Как найти вид общего решения дифференциального уравнения

Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.

В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.

Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.

Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.

Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».

Начнем ознакомление с темой мы с видов обыкновенных дифференциальных уравнений 1-го порядка. Эти уравнения могут быть разрешены относительно производной. Затем перейдем в ОДУ 2-го и высших порядков. Также мы уделим внимание системам дифференциальных уравнений.

Напомним, что y’=dxdy, если y является функцией аргумента x.

Дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка вида y’=f(x)

Начнем с примеров таких уравнений.

Пример 1

y’=0, y’=x+ex-1, y’=2xx2-73

Оптимальным для решения дифференциальных уравнений f(x)·y’=g(x) является метод деления обеих частей на f(x). Решение относительно производной позволяет нам прийти к уравнению вида y’=g(x)f(x). Оно является эквивалентом исходного уравнения при f(x) ≠ 0.

Пример 2

Приведем примеры подобных дифференциальных уравнений:

ex·y’=2x+1, (x+2)·y’=1

Мы можем получить ряд дополнительных решений в тех случаях, когда существуют значения аргумента х, при которых функции f(x) и g(x) одновременно обращаются в 0. В качестве дополнительного решения в уравнениях f(x)·y’=g(x) при заданных значениях аргумента может выступать любая функция, определенная для заданного значения х.

Пример 3

Наличие дополнительных решений возможно для дифференциальных уравнений x·y’=sin x, (x2-x)·y’=ln(2×2-1)

Ознакомиться с теоретической частью и примерами решения задач таких уравнений вы можете в разделе «Простейшие дифференциальные уравнения 1-го порядка».

Дифференциальные уравнения с разделяющимися переменными вида f1(y)·g1(x)dy=f2(y)·g2(x)dx или f1(y)·g1(x)·y’=f2(y)·g2(x)

Поговорим теперь об уравнениях с разделенными переменными, которые имеют вид f(y)dy=g(x)dx. Как следует из названия, к данному виду дифференциальных уравнений относятся выражения, которые содержат переменные х и у, разделенные знаком равенства. Переменные находятся в разных частях уравнения, по обе стороны от знака равенства.

Решить уравнения с разделенными переменными можно путем интегрирования обеих его частей: ∫f(y)dy=∫f(x)dx

Пример 4

К числу дифференциальных уравнений с разделенными переменными можно отнести следующие из них:

y23dy=sin xdx, eydy=(x+sin 2x)dx

Для того, чтобы прийти от ДУ с разделяющимися переменными к ДУ с разделенными переменными, необходимо разделить обе части уравнения на произведение f2(y) ⋅ g1(x). Так мы придем к уравнению f1(y)f2(y)dy=g2(x)g1(x)dx. Преобразование можно будет считать эквивалентным в том случае, если одновременно f2(y) ≠ 0 и g1(x) ≠ 0. Если хоть одно из условий не будет соблюдаться, мы можем потерять часть решений.

Пример 5

В качестве примеров дифференциальных уравнений с разделяющимися переменными можно привести следующие из них: dydx=y·(x2+ex), (y2+arccos y)·sin x·y’=cos xy.

К уравнениям с разделяющимися переменными мы можем прийти от ряда дифференциальных уравнений других видов путем замены переменных. Например, мы можем подставить в исходное уравнение z = ax+by. Это позволит нам перейти к дифференциальному уравнению с разделяющимися переменными от дифференциального уравнения вида y’=f(ax+by), a,b∈R.

Пример 6

Подставив z = 2x+3y в уравнение y’=1e2x+3y получаем dzdx=3+2ezez.

Заменив z=xy или z=yx в выражениях y’=fxy или y’=fyx, мы переходим к уравнениям с разделяющимися переменными.

Пример 7

Если произвести замену z=yx в исходном уравнении y’=yx·lnyx+1, получаем x·dzdx=z·ln z.

В ряде случаев прежде, чем производить замену, необходимо произвести преобразования исходного уравнения.

Пример 8

Предположим, что в условии задачи нам дано уравнение y’=y2-x22xy. Нам необходимо привести его к виду y’=fxy или y’=fyx. Для этого нам нужно разделить числитель и знаменатель правой части исходного выражения на x2 или y2.

Пример 9

Нам дано уравнение y’=fa1x+b1y+c1a2x+b2y+c2, a1, b1, c1, a2, b2, c2 ∈R.

