Как найти катет равнобедренного треугольника зная основание

Как найти катеты равнобедренного треугольника

Нахождение катетов равнобедренного треугольника – задача, требующая теоретических знаний, пространственного и логического мышления. Не менее важным является и правильное оформление решения.

Как найти катеты равнобедренного треугольника

Вам понадобится

  • – тетрадь;
  • – линейка;
  • – карандаш;
  • – ручка;
  • – калькулятор.

Инструкция

Катет – сторона прямоугольного треугольника, образующая прямой угол. Противоположная прямому углу сторона треугольника называется гипотенузой.Так как в задании фигурирует понятие “катет”, мы можем сделать вывод, что треугольник – прямоугольный.
В вопросе так же сказано, что треугольник равнобедренный. Это означает, что катеты равны. Для решения этого типа задач введите условные обозначения. Обозначим стороны треугольника буквами а, а, в, где а – катеты, а в – гипотенуза. (см. рис. 1)

Дано:
а = а
с = 20 (значение выбрано произвольно для иллюстрации решения)Найти: а

Чтобы найти катеты равнобедренного треугольника, используйте теорему Пифагора. Она гласит, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Формула: а^2+в^2=с^2.

Решение:а^2+а^2=с^2
2а^2=с2 (это преобразование произошло потому, что в нашей конкретной задаче оба катета равны)
Подставляем известные данные:
2а^2=400 (400 – это квадрат гипотенузы)
а^2=200 (обе части уравнения делятся на два)
а=√200 или 10√2Ответ: √200

Обратите внимание

Катеты существуют только в прямоугольном треугольнике.

Полезный совет

Верна и теорема, обратная теореме Пифагора: если квадрат стороны треугольника равен сумме квадратов двух других его сторон, то этот треугольник прямоугольный.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Для описания любого треугольника нужны минимум 3 параметра, один из которых должен быть линейным размером.
У тебя есть 1 угол (прямой), и один линейный размер (90мм)…

я не очень понимаю что значит “основание”.
У равнобедренного треугольника бывают 2 катета, гипотенуза …а основание??? Бррр…

В любом случае исходных данных маловато

NaumenkoВысший разум (856085)

6 лет назад

вполне достаточно. если эта. основанием назвала ГИПОТЕНУЗУ.
в них еще не вколотили знание соотношения сторон в двух основных видах прямоугольных тр-ков-см картинку.
гипотенуза =аV2
90=45*V2*V2
a=45V2

ВЖИК
Мудрец
(16169)
Ой, извините, не внимательно прочитал вопрос.
Треугольник равнобедренный, один угол известен и есть один размер… имеется 3 параметра, то есть достаточно.

Как посчитать стороны равнобедренного треугольника

Онлайн калькулятор

Чтобы вычислить длины сторон равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

  • длину основания (b) и угол α
  • длину основания (b) и угол β
  • длину основания (b) и высоту (h)
  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину двух равных сторон (a) и высоту (h)

Введите их в соответствующие поля и получите результат.

Как посчитать сторону a равнобедренного треугольника

Если известна сторона b и угол α

Чему равна сторона a равнобедренного треугольника если длина основания , а угол

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол α?

Формула
Пример

Если сторона b = 10 см, а ∠α = 30°, то:

Если известна сторона b и угол β

Чему равна сторона a равнобедренного треугольника если длина основания , а угол

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол β?

Формула
Пример

Если сторона b = 10 см, а ∠β = 30°, то:

a = 10 /2⋅sin 15 = 10/(2⋅0.2588) = 19.31см

Если известна сторона b и высота h

Чему равна сторона a равнобедренного треугольника если длина основания , а высота

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и высота h?

Формула
Пример

Если сторона b = 10 см, а высота h = 20 см, то:

a = √ 1 /10 2 + 20 2 = √ 0.01+400 = 20.61см

Как посчитать сторону b (основание) равнобедренного треугольника

Если известна сторона a и угол α

Чему равна сторона b равнобедренного треугольника если длина стороны , а угол

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол α?

Формула
Пример

Если сторона a = 10 см, а ∠α = 30°, то:

b = 2⋅10⋅cos 30° = 2⋅10⋅0.8660 = 17.32см

Если известна сторона a и угол β

Чему равна сторона b равнобедренного треугольника если длина стороны , а угол

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол β?

Формула
Пример

Если сторона a = 10 см, а ∠β = 40°, то:

Если известна сторона a и высота h

Чему равна сторона b равнобедренного треугольника если длина стороны , а высота

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и высота h?

