Как найти дисперсию?
Лучшее спасибо – порекомендовать эту страницу
Дисперсия – это мера разброса значений случайной величины $X$ относительно ее математического ожидания $M(X)$ (см. как найти математическое ожидание случайной величины). Дисперсия показывает, насколько в среднем значения сосредоточены, сгруппированы около $M(X)$: если дисперсия маленькая – значения сравнительно близки друг к другу, если большая – далеки друг от друга (см. примеры нахождения дисперсии ниже).
Если случайная величина описывает физические объекты с некоторой размерностью (метры, секунды, килограммы и т.п.), то дисперсия будет выражаться в квадратных единицах (метры в квадрате, секунды в квадрате и т.п.). Ясно, что это не совсем удобно для анализа, поэтому часто вычисляют также корень из дисперсии – среднеквадратическое отклонение $sigma(X)=sqrt{D(X)}$, которое имеет ту же размерность, что и исходная величина и также описывает разброс.
Еще одно формальное определение дисперсии звучит так: “Дисперсия – это второй центральный момент случайной величины” (напомним, что первый начальный момент – это как раз математическое ожидание).
Нужна помощь? Решаем теорию вероятностей на отлично
Формула дисперсии случайной величины
Дисперсия случайной величины Х вычисляется по следующей формуле:
$$
D(X)=M(X-M(X))^2,
$$
которую также часто записывают в более удобном для расчетов виде:
$$
D(X)=M(X^2)-(M(X))^2.
$$
Эта универсальная формула для дисперсии может быть расписана более подробно для двух случаев.
Если мы имеем дело с дискретной случайной величиной (которая задана перечнем значений $x_i$ и соответствующих вероятностей $p_i$), то формула принимает вид:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2.
$$
Если же речь идет о непрерывной случайной величине (заданной плотностью вероятностей $f(x)$ в общем случае), формула дисперсии Х выглядит следующим образом:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx – left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$
Пример нахождения дисперсии
Рассмотрим простые примеры, показывающие как найти дисперсию по формулам, введеным выше.
Пример 1. Вычислить и сравнить дисперсию двух законов распределения:
$$
x_i quad 1 quad 2 \
p_i quad 0.5 quad 0.5
$$
и
$$
y_i quad -10 quad 10 \
p_i quad 0.5 quad 0.5
$$
Для убедительности и наглядности расчетов мы взяли простые распределения с двумя значениями и одинаковыми вероятностями. Но в первом случае значения случайной величины расположены рядом (1 и 2), а во втором – дальше друг от друга (-10 и 10). А теперь посмотрим, насколько различаются дисперсии:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2 =\
= 1^2cdot 0.5 + 2^2 cdot 0.5 – (1cdot 0.5 + 2cdot 0.5)^2=2.5-1.5^2=0.25.
$$
$$
D(Y)=sum_{i=1}^{n}{y_i^2 cdot p_i}-left(sum_{i=1}^{n}{y_i cdot p_i} right)^2 =\
= (-10)^2cdot 0.5 + 10^2 cdot 0.5 – (-10cdot 0.5 + 10cdot 0.5)^2=100-0^2=100.
$$
Итак, значения случайных величин различались на 1 и 20 единиц, тогда как дисперсия показывает меру разброса в 0.25 и 100. Если перейти к среднеквадратическому отклонению, получим $sigma(X)=0.5$, $sigma(Y)=10$, то есть вполне ожидаемые величины: в первом случае значения отстоят в обе стороны на 0.5 от среднего 1.5, а во втором – на 10 единиц от среднего 0.
Ясно, что для более сложных распределений, где число значений больше и вероятности не одинаковы, картина будет более сложной, прямой зависимости от значений уже не будет (но будет как раз оценка разброса).
Пример 2. Найти дисперсию случайной величины Х, заданной дискретным рядом распределения:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$
Снова используем формулу для дисперсии дискретной случайной величины:
$$
D(X)=M(X^2)-(M(X))^2.
$$
В случае, когда значений много, удобно разбить вычисления по шагам. Сначала найдем математическое ожидание:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Потом математическое ожидание квадрата случайной величины:
$$
M(X^2)=sum_{i=1}^{n}{x_i^2 cdot p_i}
= (-1)^2cdot 0.1 + 2^2 cdot 0.2 +5^2cdot 0.3 +10^2cdot 0.3+20^2cdot 0.1=78.4.
$$
А потом подставим все в формулу для дисперсии:
$$
D(X)=M(X^2)-(M(X))^2=78.4-6.8^2=32.16.
$$
Дисперсия равна 32.16 квадратных единиц.