Для того, чтобы привести исходное уравнение к виду y’=fxy или y’=fyx, нам необходимо ввести новые переменные u=x-x1v=y-y1, где (x1;y1) является решением системы уравнений a1x+b1y+c1=0a2x+b2y+c2=0

Введение новых переменных u=x-1v=y-2 в исходное уравнение y’=5x-y-33x+2y-7 позволяет нам получить уравнение вида dvdu=5u-v3u+2v.

Теперь выполним деление числителя и знаменателя правой части уравнения на u. Также примем, что z=uv. Получаем дифференциальное уравнение с разделяющимися переменными u·dzdu=5-4z-2z23+2z.

Подробный разбор теории и алгоритмов решения задач мы привели в разделе «Дифференциальные уравнения с разделяющимися переменными».

Линейные неоднородные дифференциальные уравнения первого порядка y’+P(x)·y=Q(x)

Приведем примеры таких уравнений.

Пример 10

К числу линейных неоднородных дифференциальных уравнений 1-го порядка относятся:

y’-2xy1+x2=1+x2;y’-xy=-(1+x)e-x

Для решения уравнений этого вида применяется метод вариации произвольной постоянной. Также мы можем представить искомую функцию у в виде произведения y(x) = u(x)v(x). Алгоритмы применения обоих методов мы привели в разделе «Линейные неоднородные дифференциальные уравнения первого порядка».

Дифференциальное уравнение Бернулли y’+P(x)y=Q(x)ya

Приведем примеры подобных уравнений.

Пример 11

К числу дифференциальных уравнений Бернулли можно отнести:

y’+xy=(1+x)e-xy23;y’+yx2+1=arctgxx2+1·y2

Для решения уравнений этого вида можно применить метод подстановки z=y1-a, которая выполняется для того, чтобы свести исходное уравнение к линейному дифференциальному уравнению 1-го порядка. Также применим метод представления функции у в качестве y(x) = u(x)v(x).

Алгоритм применения обоих методов приведен в разделе «Дифференциальное уравнение Бернулли». Там же можно найти подробный разбор решения примеров по теме.

Уравнения в полных дифференциалах P(x,y)dx+Q(x,y)dy=0

Если для любых значений x и y выполняется ∂P(x,y)∂y=∂Q(x,y)∂x, то этого условия необходимо и достаточно, чтобы выражение P(x, y)dx+Q(x, y)dy представляло собой полный дифференциал некоторой функции U(x, y)=0, то есть, dU(x, y)=P(x, y)dx+Q(x, y)dy. Таким образом, задача сводится к восстановлению функции U(x, y)=0 по ее полному дифференциалу.

Пример 12

Выражение, расположенное в левой части записи уравнения (x2-y2)dx-2xydy=0 представляет собой полный дифференциал функции x33-xy2+C=0

Для более подробного ознакомления с теорией и алгоритмами решения примеров можно обратиться к разделу «Уравнения в полных дифференциалах».

Дифференциальные уравнения второго порядка

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами  y”+py’+qy=0, p,q∈R

Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k2+pk+q=0. Здесь возможны три варианта в зависимости от различных p и q:

  • действительные и различающиеся корни характеристического уравнения k1≠k2, k1, k2∈R;
  • действительные и совпадающие k1=k2=k, k∈R;
  • комплексно сопряженные k1=α+i·β, k2=α-i·β.

Значения корней характеристического уравнения определяет, как будет записано общее решение дифференциального уравнения. Возможные варианты:

  • y=C1ek1x+C2ek2x;
  • y=C1ekx+C2xekx;
  • y=ea·x·(C1cos βx+C2sin βx).
Пример 13

Предположим, что у нас есть линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами y”+3y’=0. Найдем корни характеристического уравнения k2+3k=0. Это действительные и различные k1 =-3 и k2=0. Это значит, что общее решение исходного уравнения будет иметь вид:

y=C1ek1x+C2ek2x⇔y=C1e-3x+C2e0x⇔y=C1e-3x+C2

Восполнить пробелы в теоретической части и посмотреть подробный разбор примеров по теме можно в статье «Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами».

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y”+py’+qy=f(x), p,q∈R

Основным способом решение уравнений данного вида является нахождение суммы общего решения y0, которое соответствует линейному однородному дифференциальному уравнению y”+py’+qy=0, и частного решения y~ исходного уравнения. Получаем: y=y0+y~.

Способ нахождения y0 мы рассмотрели в предыдущем пункте. Найти частное решение y~ мы можем методом неопределенных коэффициентов при определенном виде функции f(x), которая расположена в правой части записи исходного выражения. Также применим метод вариации произвольных постоянных.

