Как найти кубический радиус

Как вычислить радиус шара по объему?

Для вычисления параметров шара существуют формулы.

В частности, чтобы вычислить радиус шара при известном объеме, следует использовать такую формулу:

Где R – радиус шара (искомое значение), V – объем (известное значение), пи – константа, значение которой принимается как 3,14, при этом для более точных вычислений следует брать большее количество знаков после запятой.

автор вопроса выбрал этот ответ лучшим

Ксарф­акс
[156K]

5 лет назад 

Радиус шара по объему

Шар представляет собой геометрическое тело, являющееся совокупностью всех точек пространства, которые находятся от центра шара на расстоянии не больше заданного. Данное расстояние называется радиусом шара.

Для того, чтобы выразить радиус шара через объём, нужно вспомнить формулу:

Объём шара V равен произведению 4/3 на число π (которое является константой и равно 3,14) и на радиус в кубе.

Из этой формулы можно сначала выразить куб радиуса:

Конечная формула получится такой:

Радиус шара будет равен кубическому корню из дроби; числитель дроби – объем, умноженный на 3; знаменатель дроби – число π, умноженное на 4.


Пример

Предположим, объем шара равен 9 кубическим метрам.

Радиус шара находим по формуле, приведенной выше:

R ≈ ³√((3 * 9) / (4 * 3,14)) ≈ ³√(27 / 12,56) ≈ 3 / ³√12,56 ≈ 3 / 2,29 ≈ 1,31 метр.

Таким образом, если объём шара составляет 9 куб. метров, то его радиус будет равен приблизительно 1,31 метра.

Барха­тные лапки
[382K]

более года назад 

Такие задания иногда встречаются на ЕГЭ, с одной стороны вроде ничего сложного, но все же извилины придется напрячь, чтобы ее решить. Лично мне такие задачки давались с трудом, так как я не сильно любила геометрию, но все же формулы приходилось заучивать, чтобы решать задачки.

Давайте для начала вспомним по какой формуле мы находим объем шара.

Итак, эта формула выглядит следующим образом:

Значит радиус шара мы можем вычислить по такой формуле:

В данном случае мы выражаем одну величину через другую.

Так что все оказалось не так уж и запутанно и ученикам вполне под силу справится с такой заковыристой задачкой.

bezde­lnik
[34.1K]

5 лет назад 

Радиус шара по известному объёму вычисляется по формуле R равен корню кубическому из 3*V}/4*pi, где V – объём шара, pi- трансцендентное число равное отношению длины половины окружности к её радиусу. Поэтому точно вычислить радиус не возможно, а только с определённой погрешностью. Некоторую сложность представляет извлечение кубического корня. Для этого можно воспользоваться таблицей кубов. Например, при V=1000 куб.мм. и pi=3,14 подкоренное выражение равно 238,8535… и по таблице находим R равен примерно 6,2 мм.

Марин­а Волог­да
[294K]

более года назад 

Надо вспомнить формулу и проблем с вычислением радиуса шара не возникнет.

Итак, сначала укажем формулу:

R – это как раз искомый нами радиус.

3 и корень – это кубический корень из полученной дроби.

? – это пи (оно всегда едино и составляет 3.14).

V – объем шара, который нам известен.

Ну а теперь не сложно высчитать радиус, зная его объем, подставляя в формулу известные нам данные.

Simpl­e Ein
[190K]

3 года назад 

Найти радиус шара, зная объем очень легко.

Объем шара находится по формуле:

Выразим из данной формулы значение радиуса шара. Для этого необходимо объем разделить на число «Пи», умножив на ¾. Из полученного числа необходимо найти кубический корень.

-Алекс­андр–
[31K]

5 лет назад 

Формула объема шара:

V=4/3*п*(R в степени 3)

отсюда

R = корень третей степени из (3/4*V/п)

Лара Изюми­нка
[59.6K]

2 года назад 

Достаточно простая задача для тех, кто помнит, чему равен обьем шара. А он равен четыре третьх умножить на пи умножить на радиус в кубе.

Далее нужно уметь просто выражать одну величину через другую.

В итоге у нас радиус равен корень кубический из ( 3 умножить на обьем и это разделить на 4 пи.) Итак еще нужно вспомнить, что пи это 3,14 приблизительно. Если нужна большая точность, берут больше знаков после запятой в числе пи. Это имеет смысл при нахождении радиуса в больших сооружениях, в архитектуре. Обычно хватает точности два знака после запятой. Эта формула нужна при решении задач по стереометрии .

Vodil­a
[16.6K]

более года назад 

Зная, что обьем шара равен 43 пи умножить на радиус в квадрате совсем нетрудно выразить радиус. Очевидно, что он будет равен корень кубический из три четвертых обьема, деленного на пи. Вот собственно и вся формула. Такая задача иногда встречается в ЕГЭ по математике.

Hamst­er133­7
[28.6K]

2 года назад 

Для того, что бы найти радиус шара при наличии объёма, следует воспользоваться следующей формулой:

Где число “П” равно 3,14. Так же существуют другие формулы для поиска радиуса шара (из данной формулы можно вывести другую формулу).

Для того, чтобы отыскать радиус шара при том, что объем известен воспользуйтесь формулой, а именно, в качестве основной применима такая.

R является искомым значением, а также радиусом шара. V отображает значение, являющееся известным, объем. Пи является константа, у которой значение = 3,14. Так, когда делаются точные расчеты следует брать большее количество знаков, которые находятся после запятой.

Знаете ответ?

В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).

  • Определение куба

  • Свойства куба

    • Свойство 1

    • Свойство 2

    • Свойство 3

  • Формулы для куба

    • Диагональ

    • Диагональ грани

    • Площадь полной поверхности

    • Периметр ребер

    • Объем

    • Радиус описанного вокруг шара

    • Радиус вписанного шара

Определение куба

Куб – это правильный многогранник, все грани которого являются квадратами.

Куб

  • Вершины куба – это точки, являющиеся вершинами его граней.
    Всего их 8: A, B, C, D, A1, B1, C1 и D1.
  • Ребра куба – это стороны его граней.
    Всего их 12: AB, BC, CD, AD, AA1, BB1, CC1, DD1, A1B1, B1C1, C1D1 и A1D1.
  • Грани куба – это квадраты, из которого состоит фигура.
    Всего их 6: ABCD, A1B1C1D1, AA1B1B, BB1C1C, CC1D1D и AA1D1D.

Примечание: куб является частным случаем параллелепипеда или призмы.

Свойства куба

Свойство 1

Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:

  • ABCD || A1B1C1D1
  • AA1B1B || CC1D1D
  • BB1C1C || AA1D1D

Свойство 2

Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.

Пересечение диагоналей куба

  • AC1 = BD1 = A1C = B1D (диагонали куба).
  • О – точка пересечения диагоналей:
    AO = OC1 = BO = OD1 = A1O = OC = B1O = OD.

Свойство 3

Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.

Прямой двугранный угол куба

Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.

Формулы для куба

Примем следующие обозначения, которые будут использоваться далее:

  • a – ребро куба;
  • d – диагональ куба или его грани.

Диагональ

Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.

Формула для расчета диагонали куба через длину его ребра

Диагональ грани

Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.

Формула для расчета диагонали грани куба через длину его ребра

Площадь полной поверхности

Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.

Формула расчета площади полной поверхности куба через длину его ребра/диагонали

Периметр ребер

Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.

Формула расчета периметра куба через длину его ребра/диагонали

Объем

Объем куба равен длине его ребра, возведенной в куб.

Формула расчета объема куба через длину его ребра/диагонали

Радиус описанного вокруг шара

Радиус шара, описанного около куба, равняется половине его диагонали.

Формула расчета радиуса шара описанного вокруг куба через длину его ребра/диагонали

Радиус вписанного шара

Радиус вписанного в куб шара равен половине длины его ребра.

Формула расчета радиуса вписанного в куб шара через длину его ребра/диагонали

Радиус шара

Радиус

Отрезок, соединяющий центр шара с любой точкой на его поверхности, является радиусом шара, обозначается как r или R. В зависимости от исходных данных радиус шара можно вычислить:

— по диаметру. Как известно, радиус шара равен половине его диаметра:

г = D/2,

где г — радиус, D — диаметр шара.

— по длине окружности.
Длина окружности © равна произведению пи на диаметр (D), через радиус шара — удвоенному произведению пи на радиус ®:

C = πD = 2πr

Отсюда, радиус равен частному от деления длины окружности © на 2 пи:

r = С / 2π

π — величина постоянная, равна отношению длины окружности к диаметру. Число Пи, равное 3,141592653… обычно округляется до 3,14.

— по площади шара.
Площадь шара равна произведению четырех пи на квадрат радиуса:

S=4πr2,

где S — площадь шара, r — радиус.
Из этой формулы выводим форму радиуса:

r = √S / 4π,

т.е. радиус равен корню квадратному из площади шара деленной на четыре пи.

— по объему шара.
Объем шара равен произведению четырех третьих на число пи и на радиус шара в кубе:

V = 4/3 πr3,

где V — объем, r — радиус шара.
Отсюда, радиус шара равен корню кубическому из объема шара деленного на три четвертых Пи:

r = ∛(V / (¾π))

Рассчитать радиус шара через объем

Если описать вокруг куба сферу, то ее диаметр будет соединять противоположные вершины куба, образуя диагональ куба. Таким образом, радиус описанной сферы куба равен половине диагонали, следовательно, сама диагональ куба равна удвоенному радиусу описанной сферы. (рис.2.3)
D=2R

Так как эта же диагональ связывает теоремой Пифагора в прямоугольном треугольнике диагональ стороны куба и ребро куба, то становится возможным вычислить и их через радиус описанной сферы куба, используя формулы диагонали.
D=a√3
a=D/√3=2R/√3
a^2+d^2=D^2
(2R/√3)^2+d^2=(2R)^2
d^2=(8R^2)/3
d=√(8/3) R

Чтобы вычислить площадь грани куба, нужно рассмотреть ее в плоскости. Стороной куба является квадрат, поэтому его площадь равна стороне квадрата, то есть ребру куба, во второй степени. Площадь боковой поверхности куба состоит из четырех боковых граней-квадратов, а площадь полной поверхности – из шести граней, поэтому для их вычисления нужно умножить площадь одной грани на их количество. Чтобы найти площади куба через радиус сферы, описанной вокруг него, нужно подставить вместо ребра куба удвоенный радиус, деленный на корень из трех.
S=a^2=(2R/√3)^2=(4R^2)/3
S_(б.п.)=4S=(16R^2)/3
S_(п.п.)=6S=(24R^2)/3

Объем куба, зная радиус описанной вокруг него сферы, вычисляется возведением в третью степень выражения для ребра куба.
V=a^3=(2R/√3)^3=(8R^3)/(3√3)

Периметр куба, как умноженное на 12 ребро куба, представлено через радиус описанной вокруг сферы окружности в виде отношения радиуса, умноженного на 24, к корню из трех.
P=12a=24R/√3

Чтобы вычислить радиус сферы, вписанной в куб, через радиус сферы, описанной около него, нужно разделить ребро куба на два, то есть разделить радиус описанной сферы на корень из трех.
r=a/2=2R/(2√3)=R/√3

Перед тем, как смело броситься на амбразуру решения задачи по нахождению радиуса сферы, нужно узнать, что вообще такое сфера и шар. Стереометрия говорит нам, что сфера – это поверхность, состоящая из массы точек пространства, которые находятся на одном расстоянии от центра. Эта точка – центр сферы, а радиус сферы (R) – это расстояние, на которое каждая точка удалена от центра сферы. Шар – это тело, которое ограничено поверхностью сферы.

Безусловно, способ определения того самого радиуса сферы будет зависеть от данных, которые у нас есть.

Способ 1. Определение радиуса сферы при помощи площади ее поверхности

Допустим, нам дана сфера вместе с площадью её поверхности. В таком случае мы будем использовать формулу площади её поверхности для того, чтобы вычислить радиус.

где S – это площадь поверхности сферы, число Пи = 3,14.

Способ 2. Определение радиуса сферы при помощи объема шара

Если нам дан объём шара, ограниченного сферой, то радиус находится так:

где V – это объём шара, число Пи = 3,14.

Способ 3. Альтернативные формулы определения радиуса сферы

В случае, если наша сфера вписана в правильный многогранник или описана вокруг него, можно воспользоваться следующим рядом формул.

Формула 1. Сфера вписана в правильный тетраэдр

Для сферы, которая вписана в правильный тетраэдр:

где a – длина ребра тетраэдра (AS = SB = AB = BC = SC = AC = a).

Формула 2. Сфера описана около правильного тетраэдра

Для сферы, которая описана около правильного тетраэдра:

где a – длина ребра тетраэдра (AS = SB = AB = BC = SC = AC = a).

Формула 3. Сфера вписана в куб

Для сферы, которая вписана в куб:

где a – длина ребра куба.

Формула 4. Сфера описана около куба

Для сферы, которая описана около куба:

где a – длина ребра куба.

Добавить комментарий