Пример 3. Найти дисперсию по заданному непрерывному закону распределения случайной величины Х, заданному плотностью $f(x)=x/18$ при $x in(0,6)$ и $f(x)=0$ в остальных точках.
Используем для расчета формулу дисперсии непрерывной случайной величины:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx – left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$
Вычислим сначала математическое ожидание:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{6} frac{x}{18} cdot x dx = int_{0}^{6} frac{x^2}{18} dx =
left.frac{x^3}{54} right|_0^6=frac{6^3}{54} = 4.
$$
Теперь вычислим
$$
M(X^2)=int_{-infty}^{+infty} f(x) cdot x^2 dx = int_{0}^{6} frac{x}{18} cdot x^2 dx = int_{0}^{6} frac{x^3}{18} dx = left.frac{x^4}{72} right|_0^6=frac{6^4}{72} = 18.
$$
Подставляем:
$$
D(X)=M(X^2)-(M(X))^2=18-4^2=2.
$$
Дисперсия равна 2.
Другие задачи с решениями по ТВ
Подробно решим ваши задачи на вычисление дисперсии
Вычисление дисперсии онлайн
Как найти дисперсию онлайн для дискретной случайной величины? Используйте калькулятор ниже.
- Введите число значений случайной величины К.
- Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
- Нажмите на кнопку “Вычислить”.
- Калькулятор покажет вычисленное математическое ожидание $M(X)$ и затем искомое значение дисперсии $D(X)$.
Видео. Полезные ссылки
Видеоролики: что такое дисперсия и как найти дисперсию
Если вам нужно более подробное объяснение того, что такое дисперсия, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).
Полезная страница? Сохрани или расскажи друзьям
Полезные ссылки
Не забывайте сначала прочитать том, как найти математическое ожидание. А тут можно вычислить также СКО: Калькулятор математического ожидания, дисперсии и среднего квадратического отклонения.
Что еще может пригодиться? Например, для изучения основ теории вероятностей – онлайн учебник по ТВ. Для закрепления материала – еще примеры решений задач по теории вероятностей.
А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:
Непрерывная случайная величина
- Краткая теория
- Примеры решения задач
- Задачи контрольных и самостоятельных работ
Краткая теория
Случайная величина называется непрерывной, если ее функция
распределения
непрерывно дифференцируема. В этом случае
имеет производную, которую обозначим через
– плотность распределения вероятностей.
Плотностью распределения вероятностей непрерывной случайной
величины
называются функцию
– первую производную от функции распределения
:
Из этого определения следует, что функция распределения является
первообразной для плотности распределения.
Заметим, что для описания распределения вероятностей дискретной
случайной величины плотность распределения неприменима.
Вероятность того, что непрерывная случайная величина
примет значение, принадлежащее интервалу
равна определенному интегралу от плотности
распределения, взятому в пределах от
до
.
Зная плотность распределения
,
можно найти функцию распределения
по формуле:
Числовые характеристики непрерывной случайной величины
Математическое ожидание непрерывной случайной величины
,
возможные значения которой принадлежат всей оси
,
определяется равенством:
где
– плотность распределения случайной величины
.
Предполагается, что интеграл сходится абсолютно.
В частности, если все возможные значения принадлежат интервалу
,
то:
Все свойства математического ожидания, указанные для
дискретных случайных величин, сохраняются и для непрерывных величин.
Дисперсия непрерывной случайной величины
,
возможные значения которой принадлежат всей оси
,
определяется равенством:
или равносильным равенством:
В частности, если все возможные значения
принадлежат интервалу
,
то
или
Все свойства дисперсии, указанные для дискретных случайных
величин, сохраняются и для непрерывных случайных величин.
Среднее квадратическое отклонение
непрерывной случайной величины определяется так же, как и для дискретной
величины:
При решении задач, которые выдвигает практика, приходится
сталкиваться с различными распределениями непрерывных случайных величин.
Основные законы распределения непрерывных случайных величин
- Нормальный закон распределения СВ
- Показательный закон распределения СВ
- Равномерный закон распределения СВ
Примеры решения задач
Пример 1
Дана
функция распределения F(х) непрерывной случайной величины
Х.
Найти плотность распределения вероятностей f(x), математическое ожидание M(X), дисперсию D(X) и вероятность попадания X на отрезок [a,b]. Построить графики функций F(x) и f(x).
