол – 90°. Следовательно, если требуется определить в нем значение высоты, то необходимо вычислить либо размер одного из катетов, либо величину отрезка, образующего с гипотенузой 90°. При обозначении:
a, b – катеты,
c – гипотенуза,
h(c) – перпендикуляр на гипотенузу.
Произвести необходимые расчеты можно с помощью следующих соотношений:
- Пифагорова теорема:
a=√(c2-b2 ),
b=√(c2-a2 ),
h(c)=2S/c,т.к. S=ab/2,то h(c)=ab/c .
- Тригонометрические функции:
a= c*sinβ,
b=c* cosβ,
h(c)=ab/c=с* sinβ* cosβ.
3
Найти высоту в равнобедренном треугольнике
Данная геометрическая фигура отличается наличием двух сторон равной величины и третьей – основанием. Для определения высоты, проведенной к третьей, отличной стороне, на помощь приходит теорема Пифагора. При обозначениях
a – боковая сторона,
c – основание,
h(c) – отрезок к c под углом 90°, то h(c)=1/2 √(4a2-c2 ).
4
Найти высоту треугольника равностороннего
В таком треугольнике отмечается равенство всех сторон, а углы составляют по 60°. Исходя из формулы для нахождения перпендикуляра на основание для равнобедренного треугольника, получаем следующее соотношение, которое справедливо для всех трех высот.
h=√3a/2 .