Как найти смежный угол если треугольник равнобедренный

Внешний угол равнобедренного треугольника

Чему равен внешний угол равнобедренного треугольника? Какие у него свойства?

Как и для всякого треугольника, внешний угол при любой вершине равнобедренного треугольника равен сумме двух внутренних углов, не смежных с ним.

Помимо этого, внешние углы равнобедренного треугольника имеют свои свойства.

Внешний угол при вершине равнобедренного треугольника в два раза больше внутреннего угла при его основании.

Дано: ∆ ABC, AC=BC,

∠BCF — внешний угол при вершине C.

Так как внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним, то

Поскольку ∠A=∠B (как углы при основании равнобедренного треугольника), то

Что и требовалось доказать.

Внешний угол при основании равнобедренного треугольника на 90º больше половины внутреннего угла при его вершине.

Дано: ∆ ABC, AC=BC,

∠NBC — внешний угол при вершине B.

Доказать: ∠NBC=1/2 ∠C +90º.

1) ∠A=∠ABC (как углы при основании равнобедренного треугольника).

Отсюда ∠NBC=180º-∠ABC=180º-(90º-1/2 ∠C)=90º+ 1/2 ∠C.

Что такое смежные углы: определение, теорема, свойства

В данной публикации мы рассмотрим, что из себя представляют смежные углы, приведем формулировку теоремы касательно них (в т.ч. следствия из нее), а также перечислим тригонометрические свойства смежных углов.

Определение смежных углов

Два прилежащих угла, внешними сторонами образующие прямую, называется смежными. На рисунке ниже это углы α и β.

Если два угла имеют одну общую вершину и сторону, они являются прилежащими. При этом внутренние области этих углов не должны пересекаться.

Принцип построения смежного угла

Одну из сторон угла протягиваем через вершину дальше, в результате чего образуется новый угол, смежный с исходным.

Теорема о смежных углах

Сумма градусов смежных углов равняется 180°.

Смежн. угол 1 + Смежн. угол 2 = 180°

Пример 1
Один из смежных углов равняется 92°, чему равен второй?

Решение, согласно рассмотренной выше теореме, очевидно:
Смежн. угол 2 = 180° – Смежн. угол 1 = 180° – 92° = 88°.

Следствия из теоремы:

  • Смежные углы двух равных углов равны между собой.
  • Если угол является смежным с прямым (90°), значит он также равен 90°.
  • Если угол является смежным с острым, значит он больше 90°, т.е. является тупым (и наоборот).

Пример 2
Допустим, у нас есть угол, смежный с 75°. Он должен быть больше 90°. Давайте проверим это.

Воспользовавшись теоремой, находим значение второго угла:
180° – 75° = 105°.

105° > 90°, следовательно угол является тупым.

Тригонометрические свойства смежных углов

  1. Синусы смежных уголов равны, т.е. sin α = sin β.
  2. Величины косинусов и тангенсов смежных углов равны, но имеют противоположные знаки (кроме неопределенных значений).
    • cos α = -cos β.
    • tg α = -tg β.

Смежные и вертикальные углы. Треугольник. Равнобедренный треугольник. Медиана, биссектриса, высота, средняя линия

Готовиться с нами – ЛЕГКО!

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Факт 1.
(bullet) Смежные углы – два угла, имеющие общую сторону, а две другие стороны являются продолжениями одна другой.

Смежные углы: (angle AOB) и (angle BOC) .
Теорема: Сумма смежных углов равна (180^circ) : (angle AOB+angle BOC=180^circ) .

Факт 2.
(bullet) Вертикальные углы – два угла, у которых стороны одного угла являются продолжениями сторон другого (образуются, например, при пересечении двух прямых).

Вертикальные углы: (angle 1) и (angle 2) , (angle 3) и (angle 4) .
Теорема: Вертикальные углы равны: (angle 1=angle 2) и (angle 3=angle 4) .

Факт 3.
(bullet) Сумма углов (angle A, angle B, angle C) треугольника (ABC) равна (180^circ) .
(bullet) Внешний угол (angle BCD) треугольника (ABC) равен сумме двух углов треугольника, не смежных с ним.

Факт 4.
(bullet) Биссектрисы смежных углов взаимно перпендикулярны.
(bullet) Биссектрисы односторонних углов при параллельных прямых взаимно перпендикулярны.

Факт 5.
(bullet) Прямая теорема: каждая точка биссектрисы угла равноудалена от сторон угла.
(bullet) Обратная теорема: если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Факт 6.
(bullet) Равнобедренный треугольник – треугольник, у которого две стороны равны. Третья сторона треугольника называется основанием.
Первое свойство равнобедренного треугольника:

Второе свойство равнобедренного треугольника: углы при основании равны.