Пример 14

К числу линейных неоднородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами относятся:

y”-2y’=(x2+1)ex;y”+36y=24sin(6x)-12cos(6x)+36e6x

Теоретические выкладки и подробный разбор примеров по теме можно найти в разделе «ЛНДУ 2-го порядка с постоянными коэффициентами».

Линейные однородные дифференциальные уравнения (ЛОДУ) y”+p(x)·y’+q(x)·y=0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y”+p(x)·y’+q(x)·y=f(x)

Линейные однородные и неоднородные дифференциальные уравнения и постоянными коэффициентами являются частными случаями дифференциальных уравнений этого вида.

На некотором отрезке [a; b] общее решение линейного однородного дифференциального уравнения y”+p(x)·y’+q(x)·y=0 представлено линейной комбинацией двух линейно независимых частных решений y1 и y2 этого уравнения, то есть, y=C1y1+C2y2.

Частные решения мы можем выбрать из систем независимых функций:

1) 1, x, x2, …, xn2) ek1x, ek2x, …, eknx3) ek1x, x·ek1x, …, xn1·ek1x,ek2x, x·ek2x, …, xn2·ek2x,…ekpx, x·ekpx, …, xnp·ekpx4) 1, chx, shx

Однако существуют примеру уравнений, для которых частные решения не могут быть представлены в таком виде.

Пример 15

Возьмем для примера линейное однородное дифференциальное уравнение xy”-xy’+y=0.

Общее решение линейного неоднородного дифференциального уравнения y”+p(x)·y’+q(x)·y=f(x) мы можем найти в виде суммы y=y0+y~, где y0 – общее решение соответствующего ЛОДУ, а y~ частное решение исходного дифференциального уравнения. Найти y0 можно описанным выше способом. Определить y~ нам поможет метод вариации произвольных постоянных.

Пример 16

Возьмем для примера линейное неоднородное дифференциальное уравнение xy”-xy’+y=x2+1.

Более подробно этот раздел освещен на странице «Линейные дифференциальные уравнения второго порядка».

Дифференциальные уравнения высших порядков

Дифференциальные уравнения, допускающие понижение порядка

Мы можем провести замену y(k)=p(x) для того, чтобы понизить порядок исходного дифференциального уравнения F(x, y(k), y(k+1), …, y(n))=0, которое не содержит искомой функции и ее производных до k-1 порядка.

В этом случае y(k+1)=p'(x), y(k+2)=p”(x), …, y(n)=p(n-k)(x), и исходное дифференциальное уравнение сведется к F1(x, p, p’, …, p(n-k))=0. После нахождения его решения p(x) останется вернуться к замене y(k)=p(x) и определить неизвестную функцию y.

Пример 17

Дифференциальное уравнение y”’xln(x)=y” после замены y”=p(x) станет уравнением с разделяющимися переменными y”=p(x), и его порядок с третьего понизится до первого.

В уравнении, которое не содержит аргумента х и имеет вид F(y, y’, y”, …, y(n))=0, порядок может быть заменен на единицу следующим образом: необходимо провести замену dydx=p(y), где p(y(x)) будет сложной функцией. Применив правило дифференцирования, получаем:

d2ydx2=dpdydydx=dpdyp(y)d3ydx3=ddpdyp(y)dx=d2pdy2dydxp(y)+dpdydpdydydx==d2pdy2p2(y)+dpdy2p(y)
Полученный результаты подставляем в исходное выражение. При этом мы получим дифференциальное уравнение, порядок которого на единицу меньше, чем у исходного.

Пример 18

Рассмотрим решение уравнения 4y3y”=y4-1. Путем замены dydx=p(y) приведем исходное выражение к уравнению с разделяющимися переменными 4y3pdpdy=y4-1.

Более подробно решения задач по теме рассмотрены в разделе «Дифференциальные уравнения, допускающие понижение порядка».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y(n)+fn-1·y(n-1)+…+f1·y’+f0·y=0 и y(n)+fn-1·y(n-1)+…+f1·y’+f0·y=f(x)

Решение уравнений данного вида предполагает выполнение следующих простых шагов:

  • находим корни характеристического уравнения kn+fn-1·kn-1+…+f1·k+f0=0;
  • записываем общее решение ЛОДУ y0 в стандартной форме, а общее решение ЛНДУ представляем суммой y=y0+y~, где y~ – частное решение неоднородного дифференциального уравнения. 

