Арифметическая прогрессия как найти знаменатель

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

{displaystyle a_{1}, a_{1}+d, a_{1}+2d, ldots , a_{1}+(n-1)d, ldots  ,}

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):

{displaystyle a_{n}=a_{n-1}+d.}[1]

Любой член арифметической прогрессии равен первому её члену, сложенному с произведением разности прогрессии на число членов, предшествующих определяемому, т. е. он выражается формулой[2]:

{displaystyle a_{n}=a_{1}+(n-1)d.}

Арифметическая прогрессия является монотонной последовательностью. При d>0 она является возрастающей, а при d<0 — убывающей. Если d=0, то последовательность будет стационарной. Эти утверждения следуют из соотношения a_{n+1}-a_n=d для членов арифметической прогрессии.

Свойства[править | править код]

Общий член арифметической прогрессии[править | править код]

Член арифметической прогрессии с номером n может быть найден по формулам

a_n=a_1+(n-1)d
{displaystyle a_{n}=a_{m}-(m-n)d}

где a_{1} — первый член прогрессии, d — её разность, a_m — член арифметической прогрессии с номером m.

Доказательство формулы общего члена арифметической прогрессии

Пользуясь соотношением a_{n+1}=a_n+d выписываем последовательно несколько членов прогрессии, а именно:

a_2=a_1+d

a_3=a_2+d=a_1+d+d=a_1+2d

a_4=a_3+d=a_1+2d+d=a_1+3d

a_5=a_4+d=a_1+3d+d=a_1+4d

Заметив закономерность, делаем предположение, что a_n=a_1+(n-1)d. С помощью математической индукции покажем, что предположение верно для всех n in mathbb N:

База индукции (n=1) :

a_1=a_1+(1-1)d=a_1 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_k=a_1+(k-1)d. Докажем истинность утверждения при n=k+1:

a_{k+1}=a_k+d=a_1+(k-1)d+d=a_1+kd

Итак, утверждение верно и при n=k+1. Это значит, что a_n=a_1+(n-1)d для всех n in mathbb N.

Отметим, что в формулах общего члена n-й член прогрессии есть линейная функция. Об этом говорит следующая теорема.

Доказательство

Необходимость. Пусть {displaystyle left{a_{n}right}} арифметическая прогрессия. Тогда, как было уже показано, a_n=a_1+(n-1)d, то есть {displaystyle a_{n}=nd+a_{1}-d}. Так как {displaystyle fleft(xright)=ax+b} есть линейная функция и {displaystyle xin mathbb {N} }, это значит, что {displaystyle a=d} и {displaystyle b=a_{1}-d}, т. е. a_n — линейная функция, где {displaystyle fleft(nright)=nd+a_{1}-d}.

Достаточность. Пусть a_n есть линейная функция, т. е. {displaystyle a_{n}=acdot x+b}. Так как {displaystyle xin mathbb {N} } и {displaystyle x=n}, то {displaystyle a_{n}=acdot n+b}, тогда {displaystyle a_{n+1}=acdot left(n+1right)+b}.
Рассмотрим {displaystyle a_{n+1}-a_{n}=left(acdot left(n+1right)+bright)-left(an+bright)}.
Отсюда следует, что {displaystyle a_{n+1}-a_{n}=a}, где a — величина постоянная. Тогда {displaystyle a_{n+1}=a_{n}+a}, а это значит по определению, что {displaystyle left{a_{n}right}} — арифметическая прогрессия.

Суммы членов арифметической прогрессии с равными суммами номеров равны, т. е. {displaystyle a_{n}+a_{m}=a_{k}+a_{l}Longleftrightarrow n+m=k+lquad vert ;forall left(n,,m,,k,,lin mathbb {N} right)}.

Характеристическое свойство арифметической прогрессии[править | править код]

Последовательность a_1, a_2, a_3, ldots есть арифметическая прогрессия Longleftrightarrow для любого её элемента выполняется условие

{displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}},ngeqslant 2.}

Доказательство характеристического свойства арифметической прогрессии

Необходимость.

Поскольку a_1, a_2, a_3, ldots — арифметическая прогрессия, то для n geqslant 2 выполняются соотношения:

a_n=a_{n-1}+d

a_n=a_{n+1}-d.

Сложив эти равенства и разделив обе части на 2, получим {displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}}}.

Достаточность.