Первый признак равнобедренного треугольника: если у треугольника два угла равны, то он равнобедренный.
Второй признак равнобедренного треугольника: если у треугольника совпадают высота и медиана (высота и биссектриса или медиана и биссектриса), проведенные к одной и той же стороне, то этот треугольник является равнобедренным.

Факт 7.
(bullet) Биссектриса угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.

Факт 8.
(bullet) Медианы в треугольнике точкой пересечения делятся в отношении (2:1) , считая от вершины.

Факт 9.
(bullet) Медиана треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.

Факт 10.
(bullet) Высота, проведенная из вершины прямого угла треугольника, делит его на два треугольника, подобных исходному.
(bullet) Квадрат этой высоты равен произведению отрезков, на которые она делит гипотенузу.

Факт 11.
(bullet) Средняя линия треугольника – отрезок, соединяющий середины двух его сторон.
(bullet) 1. Средняя линия треугольника параллельна третьей стороне.
(bullet) 2. Средняя линия треугольника равна половине третьей стороны.
(bullet) 3. Средняя линия отсекает от треугольника подобный ему треугольник.

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, – на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

[spoiler title=”источники:”]

http://shkolkovo.net/theory/smezhnye_i_vertikalnye_ugly_treugolnik_ravnobedrennyj_treugolnik_mediana_bissektrisa_vysota_srednyaya_liniya

[/spoiler]

Содержание

  • Как найти угол в равнобедренном треугольнике?
  • Какой угол при основании?
  • Как найти смежный угол в равнобедренном треугольнике?
  • Как найти внешний угол равностороннего треугольника?
  • Что такое угол при вершине?
  • Как найти высоту в равнобедренном треугольнике?

Как найти угол в равнобедренном треугольнике?

Если два угла треугольника равны, такой треугольник является равнобедренным.

  1. В равнобедренном треугольнике углы при основании равны.
  2. Углы при основании в равнобедренном треугольнике — всегда острые.
  3. Сумма углов равнобедренного треугольника равна 180 градусам.

Какой угол при основании?

Треугольник называется равнобедренным, если две его стороны равны. Две равные стороны в равнобедренном треугольнике называются боковыми сторонами, а третья сторона – основанием. Свойство углов равнобедренного треугольника. В равнобедренном треугольнике углы при основании равны.

Как найти смежный угол в равнобедренном треугольнике?

д. Смежные углы – два угла, имеющие общую сторону, а две другие стороны являются продолжениями одна другой. Смежные углы: ∠ A O B и ∠ B O C . Теорема: Сумма смежных углов равна : ∠ A O B + ∠ B O C = 180 ∘ .

Как найти внешний угол равностороннего треугольника?

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. равен половине гипотенузы.

Что такое угол при вершине?

угол при вершине (сверла) — (1.41) Удвоенный угол, образованный осью сверла и проекцией главной режущей кромки на плоскость, проходящую через ось сверла и параллельную этой режущей кромке.

Как найти высоту в равнобедренном треугольнике?

Высота треугольника – это перпендикуляр, который проведен из вершины треугольника к прямой, на которой лежит противолежащая сторона. Высота равнобедренного треугольника вычисляется посредством теоремы Пифагора.

Интересные материалы:

Сколько метров на 1.5 постельное белье?
Сколько метров надо на лестницу?
Сколько метров надо на пододеяльник?
Сколько метров рабицы в рулоне?
Сколько метров тюли нужно на 2 метровый карниз?
Сколько метров ткани на детское постельное белье?
Сколько метров ткани надо на Полутороспальный комплект?
Сколько метров ткани нужно для Двуспального постельного белья?
Сколько метров ткани нужно на детскую кроватку?
Сколько метров ткани нужно на двуспальный комплект?

Помогите решить

Alina Zhuravleva



Ученик

(111),
закрыт



8 лет назад

В равнобедренном треугольнике угол при основании равен 56 градусов Найдите угол смежный углу при вершине этого треугольника . Ответ дайте в градусах

Catze

Профи

(931)


8 лет назад

в равнобедр. треуг. углы при основании равны, => второй угол при основании равен 56.
сумма углов в треуг. равна 180 градусам, найдем угол при вершине: 180 градусов – (56 + 56) = 180 – 112 = 68 градусов – это угол при вершине.
сумма смежных углов тоже равна 180 градусам, поэтому можем найти смежный угол при вершине: 180 – 68 = 112.