Нахождение корней характеристического уравнения подробно описано в разделе «Решение уравнений высших степеней». Для нахождения y~ целесообразно использовать метод вариации произвольных постоянных.

Пример 19

Линейному неоднородному ДУ с постоянными коэффициентами y(4)+y(3)-5y”+y’-6y=xcosx+sinx соответствует линейное однородное ДУ y(4)+y(3)-5y”+y’-6y=0.

Более детальный разбор теории и примеров по теме вы можете найти на странице « Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков y(n)+fn-1(x)·y(n-1)+…+f1(x)·y’+f0(x)·y=0 и y(n)+fn-1(x)·y(n-1)+…+f1(x)·y’+f0(x)·y=f(x)

Найти решение ЛНДУ высших порядков можно благодаря сумме y=y0+y~, где y0 – общее решение соответствующего ЛОДУ, а y~ – частное решение неоднородного дифференциального уравнения.

y0 представляет собой линейную комбинацию линейно независимых функций y1, y2, …, yn, каждая из которых является частным решением ЛОДУ, то есть, обращает равенство y(n)+fn-1(x)·y(n-1)+…+f1(x)·y’+f0(x)·y=0 в тождество. Частные решения y1, y2, …, yn обычно подбираются из известных систем линейно независимых функций. Подобрать их далеко не всегда просто и возможно, в этом и заключается основная проблема.

После того, как мы найдем общее решение ЛОДУ, найти частное решение соответствующего ЛНДУ можно благодаря методу вариации произвольных постоянных. Итак, y=y0+y~=∑Cj·yj+y~j=1n

Получить более подробную информацию по теме можно в разделе «Дифференциальные уравнения высших порядков».

Системы дифференциальных уравнений вида dxdt=a1x+b1y+c1dydt=a2x+b2y+c2

Данная тема подробно разобрана на странице «Системы дифференциальных уравнений». Там же приведены примеры задач с подробных разбором.

I. Обыкновенные дифференциальные
уравнения

1.1. Основные понятия и определения

Дифференциальным уравнением называется
уравнение, связывающее между собой
независимую переменную x, искомую
функцию y и её производные или
дифференциалы.

Символически дифференциальное уравнение
записывается так:

F(x,y,y’)=0, F(x,y,y”)=0, F(x,y,y’,y”,.., y(n))=0

Дифференциальное уравнение называется
обыкновенным, если искомая функция зависит
от одного независимого переменного.

Решением дифференциального уравнения
называется такая функция ,
которая обращает это уравнение в тождество.

Порядком дифференциального уравнения
называется порядок старшей производной,
входящей в это уравнение

Примеры.

1. Рассмотрим дифференциальное уравнение
первого порядка

Решением этого уравнения является
функция y = 5 ln x. Действительно, ,
подставляя y’ в уравнение, получим
– тождество.

А это и значит, что функция y = 5 ln x– есть
решение этого дифференциального уравнения.

2. Рассмотрим дифференциальное уравнение
второго порядка y” – 5y’ +6y = 0. Функция
– решение этого уравнения.

Действительно, .

Подставляя эти выражения в уравнение,
получим: ,

– тождество.

А это и значит, что функция
– есть решение этого дифференциального
уравнения.

Интегрированием дифференциальных
уравнений
называется процесс нахождения
решений дифференциальных уравнений.

Общим решением дифференциального
уравнения
называется функция вида
которую входит столько независимых
произвольных постоянных, каков порядок
уравнения.

Частным решением дифференциального
уравнения
называется решение, полученное
из общего решения при различных числовых
значениях произвольных постоянных.
Значения произвольных постоянных
находится при определённых начальных
значениях аргумента и функции.

График частного решения
дифференциального уравнения называется интегральной
кривой
.

Примеры

1.Найти частное решение дифференциального
уравнения первого порядка

xdx + ydy = 0, если y = 4 при x = 3.

Решение. Интегрируя обе части уравнения,
получим

Замечание. Произвольную постоянную С,
полученную в результате интегрирования,
можно представлять в любой форме, удобной
для дальнейших преобразований. В данном
случае, с учётом канонического уравнения
окружности произвольную постоянную С
удобно представить в виде .


– общее решение дифференциального
уравнения.

Частное решение уравнения,
удовлетворяющее начальным условиям y =
4 при x = 3 находится из общего
подстановкой начальных условий в общее
решение: 32 + 42= C2; C=5.