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Плотность
распределения вероятностей:
Математическое
ожидание:
Дисперсию
можно найти по формуле:
Вероятность
попадания на отрезок:
Построим графики функций F(x) и f(x).
График плотности
распределения
График функции
распределения
Пример 2
Случайная величина Х задана плотностью вероятности
Определить константу c, математическое ожидание, дисперсию, функцию распределения величины X, а также вероятность ее попадания в интервал [0;0,25].
Решение
Константу
определим,
используя свойство плотности вероятности:
В нашем случае:
Найдем математическое
ожидание:
Найдем дисперсию:
Искомая дисперсия:
Найдем функцию
распределения:
для
:
для
:
для
:
Искомая функция
распределения:
Вероятность попадания
в интервал
:
Пример 3
Плотность
распределения непрерывной случайной величины
имеет вид:
Найти:
а)
параметр
;
б)
функцию распределения
;
в)
вероятность попадания случайной величины
в интервал
г)
математическое ожидание
и дисперсию
д)
построить графики функций
и
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
а)
Постоянный параметр
найдем из
свойства плотности вероятности:
В нашем
случае эта формула имеет вид:
б)
Функцию распределения
найдем из
формулы:
Учитывая
свойства
, сразу можем отметить,
что:
Остается
найти выражение для
, когда
принадлежит
интервалу
:
Получаем:
в)
Вероятность
попадания случайной величины
в интервал
:
г)
Математическое ожидание находим по формуле:
Для
нашего примера:
Дисперсию
можно найти по формуле:
Среднее
квадратическое отклонение равно квадратному корню из дисперсии:
д) Построим графики
и
:
График плотности вероятности f(x)
График функции распределения F(x)
Задачи контрольных и самостоятельных работ
Задача 1
НСВ на всей
числовой оси oX задана интегральной функцией:
Найти
вероятность, что в результате 2 испытаний случайная величина примет значение,
заключенное в интервале (0;4).
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 2
Дана
дифференциальная функция непрерывной СВ Х. Найти: постоянную С, интегральную
функцию F(x).
Задача 3
Случайная
величина Х задана функцией распределения F(x):
а) Найти
плотность вероятности СВ Х – f(x).
б) Построить графики
f(x), F(x).
в) Найти вероятность
попадания НСВ в интервал (0; 3).
Задача 4
Дифференциальная
функция НСВ Х задана на всей числовой оси ОХ:
Найти:
а) постоянный
параметр С=const;
б) функцию
распределения F(x);
в) вероятность
попадания в интервал -4<X<4;
г) построить
графики f(x), F(X).
Задача 5
Случайная величина
Х задана функцией распределения F(x):
а) Найти
плотность вероятности СВ Х – f(x).
б) Построить
графики f(x), F(x).
в) Найти
вероятность попадания НСВ в интервал (0;π⁄2).
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 6
НСВ X имеет
плотность вероятности (закон Коши)
а) постоянный
параметр С=const;
б) функцию
распределения F(x);
в) вероятность
попадания в интервал -1<X<1;
г) построить
графики f(x), F(X).
Задача 7
Случайная
величина X задана интегральной F(x) или дифференциальной f(x)
функцией. Требуется:
а) найти
параметр C;
б) при
заданной интегральной функции F(x) найти дифференциальную
функцию f(x), а при заданной дифференциальной функции f(x) найти интегральную
функцию F(x);
в)
построить графики функций F(x) и f(x);
г) найти
математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение σ(X);
д)
вычислить вероятность попадания в интервал P(a≤x≤b);
е)
определить, квантилем какого порядка является точка xp;
ж)
вычислить квантиль порядка p
Задание 8
Дана
интегральная функция распределения случайной величины X. Найти дифференциальную
функцию распределения, математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение.
Задача 9
Случайная
величина X задана интегральной функцией распределения
Найти
дифференциальную функцию, математическое ожидание и дисперсию X.
Задача 10
СВ Х
задана функцией распределения F(x). Найдите вероятность
того, что в результате испытаний НСВ Х попадет в заданный интервал (0;0,5).
Постройте график функции распределения. Найдите плотность вероятности НСВ Х и
постройте ее график. Найдите числовые
характеристики НСВ Х, если
- Краткая теория
- Примеры решения задач
- Задачи контрольных и самостоятельных работ
Решение типовых примеров:
Пример
1. Случайная
величина Х задана плотностью распределения:
Определить
математическое ожидание, дисперсию и
среднее квадратическое отклонение
величины Х.