Смежные и вертикальные углы. Треугольник. Равнобедренный треугольник. Медиана, биссектриса, высота, средняя линия


2. Вникай в доказательства

Готовиться с нами – ЛЕГКО!

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить, выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Факт 1.
(bullet) Смежные углы – два угла, имеющие общую сторону, а две другие стороны являются продолжениями одна другой.

Смежные углы: (angle AOB) и (angle BOC).
Теорема: Сумма смежных углов равна (180^circ): (angle
AOB+angle BOC=180^circ)
.

Факт 2.
(bullet) Вертикальные углы – два угла, у которых стороны одного угла являются продолжениями сторон другого (образуются, например, при пересечении двух прямых).

Вертикальные углы: (angle 1) и (angle 2), (angle 3) и (angle 4).
Теорема: Вертикальные углы равны: (angle 1=angle 2) и (angle 3=angle 4).

Факт 3.
(bullet) Сумма углов (angle A, angle B, angle C) треугольника (ABC) равна (180^circ).
(bullet) Внешний угол (angle BCD) треугольника (ABC) равен сумме двух углов треугольника, не смежных с ним.

Факт 4.
(bullet) Биссектрисы смежных углов взаимно перпендикулярны.
(bullet) Биссектрисы односторонних углов при параллельных прямых взаимно перпендикулярны.

Факт 5.
(bullet) Прямая теорема: каждая точка биссектрисы угла равноудалена от сторон угла.
(bullet) Обратная теорема: если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Факт 6.
(bullet) Равнобедренный треугольник – треугольник, у которого две стороны равны. Третья сторона треугольника называется основанием.
Первое свойство равнобедренного треугольника:

Второе свойство равнобедренного треугольника: углы при основании равны.

Первый признак равнобедренного треугольника: если у треугольника два угла равны, то он равнобедренный.
Второй признак равнобедренного треугольника: если у треугольника совпадают высота и медиана (высота и биссектриса или медиана и биссектриса), проведенные к одной и той же стороне, то этот треугольник является равнобедренным.

Факт 7.
(bullet) Биссектриса угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.

Факт 8.
(bullet) Медианы в треугольнике точкой пересечения делятся в отношении (2:1), считая от вершины.

Факт 9.
(bullet) Медиана треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.

Факт 10.
(bullet) Высота, проведенная из вершины прямого угла треугольника, делит его на два треугольника, подобных исходному.
(bullet) Квадрат этой высоты равен произведению отрезков, на которые она делит гипотенузу.

Факт 11.
(bullet) Средняя линия треугольника – отрезок, соединяющий середины двух его сторон.
(bullet) 1. Средняя линия треугольника параллельна третьей стороне.
(bullet) 2. Средняя линия треугольника равна половине третьей стороны.
(bullet) 3. Средняя линия отсекает от треугольника подобный ему треугольник.

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, – на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор. Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект. Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

УСТАЛ? Просто отдохни

Чему равен внешний угол равнобедренного треугольника? Какие у него свойства?

Как и для всякого треугольника, внешний угол при любой вершине равнобедренного треугольника равен сумме двух внутренних углов, не смежных с ним.

Помимо этого, внешние углы равнобедренного треугольника имеют свои свойства.

Утверждение 1.

Внешний угол при вершине равнобедренного треугольника в два раза больше внутреннего угла при его основании.

vneshniy ugol ravnobedrennogo treugolnika   Дано: ∆ ABC, AC=BC,

∠BCF — внешний угол при вершине C.

 Доказать: ∠BCF=2∠A.

Доказательство:

Так как внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним, то

∠BCF=∠A+∠B.

Поскольку ∠A=∠B (как углы при основании равнобедренного треугольника), то

∠BCF=2∠A.

Что и требовалось доказать.

Утверждение 2.

Внешний угол при основании равнобедренного треугольника на 90º больше половины внутреннего угла при его вершине.

vneshniy ugol ravnobedrennogo treugolnika raven    Дано: ∆ ABC, AC=BC,

∠NBC — внешний угол при вершине B.

Доказать: ∠NBC=1/2 ∠C +90º.

Доказательство:

1) ∠A=∠ABC (как углы при основании равнобедренного треугольника).

2) Так как сумма углов треугольника равна 180º, то

∠A=∠ABC=(180º-∠C):2=90º-1/2 ∠C.

3) ∠NBC+∠ABC =180º (как смежные).

Отсюда ∠NBC=180º-∠ABC=180º-(90º-1/2 ∠C)=90º+ 1/2 ∠C.

Что и требовалось доказать.

Добавить комментарий