Подставляя С=5 в общее решение, получим x2
+y2
= 52.

Это есть частное решение
дифференциального уравнения, полученное из
общего решения при заданных начальных
условиях.

2. Найти общее решение дифференциального
уравнения

Решением этого уравнения является всякая
функция вида ,
где С – произвольная постоянная.
Действительно, подставляя в уравнения ,
получим: ,
.

Следовательно, данное дифференциальное
уравнение имеет бесконечное множество
решений, так как при различных значениях
постоянной С равенство
определяет различные решения уравнения .

Например, непосредственной подстановкой
можно убедиться, что функции
являются решениями уравнения .

Задача, в которой требуется найти частное
решение уравнения y’ = f(x,y) 
удовлетворяющее начальному условию y(x0)
= y0
, называется задачей Коши.

Решение уравнения y’ = f(x,y),
удовлетворяющее начальному условию, y(x0)
= y0
, называется решением задачи Коши.

Решение задачи Коши имеет простой
геометрический смысл. Действительно,
согласно данным определениям, решить
задачу Коши y’ = f(x,y)  при условии y(x0)
= y0
,, означает найти интегральную
кривую уравнения y’ = f(x,y)  которая
проходит через заданную точку M0(x0,y0).

II. Дифференциальные уравнения первого
порядка

2.1. Основные понятия

Дифференциальным уравнением первого
порядка называется уравнение вида F(x,y,y’) =
0.

В дифференциальное уравнение первого
порядка входит первая производная и не
входят производные более высокого порядка.

Уравнение y’ = f(x,y) называется
уравнением первого порядка, разрешённым
относительно производной.

Общим решением дифференциального
уравнения первого порядка называется
функция вида ,
которая содержит одну произвольную
постоянную.

Пример. Рассмотрим дифференциальное
уравнение первого порядка .

Решением этого уравнения является
функция .

Действительно, заменив в данном уравнении,

его значением, получим



то есть 3x=3x

Следовательно, функция
является общим решением уравнения
при любом постоянном С.

Найти частное решение данного уравнения,
удовлетворяющее начальному условию y(1)=1
Подставляя начальные условия x = 1, y =1 
в общее решение уравнения ,
получим
откуда C = 0.

Таким образом, частное решение получим из
общего
подставив в это уравнение, полученное
значение C = 0

– частное решение.

2.2. Дифференциальные уравнения с
разделяющимися переменными

Дифференциальным уравнением с
разделяющимися переменными называется
уравнение вида: y’=f(x)g(y) или через
дифференциалы ,
где f(x)  и g(y)– заданные функции.

Для тех y, для которых ,
уравнение y’=f(x)g(y) равносильно уравнению,

в котором переменная y присутствует
лишь в левой части, а переменная x- лишь в
правой части. Говорят, «в уравнении y’=f(x)g(y
разделим переменные».

Уравнение вида
называется уравнением с разделёнными
переменными.

Проинтегрировав обе части уравнения
по x, получим G(y) = F(x) + C– общее
решение уравнения, где G(y) и F(x)
некоторые первообразные соответственно
функций
и f(x), C произвольная постоянная.

Алгоритм решения дифференциального
уравнения первого порядка с разделяющимися
переменными

  1. Производную функции переписать через её
    дифференциалы
  2. Разделить переменные.
  3. Проинтегрировать обе части равенства,
    найти общее решение.
  4. Если заданы начальные условия, найти
    частное решение.

Пример 1

Решить уравнение y’ = xy

Решение. Производную функции y’
заменим на

разделим переменные

проинтегрируем обе части равенства:

Ответ:

Пример 2

Найти частное решение уравнения

2yy’ = 1- 3x2,
если y0 = 3 при x0 = 1

Это—уравнение с разделенными
переменными. Представим его в
дифференциалах. Для этого перепишем данное
уравнение в виде
Отсюда

Интегрируя обе части последнего
равенства, найдем

Подставив начальные значения x0 = 1,
y0 = 3
найдем С 9=1-1+C, т.е. С = 9.

Следовательно, искомый частный интеграл
будет
или

Пример 3

Составить уравнение кривой, проходящей
через точку M(2;-3) и имеющей касательную с угловым
коэффициентом

Решение. Согласно условию

Это уравнение с разделяющимися
переменными. Разделив переменные, получим:

 Проинтегрировав обе части уравнения,
получим:

Используя начальные условия, x = 2  и y
= – 3
найдем C:

Следовательно, искомое уравнение имеет
вид

2.3. Линейные дифференциальные уравнения
первого порядка

Линейным дифференциальным уравнением
первого порядка называется уравнение вида y’
= f(x)y + g(x)

где f(x) и g(x) – некоторые заданные функции.