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется a_n=frac{a_{n-1}+a_{n+1}}2. Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду a_{n+1}-a_n=a_n-a_{n-1}. Поскольку соотношения верны при всех n geqslant 2, с помощью математической индукции покажем, что a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

База индукции (n=2) :

a_2-a_1=a_3-a_2 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Докажем истинность утверждения при n=k+1:

a_{k+1}-a_{k}=a_{k+2}-a_{k+1}

Но по предположению индукции следует, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Получаем, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k=a_{k+2}-a_{k+1}

Итак, утверждение верно и при n=k+1. Это значит, что a_n=frac{a_{n-1}+a_{n+1}}2, n geqslant 2 Rightarrow a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

Обозначим эти разности через d. Итак, a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n=d, а отсюда имеем a_{n+1}=a_n+d для n in mathbb N. Поскольку для членов последовательности a_1, a_2, a_3, ldots выполняется соотношение a_{n+1}=a_n+d, то это есть арифметическая прогрессия.

Тождество арифметической прогрессии[править | править код]

Доказательство тождества арифметической прогрессии

С помощью формулы общего члена выразим k-й, l-й, m-й члены:

{displaystyle a_{k}=a_{1}+(k-1)d,quad a_{l}=a_{1}+(l-1)d,quad a_{m}=a_{1}+(m-1)d.}

Вычитая почленно из первого равенства второе, а из второго третьего, получим:

{displaystyle a_{k}-a_{l}=(k-l)d,quad a_{l}-a_{m}=(l-m)d.}

Выражая из этих равенств d и приравнивая полученные выражения, получим:

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

По основному свойству пропорции:

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Откуда следует доказываемое тождество:

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0.}

Следствие 1. Всякий член арифметической прогрессии вырази́м[5] через любую пару других членов.

Доказательство

Преобразовав тождество арифметической прогрессии

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

к виду

{displaystyle a_{m}={dfrac {(l-m)a_{k}+(m-k)a_{l}}{l-k}},}

можно заметить, что m-й член есть линейная комбинация двух других членов (a_{{k}} и {displaystyle a_{l}}), поскольку оно равносильно

{displaystyle a_{m}={dfrac {l-m}{l-k}}a_{k}+{dfrac {m-k}{l-k}}a_{l}.}

Следствие 2. Для того, чтобы число {displaystyle a_{m}} являлось членом данной арифметической прогрессии с членами a_{{k}} и {displaystyle a_{l}}, необходимо и достаточно, чтобы было натуральным число

{displaystyle m={dfrac {(a_{l}-a_{m})k+(a_{m}-a_{k})l}{a_{l}-a_{k}}}.}

Формулировка ещё одного признака арифметической прогрессии.

Следствие 3 [критерий]. Числовая последовательность является арифметической прогрессией в том и только в том случае, если выполняется тождество арифметической прогрессии для всех членов данной последовательности. Другими словами, чтобы каждый член был вырази́м через любую пару остальных членов последовательности.

{displaystyle left{a_{n}right}~-~div Longleftrightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Доказательство

Необходимость. Утверждение

{displaystyle left{a_{n}right}~-~div Rightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} }

очевидно (см. доказательство тождества арифметической прогрессии).

Достаточность. Докажем, что

{displaystyle left{a_{n}right}~-~div Leftarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Равенство

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

можно преобразовать к виду

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Если все три номера различны, тогда

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

Обозначим выражение, например, в левой части равенства за d, то есть

{displaystyle d={dfrac {a_{k}-a_{l}}{k-l}}.}

Откуда можно прийти к следующему предложению:

{displaystyle a_{k}=a_{l}+{left(k-lright)}d.}

Наконец, методом математической индукции, например, по l нетрудно убедиться, что данное соотношение описывает именно арифметическую прогрессию.

Действительно, при l=1 (база индукции) получаем формулу общего члена арифметической прогрессии:

{displaystyle a_{k}=a_{1}+{left(k-1right)}d.}

Предположим истинность утверждения (для l): формула {displaystyle a_{k}=a_{l}+{left(k-lright)}d} характеризует арифметическую прогрессию. Тогда покажем, что и при l+1 формула верна для арифметической прогрессии (переход, или шаг, индукции). Рассмотрим левую часть формулы

{displaystyle a_{k}=a_{l+1}+{left(k-left(l+1right)right)}d.}

По предположению индукции ({displaystyle a_{k}=a_{l}+{left(k-lright)}d}) заменим a_{k} на выражение {displaystyle a_{l}+{left(k-lright)}d}. Итак, получим следующее:

{displaystyle a_{l}+{left(k-lright)}d=a_{l+1}+{left(k-left(l+1right)right)}d.}

Методом тождественных преобразований имеем равносильное предложение

{displaystyle a_{l+1}=a_{l}+d.}

А это, в свою очередь, рекуррентное соотношение для арифметической прогрессии.