Решение:
Согласно
определениям математического ожидания
и дисперсии имеем:
.
И,
наконец,
Ответ:
Пример
2. Случайная
величина Х задана функцией распределения:
Определить
начальный и центральные моменты третьего
порядка случайной величины Х.
Решение:
Найдем
дифференциальную функцию Х:
Согласно
определению математического ожидания
имеем:
Начальный
момент третьего порядка находим по
формуле :
И,
наконец, центральный момент третьего
порядка равен:
Ответ:
;
.
Пример
3. Случайная
величина Х задана дифференциальной
функцией
в интервале
; вне этого интервала
.
Найти математическое ожидание функции
(не находя предварительно дифференциальной
функции Y)
.
Решение:
Воспользуемся формулой для вычисления
математического ожидания функции
от
случайного аргумента:
Интегрируя
по частям, окончательно получим
.
Ответ:
.
Пример
4. Случайная
величина X задана дифференциальной
функцией
в интервале
;
вне этого интервала
.
Найти:
а) моду;
б) медиану величины Х.
Решение:
а) легко убедиться, что функция
в интервале
не
имеет максимума, поэтому Х моды не имеет.
б)
Найдем медиану Ме
Х , исходя из определения:
.
Учитывая, что по условию возможные
значения Х положительны, перепишем это
равенство так,
или
.
Отсюда
.
Следовательно,
искомая медиана равна
.
Ответ:
а) Х не имеет
моды; б) медиана равна
.
Пусть
(X,Y)
двумерная случайная величина.
Коэффициент ковариации
(X,Y)
определяется следующим образом:
или
.
Коэффициент
ковариации находится по формулам:
,
если
X
и Y
дискретные случайные величины , и
,
если X
и Y
непрерывные случайные величины и f(x,y)
– плотность их совместного распределения.
Для
характеристики связи между величинами
X
и Y
служит коэффициент
корреляции
.
Для
любых двух случайных величин
.
Если случайные величины X
и Y
независимы, то
.
Случайные величины называются
некоррелированными, если
.
Две некоррелированные случайные величины
также и зависимы. Из некоррелированности
двух случайных величин следует их
зависимость, но из зависимости еще не
вытекает коррелированность.
Пусть
(X,Y)
двумерная случайная величина, где Х и
Y
– зависимые случайные величины. Представим
одну из величин как линейную функцию
другой
.
Линейная
средняя квадратическая регрессия
(или просто линейная регрессия) Y
на Х имеет вид:
,
где
MX,
MY
– математические ожидания,
– средние квадратичные отклонения,
–
коэффициент корреляции случайных
величин X
и Y.
Коэффициент
называют коэффициентом
регрессии
Y
на Х , а прямую
называют
прямой
регрессии. Величину
называют остаточной
дисперсией
случайной величины Y
относительно случайной величины Х; она
характеризует величину ошибки, которую
допускают при замене Y
линейной функцией
.
При
остаточная дисперсия равна нулю и
величины Y
и Х связаны линейной функциональной
зависимостью.
Аналогично
можно получить прямую регрессии Х на Y
:
(
коэффициент регрессии Х на Y)
и остаточную дисперсию
величины Х относительно Y.
Если
,
то обе прямые регрессии
и
совпадают. Из уравнений регрессии
следует, что обе прямые регрессии
проходят через точку (MX,MY)
– центр рассеивания двумерной случайной
величины (Х,Y).
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 января 2023 года; проверки требуют 2 правки.
У этого термина существуют и другие значения, см. Дисперсия.
Диспе́рсия случа́йной величины́ — мера разброса значений случайной величины относительно её математического ожидания. Обозначается в русской литературе и (англ. variance) в зарубежной. В статистике часто употребляется обозначение или .
Квадратный корень из дисперсии, равный , называется среднеквадратическим отклонением, стандартным отклонением или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.
Из неравенства Чебышёва следует, что вероятность того, что значения случайной величины отстоят от математического ожидания этой случайной величины более чем на стандартных отклонений, составляет менее . В специальных случаях оценка может быть усилена. Так, например, как минимум в 95 % случаев значения случайной величины, имеющей нормальное распределение, удалены от её среднего не более чем на два стандартных отклонения, а в примерно 99,7 % — не более чем на три.
Определение[править | править код]
Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания.
Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда дисперсией называется
где символ обозначает математическое ожидание[1][2].
Замечания[править | править код]
где — -ое значение случайной величины, — вероятность того, что случайная величина принимает значение , — количество значений, которые принимает случайная величина.
Доказательство 2-й формулы
где — плотность вероятности случайной величины.
- Для получения несмещённой оценки дисперсии случайной величины значение необходимо умножить на . Несмещённая оценка имеет вид:
Свойства[править | править код]
Условная дисперсия[править | править код]
Наряду с условным математическим ожиданием в теории случайных процессов используется условная дисперсия случайных величин .
Условной дисперсией случайной величины относительно случайной величины называется случайная величина:
- .
Её свойства:
- откуда, в частности, следует, что дисперсия условного математического ожидания всегда меньше или равна дисперсии исходной случайной величины .
Пример[править | править код]
Пусть случайная величина имеет стандартное непрерывное равномерное распределение на , то есть её плотность вероятности задана равенством
Тогда математическое ожидание квадрата случайной величины равно
- ,
и математическое ожидание случайной величины равно
Дисперсия случайной величины равна
См. также[править | править код]
- Среднеквадратическое отклонение
- Моменты случайной величины
- Ковариация
- Выборочная дисперсия
- Независимость (теория вероятностей)
- Скедастичность
- Абсолютное отклонение
- Дельта-метод
Примечания[править | править код]
- ↑ Колмогоров А. Н. Глава IV. Математические ожидания; §3. Неравенство Чебышева // Основные понятия теории вероятностей. — 2-е изд. — М.: Наука, 1974. — С. 63—65. — 120 с.
- ↑ Боровков А. А. Глава 4. Числовые характеристики случайных величин; §5. Дисперсия // Теория вероятностей. — 5-е изд. — М.: Либроком, 2009. — С. 93—94. — 656 с.
Литература[править | править код]
- Гурский Д., Турбина Е. Mathcad для студентов и школьников. Популярный самоучитель. — СПб.: Питер, 2005. — С. 340. — ISBN 5469005259.
- Орлов А. И. Дисперсия случайной величины // Математика случая: Вероятность и статистика — основные факты. — М.: МЗ-Пресс, 2004.
Содержание:
Непрерывные случайные величины: функция распределения случайной величины:
Если вычислить вероятность появления непрерывной случайной величины не составляет особого труда, то решение основной задачи теории вероятностей для непрерывной случайной величины несёт большие трудности. Поэтому в материалах сегодняшней лекции мы рассмотрим методы определения вероятности попадания непрерывной случайной величины на интервал с помощью функции распределения.
Функция распределения непрерывной случайной величины
Зная функцию распределения непрерывной случайной величины, задача определения вероятности её попадания на интервал (а; b) может быть решена следующим образом.
По известной функции распределения вероятность попадания непрерывной случайной величины на интервал (а; b) равна приращению функции распределения на этом участке (рис. 1).
Во всех рассмотренных выше случаях случайная величина определялась путём задания значений самой величины и вероятностей этих значений.
Однако такой метод применим далеко не всегда. Например, в случае непрерывной случайной величины, её значения могут заполнять некоторый произвольный интервал. Очевидно, что в этом случае задать все значения случайной величины просто нереально.
Даже в случае, когда это сделать можно, зачастую задача решается чрезвычайно сложно. Рассмотренный только что пример даже при относительно простом условии (приборов только четыре) приводит к достаточно неудобным вычислениям, а если в задаче будет несколько сотен приборов?
Поэтому встает задача по возможности отказаться от индивидуального подхода к каждой задаче и найти по возможности наиболее общий способ задания любых типов случайных величин.
Пусть х – действительное число. Вероятность события, состоящего в том, что X примет значение, меньшее х, т.е. X
Определение. Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее х.
F(x) = Р(Х < х)
Функцию распределения также называют интегральной функцией. Функция распределения существует как для непрерывных, так и для дискретных случайных величин. Она полностью характеризует случайную величину и является одной из форм закона распределения.
Для дискретной случайной величины функция распределения имеет
Знак неравенства под знаком суммы показывает, что суммирование распространяется на те возможные значения случайной величины, которые меньше аргумента х.
Функция распределения дискретной случайной величины X разрывна и возрастает скачками при переходе через каждое значение
Так для примера, который мы будем рассматривать на следующем
Свойства функции распределения
1) значения функции распределения принадлежат отрезку [0, 1].
2) F(x) – неубывающая функция.
3) Вероятность того, что случайная величина примет значение, заключенное в интервале (а, b) , равна приращению функции распределения на этом интервале.
4) На минус бесконечности функция распределения равна нулю, на плюс бесконечности функция распределения равна единице.
5) Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю.
Таким образом, не имеет смысла говорить о каком – либо конкретном значении случайной величины. Интерес представляет только вероятность попадания случайной величины в какой – либо интервал, что соответствует большинству практических задач.
Заключение по лекции:
В лекции мы рассмотрели методы решения основной задачи теории вероятностей – определения вероятности попадания непрерывной случайной величины на интервал с помощью функции распределения.
Плотность вероятности. Числовые характеристики. Моменты случайных величин
Если вычислить вероятность появления непрерывной случайной величины не составляет особого труда, то решение основной задачи теории вероятностей для непрерывной случайной величины несёт большие трудности. Поэтому в материалах сегодняшней лекции мы рассмотрим методы определения вероятности попадания непрерывной случайной величины на интервал с помощью плотности
распределения.
Плотность распределения
Функция распределения полностью характеризует случайную величину, однако, имеет один недостаток. По функции распределения трудно судить о характере распределения случайной величины в небольшой окрестности той или иной точки числовой оси.
Определение. Плотностью распределения вероятностей непрерывной случайной величины X называется функция f(x) – первая производная от функции распределения F(x).
Плотность распределения также называют дифференциальной функцией. Для описания дискретной случайной величины плотность распределения неприемлема.
Смысл плотности распределения состоит в том, что она показывает как часто появляется случайная величина X в некоторой окрестности точки х при повторении опытов.
После введения функций распределения и плотности распределения можно дать следующее определение непрерывной случайной величины.
Определение. Случайная величина X называется непрерывной, если её функция распределения F(x) непрерывна на всей оси ОХ, а плотность распределения f(x) существует везде, за исключением (может быть, конечного числа точек).
Зная плотность распределения, можно вычислить вероятность того, что некоторая случайная величина X примет значение, принадлежащее заданному интервалу.
Теорема. Вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (а, b), равна определенному интегралу от плотности распределения, взятому в пределах от а до b.
Доказательство этой теоремы основано на определении плотности распределения и третьем свойстве функции распределения (см. лекцию тема № 10).
Геометрически это означает, что вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу (а, b), равна площади криволинейной трапеции, ограниченной осью ОХ, кривой распределения f(x) и прямыми х=а и х=b.
Геометрически вероятность Р(а < X < b) представляется в виде заштрихованной области, ограниченной кривой распределения и осью Ох на интервале(а; b) (рис 1).
Функция распределения может быть легко найдена, если известна плотность распределения, по формуле:
Свойства плотности распределения
1) Плотность распределения – неотрицательная функция.
2) Несобственный интеграл от плотности распределения в пределах от –
равен единице.
Плотность распределения
можно представить как:
тогда
Поэтому иногда функцию плотности распределения f(x) называют также дифференциальной функцией распределения или дифференциальным законом распределения величины X, а функцию распределения F(x) -интегральной функцией распределения или интегральным законом распределения.
Следует заметить, что интеграл возможно трактовать как сумму бесконечно большого числа несовместных элементарных событий, каждое из которых заключается в попадании случайной величины в бесконечно малый участок (х, х + dx) и имеет вероятность:
Р(х < X < х + dx) = dF(x) = f(x)dx
Величину f(x)dx называют элементом вероятности.
По своему содержанию элемент вероятности есть вероятность попадания случайной величины X на элементарный участок dx, прилежащий к точке X.
Функция распределения случайной величины X по известной плотности распределения может быть найдена, как интеграл от плотности распределения в интервале от
В схеме непрерывных случайных величин можно вывести аналогии формулы полной вероятности и формулы Бейеса, рассмотренные при изучении темы 4.
Обозначим Р(А /х) условную вероятность события А при условии Х= х. Заменяя в формуле полной вероятности вероятность гипотезы элементом вероятности f(x)dx, а сумму – интегралом, получим полную вероятность события А.
Данная формула называется интегральной формулой полной вероятности.
Соответствующий аналог в схеме непрерывных случайных величин имеет и формула Бейеса. Обозначив условную плотность распределения случайной величины X при условии, что в результате опыта появилось событие A через , получим:
Данная формула называется интегральной формулой Бейеса.
Числовые характеристики непрерывных случайных величин
Пусть непрерывная случайная величина X задана функцией распределения f(x). Допустим, что все возможные значения случайной величины принадлежат отрезку [а,b].
Математическое ожидание
Определение. Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку [а,b], называется определенный интеграл
Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:
При этом, конечно, предполагается, что несобственный интеграл сходится.
Дисперсия
Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата её отклонения.
По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:
Среднеквадратичное отклонение
Определение. Средним квадратичным отклонением называется квадратный корень из дисперсии.
Мода
Определение. Модой дискретной случайной величины называется её наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.
Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным.
Если распределение имеет минимум, но не имеет максимума, то оно
называется антимодальным.
Медиана
Определение. Медианой случайной величины X называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.
Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам.
Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.
Начальный момент
Определение. Начальным моментом порядка k случайной величины X называется математическое ожидание величины
Для дискретной случайной величины:
Для непрерывной случайной величины:
Начальный момент первого порядка равен математическому ожиданию.
Центральный момент
Определение. Центральным моментом порядка k случайной величины X называется математическое ожидание величины
Для дискретной случайной величины:
Для непрерывной случайной величины:
Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.
Коэффициент асимметрии
Определение. Отношение центрального момента третьего порядка к среднеквадратическому отклонению в третьей степени называется коэффициентом асимметрии.
Эксцесс
Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.
Кроме рассмотренных величин используются также так называемые абсолютные моменты:
Абсолютный начальный момент:
Абсолютный центральный момент:
Абсолютный центральный момент первого порядка называется средним арифметическим отклонением.
Заключение по лекции:
В лекции мы рассмотрели методы решения основной задачи теории вероятностей – определения вероятности попадания непрерывной случайной величины на интервал с помощью плотности распределения.
Законы распределения непрерывных величин: нормальное, равномерное, показательное
В материалах сегодняшней лекции мы рассмотрим законы распределения непрерывных величин.
Равномерное распределение
Определение. Непрерывная случайная величина имеет равномерное распределение на отрезке [а,b], если на этом отрезке плотность
распределения случайной величины постоянна, а вне его равна нулю.
Постоянная величина С может быть определена из условия равенства единице площади, ограниченной кривой распределения, представленной на рис. 1
Получаем .
Найдём функцию распределения F(x) на отрезке [а,b] (рис. 2).
Для того, чтобы случайная величина подчинялась закону равномерного распределения необходимо, чтобы её значения лежали внутри некоторого определенного интервала, и внутри этого интервала значения этой случайной величины были бы равновероятны.
Определим математическое ожидание и дисперсию случайной величины, подчиненной равномерному закону распределения.
Вероятность попадания случайной величины в заданный интервал:
Показательное распределение
Определение. Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины X, которое описывается плотностью
где – положительное число.
Найдём закон распределения.
Графики функции распределения и плотности распределения представлены на рис. 3, 4.
Найдём математическое ожидание случайной величины, подчинённой показательному распределению.
Результат получен с использованием того факта, что
Для нахождения дисперсии найдём величину
Дважды интегрируя по частям, аналогично рассмотренному случаю, получим:
Тогда
Итого:
Видно, что в случае показательного распределения математическое ожидание и среднеквадратическое отклонение равны.
Также легко определить и вероятность попадания случайной величины, подчиненной показательному закону распределения, в заданный интервал.
Показательное распределение широко используется в теории надёжности.
Допустим, некоторое устройство начинает работать в момент времени to=0, а через какое- то время t происходит отказ устройства.
Обозначим Т непрерывную случайную величину – длительность безотказной работы устройства.
Таким образом, функция распределения F(t) = P(T
Вероятность противоположного события (безотказная работа в течение времени t) равна R(t) = P(T>t) – l – F(t).
Функция надежности
Определение. Функцией надёжности R(t) называют функцию, определяющую вероятность безотказной работы устройства в течение времени t.
Часто на практике длительность безотказной работы подчиняется показательному закону распределению.
Вообще говоря, если рассматривать новое устройство, то вероятность отказа в начале его функционирования будет больше, затем количество отказов снизится и будет некоторое время иметь практически одно и то же значение. Затем (когда устройство выработает свой ресурс) количество отказов будет возрастать.
Другими словами, можно сказать, что функционирование устройства на протяжении всего существования (в смысле количества отказов) можно описать комбинацией двух показательных законов (в начале и конце функционирования) и равномерного закона распределения.
Функция надёжности для какого- либо устройства при показательном законе распределения равна:
Данное соотношение называют показательным законом надежности.
Важным свойством, позволяющим значительно упростить решение задач теории надежности, является то, что вероятность безотказной работы устройства на интервале времени t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t.
Таким образом, безотказная работа устройства зависит только от интенсивности отказов и не зависит от безотказной работы устройства в
прошлом.
Так как подобным свойством обладает только показательный закон распределения, то этот факт позволяет определить, является ли закон распределения случайной величины показательным или нет.
Нормальный закон распределения
Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности
Нормальный закон распределения также называется законом Гаусса.
Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.
Можно легко показать, что параметры входящие в плотность распределения являются соответственно математическим ожиданием и среднеквадратическим отклонением случайной величины X.
Найдём функцию распределения F(x).
График плотности нормального распределения называется нормальной кривой или кривой Гаусса.
Нормальная кривая обладает следующими свойствами:
1) Функция определена на всей числовой оси.
2) При всех х функция распределения принимает только положительные значения.
3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента л значение функции стремится к нулю.
4) Найдём экстремум функции.
Т.к. при , то в точке х = m функция имеет максимум, равный
5) Функция является симметричной относительно прямой x = а, т.к. разность
(х – а) входит в функцию плотности распределения в квадрате.
6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.
При вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.
В этих точках значение функции равно
Построим график функции плотности распределения (рис. 5).
Построены графики при м =0 и трёх возможных значениях среднеквадратичного отклонения. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается.
Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.
При а = 0 и кривая называется нормированной. Уравнение нормированной кривой:
Функция Лапласа
Найдём вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.
Обозначим
Тогда
Т.к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция
которая называется функцией Лапласа или интегралом вероятностей.
Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.
На рис. 6 показан график функции Лапласа.
Функция Лапласа обладает следующими свойствами:
- 1) Ф(0) = 0;
- 2) Ф(-х) = – Ф(х);
- 3)
Функцию Лапласа также называют функцией ошибок и обозначают
erf х.
Ещё используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:
На рис. 7 показан график нормированной функции Лапласа.
Правило трёх сигм
При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм.
Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины
Если принять , то получаем с использованием таблиц значений функции Лапласа:
Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую, чем утроенное среднее квадратичное отклонение, практически равна нулю.
Это правило называется правилом трех сигм.
Не практике считается, что если для какой-либо случайной величины выполняется правило трёх сигм, то эта случайная величина имеет нормальное распределение.
Пример:
Случайная величина Х задана плотностью распределения вероятностей:
Найти: а) значение с; б) функцию распределения F(х) и построить ее график; в)
Решение:
а) Значение с найдем из условия нормировки:
Следовательно,
б) Известно, что
Поэтому, если
если
если
Таким образом,
График функции F(х) изображен на рис. 5. 3.
в)
Пример:
Случайная величина Х задана функцией распределения:
Найти дифференциальную функцию распределения
Решение:
Так как то
Пример:
Случайная величина Х задана дифференциальной функцией
Найти а также
Решение:
Некоторые законы распределения непрерывной случайной величины
Пример:
Случайная величина Х равномерно распределена на отрезке [3;7]. Найти:
а) плотность распределения вероятностей и построить ее график;
б) функцию распределения и построить ее график;
в)
Решение: Воспользовавшись формулами, рассмотренными выше, при а = 3, b = 7, находим:
Построим ее график (рис. 6.3):
Построим ее график (рис. 6.4):
Пример:
Среднее время безотказной работы прибора равно 100 ч.
Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:
а) плотность распределения вероятностей;
б) функцию распределения;
в) вероятность того, что время безотказной работы прибора превысит 120 ч.
Решение.
По условию математическое ожидание
откуда = 1/100 = 0,01.
Следовательно,
в) Искомую вероятность найдем, используя функцию распределения:
Пример:
Случайная величина Х распределена нормально с математическим ожиданием 32 и дисперсией 16. Найти: а) плотность распределения вероятностей б) вероятность того, что в результате испытания Х примет значение из интервала (28;38).
Решение:
По условию m = 32, σ2 = 16, следовательно, σ = 4, тогда
а)
б) Воспользуемся формулой:
Подставив a = 28, b = 38, m = 32, σ = 4, получим
По таблице значений функции Ф(х) находим Ф(1,5) = 0,4332, Ф(1) = 0,3413.
Итак, искомая вероятность:
Заключение по лекции:
В лекции мы рассмотрели законы распределения непрерывных величин.
- Закон больших чисел
- Генеральная и выборочная совокупности
- Интервальные оценки параметров распределения
- Алгебра событий – определение и вычисление
- Правило «трех сигм» в теории вероятности
- Производящие функции
- Теоремы теории вероятностей
- Основные законы распределения дискретных случайных величин