Если g(x)=0 то
линейное дифференциальное уравнение
называется однородным и имеет вид:  y’ = f(x)y

Если
то уравнение y’ = f(x)y + g(x) называется неоднородным.

Общее решение линейного однородного
дифференциального уравнения y’ = f(x)y задается формулой:
где С – произвольная постоянная.

В частности, если С =0, то решением
является  y = 0 Если линейное однородное уравнение имеет
вид y’ = ky где k – некоторая постоянная, то его общее решение
имеет вид: .

Общее решение линейного неоднородного
дифференциального уравнения y’ = f(x)y + g(x) задается формулой ,

т.е. равно сумме общего решения
соответствующего линейного однородного
уравнения и частного решения
данного уравнения.

Для линейного неоднородного уравнения
вида y’
= kx + b
,

где k и b
некоторые числа и частным
решением будет являться постоянная функция
.
Поэтому общее решение имеет вид .

Пример. Решить уравнение y’ + 2y +3 = 0

Решение. Представим уравнение в виде y’
= -2y – 3
где k = -2, b= -3 Общее решение задается формулой .

Следовательно,
где С – произвольная постоянная.

Ответ:

2.4. Решение линейных дифференциальных
уравнений первого порядка методом Бернулли

Нахождение общего решения линейного
дифференциального уравнения первого
порядка y’ = f(x)y + g(x) сводится к решению двух дифференциальных
уравнений с разделенными переменными с
помощью подстановки y=uv,
где u и v – неизвестные функции от x.
Этот метод решения называется методом
Бернулли.

 Алгоритм решения линейного дифференциального
уравнения первого порядка

y’ = f(x)y + g(x)

1. Ввести подстановку y=uv.

2. Продифференцировать это равенство y’ =
u’v + uv’

3. Подставить y и y’ в данное уравнение:  
u’v + uv’ = f(x)uv + g(x) или u’v + uv’ +  f(x)uv = g(x).

4. Сгруппировать члены уравнения так, чтобы
u вынести
за скобки:

5. Из скобки, приравняв ее к нулю, найти
функцию

Это уравнение с разделяющимися
переменными:

Разделим переменные и получим:

Откуда .
.

6. Подставить полученное значение v в уравнение
(из п.4):

и найти функцию
Это уравнение с разделяющимися переменными:

7. Записать общее решение в виде: ,
т.е. .

Пример 1

Найти частное решение уравнения y’ = -2y
+3 = 0
  если y =1  при x = 0

Решение. Решим его с помощью
подстановки y=uv, .y’ = u’v + uv’

Подставляя y и y’
в данное уравнение, получим

Сгруппировав второе и третье слагаемое
левой части уравнения, вынесем общий
множитель u за
скобки

Выражение в скобках приравниваем к нулю и,
решив полученное уравнение, найдем функцию v
= v(x)

Получили уравнение с разделенными
переменными. Проинтегрируем обе части
этого уравнения:
Найдем функцию v:

Подставим полученное значение v в уравнение
Получим:

Это уравнение с разделенными переменными.
Проинтегрируем обе части уравнения:
Найдем функцию u = u(x,c)
Найдем общее решение:
Найдем частное решение уравнения,
удовлетворяющее начальным условиям y = 1 при
x = 0:

Ответ:

III. Дифференциальные уравнения высших
порядков

3.1. Основные понятия и определения

Дифференциальным уравнением второго
порядка называется уравнение, содержащее
производные не выше второго порядка. В
общем случае дифференциальное уравнение
второго порядка записывается в виде: F(x,y,y’,y”)
= 0

Общим решением дифференциального
уравнения второго порядка называется
функция вида ,
в которую входят две произвольные
постоянные C1 и C2.

Частным решением дифференциального
уравнения второго порядка называется
решение, полученное из общего
при некоторых значениях произвольных
постоянных C1 и C2.

3.2. Линейные однородные дифференциальные
уравнения второго порядка с




постоянными коэффициентами.

Линейным однородным дифференциальным
уравнением второго порядка с постоянными
коэффициентами
называется уравнение вида
y” + py’ +qy = 0, где pи q
постоянные величины.