Значит, по принципу математической индукции можно утвердать, что для всякого l соотношение {displaystyle a_{k}=a_{l}+{left(k-lright)}d} верно только и только для членов арифметической прогрессии.

Аналогичные рассуждения проводятся для формулы {displaystyle d={dfrac {a_{l}-a_{m}}{l-m}}}.

Данное следствие целиком и полностью считается доказанным.

Сумма первых n членов арифметической прогрессии[править | править код]

Сумма первых n членов арифметической прогрессии {displaystyle S_{n}=sum _{i=1}^{n}a_{i}=a_{1}+a_{2}+ldots +a_{n}} может быть найдена по формулам

{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n} , где a_{1} — первый член прогрессии, a_n — член с номером n, n — количество суммируемых членов.
{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot ({dfrac {a_{n}-a_{1}}{a_{2}-a_{1}}}+1)} — где a_{1} — первый член прогрессии, a_{2} — второй член прогрессии {displaystyle ,a_{n}} — член с номером n.
{displaystyle S_{n}={dfrac {2a_{1}+d(n-1)}{2}}cdot n} , где a_{1} — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
{displaystyle S_{n}=a_{frac {n+1}{2}}cdot n}, если n — нечётное натуральное число.
Доказательство
Запишем сумму двумя способами:

S_n=a_1+a_2+a_3+ ldots +a_{n-2}+a_{n-1}+a_n

S_n=a_n+a_{n-1}+a_{n-2}+ ldots +a_3+a_2+a_1 — та же сумма, только слагаемые идут в обратном порядке.

Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:

2S_n=(a_1+a_n)+(a_2+a_{n-1})+(a_3+a_{n-2})+ ldots +(a_{n-2}+a_3)+(a_{n-1}+a_2)+(a_n+a_1)

Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде a_i+a_{n-i+1}, i=1,2,ldots,n. Воспользуемся формулой общего члена арифметической прогрессии:

a_i+a_{n-i+1}=a_1+(i-1)d+a_1+(n-i+1-1)d=2a_1+(n-1)d, i=1,2,ldots,n

Получили, что каждое слагаемое не зависит от i и равно 2a_1+(n-1)d. В частности, a_1+a_n=2a_1+(n-1)d. Поскольку таких слагаемых n, то

{displaystyle 2S_{n}=(a_{1}+a_{n})cdot nRightarrow S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n}

Третья формула для суммы получается подстановкой 2a_1+(n-1)d вместо a_1+a_n. Что и так непосредственно следует из выражения для общего члена.

Замечание:

Вместо a_1+a_n в первой формуле для суммы можно взять любое из других слагаемых a_i+a_{n-i+1}, i=2,3,ldots,n, так как они все равны между собой.

Формулировка ещё одного факта: для всякой арифметической прогрессии при любом n выполняется равенство:

{displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n}.}

Примечание: S_{k} — сумма k первых членов арифметической прогрессии.

Доказательство

1. Очевидно, что {displaystyle {dfrac {S_{2n}}{2n}}-{dfrac {S_{n}}{n}}={dfrac {a_{1}+a_{2n}-left(a_{1}+a_{n}right)}{2}}={dfrac {a_{2n}-a_{n}}{2}},} или {displaystyle S_{2n}-2S_{n}=ncdot (a_{2n}-a_{n}).}

Прибавим к обеим частям S_{n} и получим, что {displaystyle S_{2n}-S_{n}=S_{n}+ncdot (a_{2n}-a_{n}).}

2. Покажем, что {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

Это так, поскольку можно написать верное равенство:

{displaystyle {dfrac {S_{3n}}{3n}}-{dfrac {S_{n}}{n}}={dfrac {a_{3n}-a_{n}}{2}}.} Из него следует, что {displaystyle {dfrac {S_{3n}}{3}}=S_{n}+{dfrac {a_{3n}-a_{n}}{2}}cdot n.}

3. Теперь докажем, что {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}
Перепишем последнее как {displaystyle a_{2n}={dfrac {a_{3n}+a_{n}}{2}}.}

Но гораздо лучше представить это равенство в виде {displaystyle a_{2n}={dfrac {a_{2n+1}+a_{2n-1}}{2}}.} Видно, что это характеристическое свойство арифметической прогрессии.
Значит, действительно {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}

4. А следовательно, {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

5. Тем самым, {displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n},} что и требовалось доказать.