Формула

b = 2⋅ √ a 2 – h 2 , h

Пример

Если сторона a = 10 см, а высота h = 5 см, то:

Стороны равнобедренного треугольника

Свойства

Равнобедренный треугольник имеет две равные по значению боковые стороны a и основание b. Это позволяет рассчитать любые параметры треугольника, необходимые для решения задачи. Периметр равнобедренного треугольника равен удвоенной боковой стороне в сумме с основанием. (рис.88.1) P=2a+b

Высота, проведенная к основанию равнобедренного треугольника, делит его на два конгруэнтных прямоугольных треугольника, с половиной основания в качестве второго катета и боковой стороной как гипотенузой. Такая высота одновременно является и медианой и биссектрисой. Найти ее можно по теореме Пифагора из прямоугольного треугольника. (рис.88.2) h_b=m_b=l_b=√(a^2-(b/2)^2 )=√(4a^2-b^2 )/2

Остальные две высоты равны друг другу и считаются через формулу с произведением разностей полупериметров и сторон, где приравнены боковые стороны. (рис.88.8) h_a=(b√((4a^2-b^2)))/2a

Зная высоту, найти площадь равнобедренного треугольника можно, подставив полученное выражение в формулу, по которой площадь равна половине основания, умноженной на его высоту. S=hb/2=(b√(4a^2-b^2 ))/4

Углы в равнобедренном треугольнике распределяются следующим образом – углы при основании друг другу конгруэнтны, также как и боковые стороны, а в сумме все три угла дают 180 градусов, поэтому найти их можно двумя видами разности. α=(180°-β)/2 β=180°-2α

Если ни один из углов не дан, но есть все стороны, то можно воспользоваться теоремой косинусов, чтобы найти любой угол. cos⁡α=(b^2+c^2-a^2)/2bc=(b^2+a^2-a^2)/2ba=b^2/2ba=b/2a cos⁡β=(a^2+a^2-b^2)/(2a^2 )=(2a^2-b^2)/(2a^2 )

Медиана и биссектриса, опущенные на основание, вычисляются по формуле высоты, приведенной выше, а оставшиеся две медианы (равно как и две биссектрисы) равны друг другу, поскольку строятся на равных боковых сторонах. Вычислить медиану можно, упростив формулу произвольного треугольника. (рис. 88.3) m_a=√(2a^2+2b^2-a^2 )/2=√(a^2+2b^2 )/2

В формуле биссектрисы аналогично приравниваются боковые стороны, и ее становится возможным вычислить по упрощенной схеме. (рис. 88.4) l_a=√(ab(2a+b)(a+b-a) )/(a+b)=(b√(a(2a+b) ))/(a+b)

Средняя линия равнобедренного треугольника, параллельная основанию, равна его половине, а средние линии, параллельные боковым сторонам, равны между собой и также равны половинам самих боковых сторон. (рис. 88.5) M_b=b/2 M_a=a/2

Радиус окружности, вписанной в равнобедренной треугольник, является производной формулы для произвольного треугольника, и рассчитать его можно, зная боковую сторону и основание. (рис. 88.6) r=b/2 √((2a-b)/(2a+b))

Радиус окружности, описанной вокруг равнобедренного треугольника, также выводится из общей формулы и выглядит упрощенно следующим образом. (рис. 88.7) R=a^2/√(4a^2-b^2 )

Расчёт катетов по гипотенузе и углу

Прямоугольный треугольник это треугольник у которого один из углов равен 90 градусов.

Прямой угол это угол 90 градусов.

Гипотенуза это противолежащая прямому углу сторона, самая длинная сторона прямоугольного треугольника.

Катеты это стороны прямоугольного треугольника прилежащие к прямому углу.

Сумма внутренних углов треугольника равна 180 градусам.

Синусом называется отношение противолежащего катета к гипотенузе.

Косинусом называется отношение прилежащего катета к гипотенузе.

[spoiler title=”источники:”]

http://geleot.ru/education/math/geometry/calc/triangle/isosceles_triangle_sides

http://calc-best.ru/matematicheskie/raschyot-treugolnika/raschyot-katetov-pryamougolnogo-treugolnika-po-gipotenuze-i-uglu

[/spoiler]

Равнобедренный треугольник имеет две равные по значению боковые стороны a и основание b. Это позволяет рассчитать любые параметры треугольника, необходимые для решения задачи. Периметр равнобедренного треугольника равен удвоенной боковой стороне в сумме с основанием. (рис.88.1)
P=2a+b

Высота, проведенная к основанию равнобедренного треугольника, делит его на два конгруэнтных прямоугольных треугольника, с половиной основания в качестве второго катета и боковой стороной как гипотенузой. Такая высота одновременно является и медианой и биссектрисой. Найти ее можно по теореме Пифагора из прямоугольного треугольника. (рис.88.2)
h_b=m_b=l_b=√(a^2-(b/2)^2 )=√(4a^2-b^2 )/2

Остальные две высоты равны друг другу и считаются через формулу с произведением разностей полупериметров и сторон, где приравнены боковые стороны. (рис.88.8)
h_a=(b√((4a^2-b^2)))/2a

Зная высоту, найти площадь равнобедренного треугольника можно, подставив полученное выражение в формулу, по которой площадь равна половине основания, умноженной на его высоту.
S=hb/2=(b√(4a^2-b^2 ))/4