Алгоритм решения однородных дифференциальных
уравнений второго порядка с постоянными
коэффициентами

1. Записать дифференциальное уравнение в
виде: y” + py’ +qy = 0.

2. Составить его характеристическое
уравнение, обозначив y” через r2,
y’  через r, yчерез
1:
r2 + pr +q = 0

3.Вычислить дискриминант  D = p2 -4q
и найти корни характеристического
уравнения; при этом если:

а) D > 0; следовательно,
характеристическое уравнение имеет два
различных действительных корня .
Общее решение дифференциального уравнения
выражается в виде ,
где C1 и C2 – произвольные постоянные.

б) D = 0; следовательно,
характеристическое уравнение имеет равные
действительные корни .
Общее решение дифференциального уравнения
выражается в виде

в) D < 0; следовательно,
характеристическое уравнение имеет
комплексные корни,
Общее решение дифференциального уравнения
выражается, в виде 

Примеры.

1. Найти частное решение дифференциального
уравнения

Решение. Составим характеристическое
уравнение


D>0,

Общее решение

Дифференцируя общее решение, получим

Составим систему из двух уравнений

Подставим вместо ,и

заданные начальные условия:




Таким образом, искомым частным решением
является функция

.

2. Найти частное решение уравнения

Решение

<0,

Общее решение




частное решение.

IV. Практическая работа

Вариант 1

1. Составить уравнение кривой, проходящей
через точку M(1;2) и имеющей угловой коэффициент .

2. Найти частные решения дифференциальных
уравнений:

а)

б)

в)

г)

Вариант 2

1. Составить уравнение кривой, проходящей
через точку M(2;1) и имеющей угловой коэффициент

2. Найти частные решения дифференциальных
уравнений:

а)

б)

в)

г)

V. Ответы

Вариант 1

Вариант 2

1.

 1.

2. а)

2. а)

б)

б)

в)

в)

г)

г)

Рассмотрим задачу
Коши

(3.1)

(3.2)

Определение_1.
Общим
решением

дифференциального уравнения
(3.1) называется
функция

у
=
Ф(х,C),
зависящая от одной произвольной
постоянной С,
такая, что

  1. у
    =
    Ф(х,C)
    удовлетворяет дифференциальному
    уравнению при любом С;

  2. при
    любом начальном условии


    существует значение постоянной С
    =
    С
    о,
    при котором функция у=Ф(х,Co)
    удовлетворяет начальному условию

    .

Равенство
вида Ф(у,х,C)
= 0, неявно задающее решение, называется
общим
интегралом

дифференциального уравнения.

Определение
2.
Частным
решением

называется любая функция у
=
Ф (
х, Со),
получающаяся из общего решения при С
= С
о.

Соотношение
Ф(x,
у,
Co)
= 0
называется
частным
интегралом
.

Например,
общий интеграл уравнения

имеет вид

,
частным решением данного уравнения
будет функция y
=
ln
x.

Определение
3.
Решение,
в каждой точке которого нарушается
единственность решения задачи Коши,
называется особым
решением
.
Особые решения могут проходить только
через те точки, где производная

не ограничена. Особое решение не может
быть получено из общего решения с помощью
подбора числа С.

Так
в примере 2 для уравнения


решение

является особым, и оно не может быть
получено из общего

ни при каком значении параметра.

Геометрически,
особая интегральная кривая
это
огибающая семейства интегральных кривых
дифференциального уравнения, определяемого
его общим интегралом, т.е. кривая, которая
в каждой своей точке касается некоторой
кривой семейства.

4. Геометрическая интерпретация дифференциального уравнения. Метод изоклин

Рассмотрим
применение геометрического подхода к
построению решений дифференциальных
уравнений первого порядка.

Уравнение

(4.1)

определяет
в каждой точке М
(x),
где существует функция f
(x),
значение производной, то есть угловой
коэффициент

касательной
к единственной интегральной кривой в
точке.

Если
в каждой точке области D
задано значение некоторой величины, то
говорят, что в области D
задано поле этой величины.

Таким
образом, геометрическая интерпретация
самого уравнения (4.1) дает поле направлений
в области D,
которое получается, если через каждую
точку (x),
принадлежащую области D, провести отрезок

малой длины с угловым коэффициентом
f(x).
Совокупность отрезков этих прямых дает
геометрическую картину поля направлений.
Любая интегральная кривая в каждой
своей точке касается отрезка

.