Предыдущее свойство имеет обобщение.

Для любых натуральных k, l, m выполняется комплементарное свойство сумм:

{displaystyle {dfrac {l-m}{k}}cdot S_{k}+{dfrac {m-k}{l}}cdot S_{l}+{dfrac {k-l}{m}}cdot S_{m}=0.}

Ещё один признак арифметической прогрессии.

Сумма членов арифметической прогрессии от n-го до m-го[править | править код]

Сумма членов арифметической прогрессии с номерами от n до m {displaystyle S_{m,n}=sum _{i=n}^{m}a_{i}=a_{n}+a_{n+1}+ldots +a_{m}} может быть найдена по формулам

{displaystyle S_{m,n}={dfrac {a_{m}+a_{n}}{2}}cdot (m-n+1)} , где a_m — член с номером m, a_n — член с номером n, {displaystyle (m-n+1)} — количество суммируемых членов.

{displaystyle S_{m,n}={dfrac {2a_{n}+dleft(m-nright)}{2}}cdot left(m-n+1right),}

где a_n — член с номером n, d — разность прогрессии, {displaystyle (m-n+1)} — количество суммируемых членов.

Произведение членов арифметической прогрессии[править | править код]

Произведением первых n членов арифметической прогрессии {displaystyle left{a_{n}right}} называется произведение от a_{1} до a_n, то есть выражение вида {displaystyle prod limits _{i=1}^{n}a_{i}=a_{1}cdot a_{2}cdot a_{3}cdot ldots cdot a_{n-2}cdot a_{n-1}cdot a_{n}.} Обозначение: P_{n}.

Свойство произведения:

Число множителей-скобок {displaystyle {left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} равно {displaystyle {dfrac {n-1}{2}}}, а в самом произведении {displaystyle a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} их составляет {displaystyle {dfrac {n+1}{2}}} «штук».[10]

Сходимость арифметической прогрессии[править | править код]

Арифметическая прогрессия a_1, a_2, a_3, ldots расходится при dne 0 и сходится при d=0. Причём

lim_{nrightarrowinfty} a_n=left{ begin{matrix} +infty, d>0 \ -infty, d<0  \ a_1, d=0 end{matrix} right.

Доказательство
Записав выражение для общего члена и исследуя предел lim_{nrightarrowinfty} (a_1+(n-1)d), получаем искомый результат.

Связь между арифметической и геометрической прогрессиями[править | править код]

Пусть a_1, a_2, a_3, ldots — арифметическая прогрессия с разностью d и число a>0. Тогда последовательность вида a^{a_1}, a^{a_2}, a^{a_3}, ldots есть геометрическая прогрессия со знаменателем a^d.

Доказательство
Проверим характеристическое свойство для образованной геометрической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}= a^{a_n}, ngeqslant 2

Воспользуемся выражением для общего члена арифметической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}=sqrt{a^{a_1+(n-2)d}cdot a^{a_1+nd}}=sqrt{a^{2a_1+2(n-1)d}}=sqrt{(a^{a_1+(n-1)d})^2}=a^{a_1+(n-1)d}=a^{a_n}, ngeqslant 2

Итак, поскольку характеристическое свойство выполняется, то a^{a_1}, a^{a_2}, a^{a_3}, ldots — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения q=frac{a^{a_2}}{a^{a_1}}=frac{a^{a_1+d}}{a^{a_1}}=a^d.

Следствие: если последовательность положительных чисел образует геометрическую прогрессию, то последовательность их логарифмов образует арифметическую прогрессию.

Арифметические прогрессии высших порядков[править | править код]

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

1, 4, 9, 16, 25, 36, …

разности которых образуют простую арифметическую прогрессию с разностью 2:

3, 5, 7, 9, 11, …

Треугольные числа {displaystyle 1,3,6,10,15,ldots } также образуют арифметическую прогрессию второго порядка, их разности образуют простую арифметическую прогрессию {displaystyle 2,3,4,5,ldots }

Тетраэдральные числа {displaystyle 1,4,10,20,35,ldots } образуют арифметическую прогрессию третьего порядка, их разности являются треугольными числами.

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если left[a_{{i}}right]_{{1}}^{{n}} — арифметическая прогрессия порядка m, то существует многочлен P_{{m}}(i)=c_{{m}}i^{{m}}+...+c_{{1}}i+c_{{0}}, такой, что для всех iin left{1,....nright} выполняется равенство a_{{i}}=P_{{m}}(i)[11]

Примеры[править | править код]

{displaystyle T_{n}=sum _{i=1}^{n}i=1+2+3+ldots +n={frac {n(n+1)}{2}}}

Формула для разности[править | править код]

Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как

{displaystyle {mathit {d={frac {a_{m}-a_{n}}{m-n}}}}}.

Сумма чисел от 1 до 100[править | править код]

Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Действительно, легко видеть, что решение сводится к формуле

frac{n(n+1)}2

то есть к формуле суммы первых n чисел натурального ряда.

См. также[править | править код]

  • Геометрическая прогрессия
  • Арифметико-геометрическая прогрессия

Примечания[править | править код]

  1. Такое соотношение называют рекуррентным соотношением первого порядка. Поэтому арифметическая прогрессия есть множество последовательностей, задающихся именно таким образом.
  2. Фильчаков П. Ф. Глава II. Алгебра и элементарные функции. Функции натурального аргумента (§ 75. Арифметическая прогрессия) // Справочник по элементарной математике: для поступающих в вузы : книга / под ред. чл.-кор. АН УССР П. Ф. Фильчакова. — Киев : «Наукова думка», 1972. — С. 303. — 528 с. — 400 000 экз. — УДК 51 (08)(G).
  3. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 135. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  4. Соотношение между любыми тремя членами арифметической прогрессии и их номерами (Мусинов В. А.) // Материалы студенческой научной сессии Института математики и информатики МПГУ. 2021–2022 учебный год : сборник статей / под общ. ред. Е. С. Крупицына. — М.: МПГУ, 2022. — С. 91—93. — 156 с. — ISBN 978-5-4263-1109-1, ББК 22.1я431+32.81я431+22.1р30я431+74.262.21я431+74.263.2я431.
  5. Это означает, что выражаемый член есть комбинация любых двух других членов данной последовательности, причём эта комбинация составлена с помощью арифметических операций и конечного набора символов. Для арифметической последовательности такая комбинация будет линейной.
  6. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 141. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  7. Из доказательства необходимости следует, что {displaystyle S_{n}=an^{2}+bn}, поэтому, если {displaystyle S_{n}=an^{2}+bn+c}, то необходимо сделать проверку. Например, если {displaystyle S_{n}=2n^{2}-n-6} — сумма первых n членов последовательности, то такая последовательность НЕ является арифметической прогрессией. А последовательность, заданная суммой {displaystyle S_{n}=2n^{2}-n} первых n членов, будет арифметической прогрессией.
  8. При n=1 произведение P_{n} равно {displaystyle a_{frac {1+1}{2}}=a_{1}}, что безусловно верно.
  9. Эту формулу удобно использовать для выполнения итераций в программном коде, так как результат зависит от значения только двух величин: постоянного числа — разности, и члена, стоящего ровно по середине между первым и n-м членом.
  10. Пример применения формулы.
    Пусть {displaystyle div left{a_{n}right}:quad underbrace {27} _{a_{1}},;underbrace {20} _{a_{2}},;underbrace {13} _{a_{3}},;underbrace {6} _{a_{4}},;underbrace {-1} _{a_{5}}}, где {displaystyle d=-7}.

    По формуле {displaystyle P_{n}=a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} найдём произведение пяти первых членов. Количество сомножителей должно равняться {displaystyle {dfrac {5+1}{2}}=3}. Причём первым сомножителем будет {displaystyle a_{frac {5+1}{2}}=a_{3}=13}.

    Далее {displaystyle prod limits _{i=1}^{frac {5-1}{2}}{left(a_{frac {5+1}{2}}^{2}-{left[idright]}^{2}right)}=prod limits _{i=1}^{2}{left(a_{3}^{2}-{left[idright]}^{2}right)}=}{displaystyle ={left(a_{3}^{2}-{left[dright]}^{2}right)}cdot {left(a_{3}^{2}-{left[2dright]}^{2}right)}={left(169-49right)}cdot {left(169-4cdot 49right)}=}{displaystyle =120cdot {left(-27right)}}.

    Наконец, {displaystyle P_{n}=13cdot 120cdot {left(-27right)}=-42120}.
  11. Бронштейн, 1986, с. 139.

Литература[править | править код]

  • Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — М.: Наука, 1986. — 544 с.

Ссылки[править | править код]

  • Арифметическая прогрессия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890. — Т. II. — С. 98.

Для (14) задания необходимо знать теорию арифметической и геометрической прогрессий.

Арифметическая прогрессия

Арифметическая прогрессия — это последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

an+1=an+d

, где

an+1 

 — последующий член,

an

 — предыдущий член и

d

— разность арифметической прогрессии.

Формула для нахождения разности:

d=an+1−an

.

Для арифметической прогрессии, где известен первый член 

a1

 и разность 

d

, её (n)-й член может быть найден по формуле:

Свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

Сумма первых членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

И вторая формула для вычисления суммы:

Sn=2a1+d⋅n−12⋅n

.

Более подробно можно познакомиться с темой здесь.

Геометрическая прогрессия

Геометрическая прогрессия — это последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

bn+1=bn⋅q

, где

bn+1

 — последующий член,

bn

 — предыдущий член и

q

 — знаменатель геометрической прогрессии.

Формула для нахождения знаменателя:

q=bn+1bn

.

Для геометрической прогрессии, где дан первый член 

b1

и знаменатель 

q

, её (n)-й член может быть найден по формуле:

Свойство геометрической прогрессии: каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому предшествующего и последующего членов.

Сумму первых членов геометрической прогрессии со знаменателем, не равным нулю, можно найти по формуле:

Также можно найти сумму по формуле:

Sn=bnq−b1q−1

.

Более подробно можно познакомиться с темой здесь.

Как найти знаменатель прогрессии

Прогрессия представляет собой последовательность чисел. В геометрической прогрессии каждый последующий член получается умножением предыдущего на некоторое число q, называемое знаменателем прогрессии.

Как найти знаменатель прогрессии

Инструкция

Если известно два соседних члена геометрической прогрессии b(n+1) и b(n), чтобы получить знаменатель, надо число с большим индексом разделить на предшествующее ему: q=b(n+1)/b(n). Это следует из определения прогрессии и ее знаменателя. Важным условием является неравенство нулю первого члена и знаменателя прогрессии, иначе прогрессия считается неопределенной.

Так, между членами прогрессии устанавливаются следующие соотношения: b2=b1•q, b3=b2•q, … , b(n)=b(n-1) •q. По формуле b(n)=b1•q^(n-1) может быть вычислен любой член геометрической прогрессии, в которой известен знаменатель q и первый член b1. Также каждый из членов геометрической прогрессии по модулю равен среднему геометрическому своих соседних членов: |b(n)|=√[b(n-1)•b(n+1)], отсюда прогрессия и получила свое название.

Аналогом геометрической прогрессии является простейшая показательная функция y=a^x, где аргумент x стоит в показателе степени, a – некоторое число. В этом случае знаменатель прогрессии совпадает с первым членом и равен числу a. Под значением функции y можно понимать n-й член прогрессии, если аргумент x принять за натуральное число n (счетчик).

Существует формула для суммы первых n членов геометрической прогрессии: S(n)=b1•(1-q^n)/(1-q). Данная формула справедлива при q≠1. Если q=1, то сумма первых n членов вычисляется формулой S(n)=n•b1. Кстати, прогрессия будет называться возрастающей при q большем единицы и положительном b1. При знаменателе прогрессии, по модулю не превышающем единицы, прогрессия будет называться убывающей.

Частный случай геометрической прогрессии – бесконечно убывающая геометрическая прогрессия (б.у.г.п.). Дело в том, что члены убывающей геометрической прогрессии будут раз за разом уменьшаться, но никогда не достигнут нуля. Несмотря на это, можно найти сумму всех членов такой прогрессии. Она определяется формулой S=b1/(1-q). Общее количество членов n бесконечно.

Чтобы наглядно представить, как можно сложить бесконечное количество чисел и не получить при этом бесконечность, испеките торт. Отрежьте половину этого торта. Затем отрежьте 1/2 от половины, и так далее. Кусочки, которые у вас будут получаться, являют собой не что иное, как члены бесконечно убывающей геометрической прогрессии со знаменателем 1/2. Если сложить все эти кусочки, вы получите исходный торт.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Прогрессии

Термин «прогрессия» имеет латинское происхождение («progression», что означает «движение вперед»), был введен римским математиком Боэцием в 6 веке.

Что такое прогрессия? Это тип последовательности. А что такое последовательность? Это бесконечный набор чисел, подчиняющийся определенному правилу. Например, последовательность составляют все числа, делящиеся на 2. Их бесконечно много, и они подчиняются определенному правилу. Последовательность можно задать формулой n-го члена, где n – номер члена последовательности.

Например,

$ M_{n}=2^{n}-1 $ (числа Мерсенна)

$ M_{1}=2^{1}-1=1 $

$ M_{2}=2^{2}-1=3 $

$ M_{5}=2^{5}-1=31 $

Последовательность также может задаваться правилом, по которому находят каждый ее член, если известны предыдущие. Например, первые два члена последовательности равны единице, а каждый следующий равен сумме двух непосредственно предшествующих ему. Тогда получаем последовательность чисел:

1, 1, 2, 3, 5, 8, 13, 21, … (называемых числами Фибоначчи)

Есть два вида последовательностей, которые изучаются в курсе математики– это арифметические и геометрические прогрессии.

Арифметическая прогрессия

Арифметической прогрессией называют такую числовую последовательность, каждый следующий член которой отличается от предшествующего члена на одно и то же число d.

Например, 1, 3, 5, 7…

Число d называют разностью арифметической прогрессии.

Отметим, что если d > 0, то арифметическая прогрессия является возрастающей последовательностью, если d < 0, то — убывающей последовательностью. А если d = 0 ? Это тоже прогрессия, называют ее в математике постоянной прогрессией.

Ряд натуральных чисел дает пример бесконечной арифметической прогрессии с разностью d = 1, а последовательность нечетных и четных чисел – примеры бесконечных арифметических прогрессий, у каждой из которых разность d = 2 (отличие только в первом члене прогрессии).

Если известен первый член арифметической прогрессии a1 и ее разность d, то можно найти любой член этой последовательности по формуле:

  • an = a1 + d · (n−1) — формула n-го члена,

Пример: найдите члены а8, а1000 арифметической прогрессии, у которой а1 = -2, d = 5

Решение:

Найдем по записанной нами формуле:

а8 = a1 + d · (8 −1) = -2 + 7 · 5 = 33.

а1000 = a1 + d · (1000 −1) = -2 + 999 · 5 = 4993.

Запишем формулы суммы n первых членов прогрессии:

  • $ S_{n}= frac {a_{1}+a_{n}}{2} cdot n = frac {2a_{1}+d(n-1)}{2} cdot n; $

Пример: определить сумму k первых нечетных чисел, начиная с единицы.

Решение:

Последовательность нечетных чисел – арифметическая прогрессия с a1 = 1 и d = 2

$ S_{k}= frac {2a_{1}+d(k-1)}{2} cdot k = frac {2 cdot 1+2(k-1)}{2} cdot k = frac {2+2k-2}{2} cdot k=k^{2} $

Например, сумма первых пяти нечетных чисел:

Можно убедиться, что 1 + 3 + 5 + 7 + 9 = 25.

Каждый член арифметической прогрессии равен среднему арифметическому его соседних членов (исключение составляют первый и последний члены, т.к. у них только по одному соседнему члену)

  • $ a_{n}= frac {a_{n-1}+a_{n+1}}{2} $ — свойство n-го члена.

Геометрическая прогрессия

Геометрической прогрессией называют такую числовую последовательность, каждый член которой, начиная со второго, равен предшествующему члену, умноженному на одно и то же (определенное для данной последовательности) число q. Число q называют знаменателем геометрической прогрессии. Предполагается, что q ≠ 0.

Например, 1, 3, 9, 27…

Если q > 0, то прогрессия считается знакоположительной, при q < 0 – знакопеременной.

Если |q |>1, прогрессия возрастающая, если |q | <1 – убывающая. Заметим, что при q < 0 сами члены геометрической прогрессии попеременно меняют знак и убывающей последовательности не образуют, хотя такую прогрессию все равно называют убывающей.

Если b1 — первый член прогрессии (b1 ≠ 0), а q — знаменатель прогрессии (q ≠ 0), то справедливы следующие формулы:

  • bn = b1 · q n -1 формула n-го члена

Пример: найдите b4, b11 геометрической прогрессии, если b1 = 3, q = 2

Решение:

По формуле найдем:

b4 = b1 · q 4 – 1= 3 · 2 3 = 24,

b11 = b1 · q 11 – 1= 3 · 2 10 = 3072.

  • $ S_{n}= b_{1} frac {q^{n}-1}{q-1} $ — формула суммы n первых членов;

Пример: найдите сумму пяти членов геометрической прогрессии, у которой b1 = 2, q = 3

Решение:

$ S_{5}= b_{1} frac {(q^{5}-1)}{q-1} = 2 frac {(3^{5}-1)}{3-1} = 2 frac {(243-1)}{2}=242 $

Каждый член знакоположительной геометрической прогрессии представляет собой среднее геометрическое его соседних членов (исключение составляют первый и последний члены, т.к. у них только по одному соседнему члену):

  • $ b_{n}= sqrt {b_{n-1} cdot b_{n+1}} $ – свойство n-го члена.

Если | q | < 1, то имеем бесконечную убывающую геометрическую прогрессию, сумму которой находят по формуле $ S= frac {b_{1}}{1-q} $

Замечание:

Формула n-го члена прогрессии:

  • арифметической:an = a1 + d · (n − 1)
  • геометрической: bn = b1 · q n – 1

Зная одну формулу, легко можно получить другую – надо лишь сложение заменить умножением и умножение заменить возведением в степень, и из формулы для арифметической прогрессии получится формула для геометрической прогрессии.

Сложные проценты

Есть два вида процентов доходности – простые и сложные.

Чтобы с ними разобраться, представим двух братьев: Расчетливого Сашу и Простака Петю. Их отец дал каждому по 1000 рублей, и оба кладут их в банк. Расчетливый Саша всегда пользуется счетом со сложными процентами, а Простак Петя больше любит поступать по старинке и предпочитает счета с простыми процентами.

Сложный процент – это проценты с процентов.

У простого процента такой особенности нет, его рассчитывают от стартовой суммы, которую называют «основным капиталом». Пете легко в этом разобраться: основной капитал зарабатывает каждый год одну и ту же сумму.

Если вы откладываете деньги, занимаете их, пользуетесь кредитной картой, берёте в ипотеку или покупаете пожизненную ренту, формула сложного процента работает на (или против) вас.

Давайте выведем формулу сложных процентов. Допустим, у нас есть некоторая сумма S, в конце года мы ее увеличиваем на некоторый процент (%). Полученную сумму S1 после начисления процентов можно посчитать так:

$ S_{1}=S+frac{%}{100} cdot S = S big( 1+frac{%}{100} big) $

В следующем году полученную сумму снова увеличим на тот же процент. Тогда можем записать верное равенство:

$ S_{2}=S_{1}+frac{%}{100} cdot S_{1} = S_{1} big( 1+ frac{%}{100} big) = S big( 1+ frac{%}{100} big) big( 1+ frac{%}{100} big) = S big( 1+ frac{%}{100} big)^{2} $

Аналогично мы можем посчитать полученную сумму еще через год:

$ S_{3}=S_{2}+frac{%}{100} cdot S_{2} = S_{2} big( 1+ frac{%}{100} big) = S_{1} big( 1+ frac{%}{100} big)^{2} big( 1+ frac{%}{100} big) = S big( 1+ frac{%}{100} big)^{3} $

Таким образом, если периодов n, то можем записать формулу вычисления сложных процентов:

$ S_{n}=S big( 1+ frac {%}{100} big)^{n} $ начисление процентов (%) на сумму S через n периодов.

Тогда последовательность остатков долга будет следующей:

$ S; S big( 1+ frac {%}{100} big); S big( 1+ frac {%}{100} big)^{2}; S big( 1+ frac {%}{100} big)^{3}… S big( 1+ frac {%}{100} big)^{n} $

Видим, что это геометрическая прогрессия.

Итак, Саша размещает свои 1000 рублей на счете и получает ежегодно 7% дохода. Давайте посчитаем, сколько он получит за три года? В данном случае S = 1000, % = 7, n = 3, $ S_{3} $– общая сумма, получаемая по формуле сложного процента:

$ S_{3} = 1000 big(1+frac{7}{100} big)^{3}=1225,04 ; (руб). $

Счет Пети – тоже 7%-ный, но процент у него простой. Какие деньги заработает за три года Петя? В первый год он получит 70 рублей, столько же – во второй и в третий. Таким образом, проценты составят 3 · 70 = 210 рублей, итого общая сумма на счете – 1210 рублей. Инвестиционное решение Саши, очевидно, выгоднее.

Добавить комментарий