Углы в равнобедренном треугольнике распределяются следующим образом – углы при основании друг другу конгруэнтны, также как и боковые стороны, а в сумме все три угла дают 180 градусов, поэтому найти их можно двумя видами разности.
α=(180°-β)/2
β=180°-2α

Если ни один из углов не дан, но есть все стороны, то можно воспользоваться теоремой косинусов, чтобы найти любой угол.
cos⁡α=(b^2+c^2-a^2)/2bc=(b^2+a^2-a^2)/2ba=b^2/2ba=b/2a
cos⁡β=(a^2+a^2-b^2)/(2a^2 )=(2a^2-b^2)/(2a^2 )

Медиана и биссектриса, опущенные на основание, вычисляются по формуле высоты, приведенной выше, а оставшиеся две медианы (равно как и две биссектрисы) равны друг другу, поскольку строятся на равных боковых сторонах. Вычислить медиану можно, упростив формулу произвольного треугольника. (рис. 88.3)
m_a=√(2a^2+2b^2-a^2 )/2=√(a^2+2b^2 )/2

В формуле биссектрисы аналогично приравниваются боковые стороны, и ее становится возможным вычислить по упрощенной схеме. (рис. 88.4)
l_a=√(ab(2a+b)(a+b-a) )/(a+b)=(b√(a(2a+b) ))/(a+b)

Средняя линия равнобедренного треугольника, параллельная основанию, равна его половине, а средние линии, параллельные боковым сторонам, равны между собой и также равны половинам самих боковых сторон. (рис. 88.5)
M_b=b/2
M_a=a/2

Радиус окружности, вписанной в равнобедренной треугольник, является производной формулы для произвольного треугольника, и рассчитать его можно, зная боковую сторону и основание. (рис. 88.6)
r=b/2 √((2a-b)/(2a+b))

Радиус окружности, описанной вокруг равнобедренного треугольника, также выводится из общей формулы и выглядит упрощенно следующим образом. (рис. 88.7)
R=a^2/√(4a^2-b^2 )

Как посчитать стороны равнобедренного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как посчитать стороны равнобедренного треугольника

Чтобы посчитать чему равны стороны равнобедренного треугольника воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

равнобедренный треугольник

Чтобы вычислить длины сторон равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

для стороны a:

  • длину основания (b) и угол α
  • длину основания (b) и угол β
  • длину основания (b) и высоту (h)

для стороны b:

  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину двух равных сторон (a) и высоту (h)

Введите их в соответствующие поля и получите результат.

Как посчитать сторону a равнобедренного треугольника

Если известна сторона b и угол α

Чему равна сторона a равнобедренного треугольника если длина основания

b =

, а угол

α =?

Ответ:

a =

0

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол α?

Формула

a = b/2⋅cos α

Пример

Если сторона b = 10 см, а ∠α = 30°, то:

a = 10/2⋅cos 30° = 10/(2⋅0.8660) = 5.77см

Если известна сторона b и угол β

Чему равна сторона a равнобедренного треугольника если длина основания

b =

, а угол

β =?

Ответ:

a =

0

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол β?

Формула

a = b/2⋅sin β/2

Пример

Если сторона b = 10 см, а ∠β = 30°, то:

a = 10/2⋅sin 15 = 10/(2⋅0.2588) = 19.31см

Если известна сторона b и высота h

Чему равна сторона a равнобедренного треугольника если длина основания

b =

, а высота

h =?

Ответ:

a =

0

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и высота h?

Формула

a = 1/b2 + h2

Пример

Если сторона b = 10 см, а высота h = 20 см, то:

a = 1/102 + 202 = 0.01+400 = 20.61см

Как посчитать сторону b (основание) равнобедренного треугольника

Если известна сторона a и угол α

Чему равна сторона b равнобедренного треугольника если длина стороны

a =

, а угол

α =?

Ответ:

b =

0

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол α?

Формула

b = 2⋅a⋅cos α

Пример

Если сторона a = 10 см, а ∠α = 30°, то:

b = 2⋅10⋅cos 30° = 2⋅10⋅0.8660 = 17.32см

Если известна сторона a и угол β

Чему равна сторона b равнобедренного треугольника если длина стороны

a =

, а угол

β =?

Ответ:

b =

0

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол β?

Формула

b = 2⋅a⋅sin β/2

Пример

Если сторона a = 10 см, а ∠β = 40°, то:

b = 2⋅10⋅sin 40/2 = 2⋅10⋅0.342 = 6.84см

Если известна сторона a и высота h

Чему равна сторона b равнобедренного треугольника если длина стороны

a =

, а высота

h =?

Ответ:

b =

0

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и высота h?

Формула

b = 2⋅a2 – h2 , h < a

Пример

Если сторона a = 10 см, а высота h = 5 см, то:

b = 2⋅102 – 52 = 2⋅75 = 17.32см

См. также

Добавить комментарий