Задача
интегрирования дифференциального
уравнения (4.1) может быть теперь истолкована
так: найти такую кривую, чтобы касательная
к ней в каждой точке имела направление,
совпадающее с направлением поля в этой
точке

На
рисунке (1) представлено поле направлений
уравнения Риккати

,
решение которого не выражается через
интеграл. Рисунок (1) позволяет ясно
представить, как должны выглядеть
интегральные кривые.

Рис.1

Задача
построения интегральной кривой часто
решается с помощью метода изоклин.
Изоклиной
называется геометрическое место точек,
в которых касательные к искомым
интегральным кривым имеют одно и тоже
направление. Семейство изоклин
дифференциального уравнения (4.1)
определяется уравнением

(4.2)

где
k
– параметр. Строя достаточно густую
сеть изоклин, т.е. давая k
близкие числовые значения, мы можем
достаточно точно построить интегральную
кривую дифференциального уравнения
(4.1) .

Замечание
1.
Нулевая
изоклина f
(x,
y)
= 0
дает уравнение линий, на которых могут
располагаться точки максимума и минимума
интегральных кривых. Для большей точности
построения интегральных кривых находят
также геометрическое место точек
перегиба. Для этого находят


силу уравнения ( 4.1) имеем

Линия,
определяемая уравнением

,т.е.

и есть геометрическое
место точек перегиба, если они существуют.

Замечание
2.
Точки
пересечения двух или нескольких изоклин
являются особыми точками дифференциального
уравнения (4.1), так как в них направление
интегральных кривых становится
неопределенным.

Пример
1
. Рассмотрим
уравнение


.

Семейство
изоклин для данного дифференциального
уравнения определяется равенством

.
Это семейство прямых, проходящих через
начало координат. В начале координат,
пересекаются изоклины, отвечающие
различным наклонам касательных к
интегральным кривым. Не трудно
убедиться, что общее решение данного
уравнения имеет вид y
=
C
x,
а точка (0,0) является особой точкой
дифференциального уравнения. Здесь
изоклины являются интегральными кривыми
уравнения (рис. 2)

y


x

o

рис. 2

Пример
2.
С помощью
изоклин построить приближенно интегральные
кривые дифференциального уравнения

Решение.
Для получения уравнения изоклин положим

(k=const).
Имеем

или

.
Таким образом, изоклинами являются
параллельные прямые. При k
= 0 получим
изоклину

.
Эта прямая делит плоскость XOY
на две части, в каждой из которых
производная

имеет один и тот же знак (рис. 3).

Интегральные
кривые, пересекая прямую

,
переходят из области убывания функции
y
(х)
в область возрастания, и наоборот.
Значит, на этой прямой находятся точки
экстремума интегральных кривых, а
именно, точки минимума.

Возьмем еще две
изоклины:


и



.

Касательные,
проведенные к интегральным кривым в
точках пересечения с изоклинами k
=-1 и k
=1, образуют
с осью OX
углы в 135о
и 45о
соответственно.
Найдем далее вторую производную

Прямая


,
на которой

,
является изоклиной, получаемой при k
= 2, и в тоже
время интегральной линией, в чем можно
убедиться подстановкой в уравнение.
Так как правая часть данного уравнения

удовлетворяет условиям теоремы
существования и единственности во всей
плоскости XOY,
то остальные интегральные кривые не
пересекают эту изоклину. Изоклина

,
на которой находятся точки минимума
интегральных кривых, расположена над
изоклиной

,
а поэтому интегральные кривые, проходящие
ниже изоклины

,
не имеют точек экстремума.

Прямая

делит плоскость XOY
на две части, в одной из которых (
расположенной над прямой) y>0,
а значит, интегральные кривые обращены
вогнутостью вверх, а в другой

<0
и значит, интегральные кривые обращены
вогнутостью вниз.

Так
как интегральные кривые не пересекают
прямой

,
то она не является геометрическим местом
точек перегиба. Следовательно,
интегральные кривые данного уравнения
не имеют точек перегиба.

Проведенное исследование позволяет
нам приближенно построить семейство
интегральных кривых уравнения

(рис.
3).

Рис.3

Пример
3.
Для
дифференциального уравнения

методом
изоклин построить интегральную кривую,
проходящую через точку.

Запишем
уравнение в виде:

Построим
поле направлений для данного
дифференциального уравнения. Изоклины,
соответствующие направлениям поля с
угловым коэффициентом равным

,
есть 
или

,
т.е. прямые, проходящие через начало
координат.

Рис.4

Интегральная
кривая имеет, очевидно, форму эллипса.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий