Как найти координаты точки лежащей на отрезке

У меня есть отрезок с известными координатами концов. На этом отрезке есть точка. Я знаю расстояние от начала отрезка до этой точки. Мне надо найти координаты этой точки. Как найти эти координаты?

Пример: Есть 2 точки А(3,3) и В(6,4). Длина отрезка примерно 3,16. И есть точка С(?,?) на отрезке. Как найти координаты, если от А до С =1,8 ???

Dmytro's user avatar

Dmytro

6,7011 золотой знак20 серебряных знаков55 бронзовых знаков

задан 3 мар 2016 в 20:40

Andryxa's user avatar

4

Имеется отрезок AB с координатами A(Xa, Ya) и B(Xb, Yb).
Требуется найти координаты точки C(Xc, Yc), лежащей на отрезке AB на расстоянии Rac от точки A.

Rab = sqrt((Xb - Xa) ^ 2 + (Yb - Ya) ^ 2)
k = Rac / Rab
Xc = Xa + (Xb - Xa) * k
Yc = Ya + (Yb - Ya) * k

Обозначения:
f ^ n – возведение f в степень n, в нашем случае (первом) f будет Xb - Xa и n будет 2.
sqrt(f) – квадратный корень из f, в нашем случае f будет (Xb - Xa) ^ 2 + (Yb - Ya) ^ 2.
f / n – деление f на n, в нашем случае f будет Rac и n будет Rab.
f * n – умножение f на n, в нашем случае (первом) f будет Xb - Xa и n будет k.

Mark Khromov's user avatar

ответ дан 4 мар 2016 в 6:54

Konstantin Les's user avatar

Konstantin LesKonstantin Les

1,5388 серебряных знаков12 бронзовых знаков

2

Алгоритм без кода (довольно элементарный):

Имеем:
Две точки A, B; len – расстояние от точки А до требуемой точки C

full_len = |B - A| // длина вектора, соединяющего две точки == длина отрезка
C = A + (B - A) * (len / full_len)

Сложение векторов и умножение на число – очевидные операции.

ответ дан 3 мар 2016 в 20:56

int3's user avatar

int3int3

2,4579 серебряных знаков19 бронзовых знаков

8

nodet – точка конец вектора, в твоем случае точка b
nodef – точка начало вектора, в твоем случае точка a

dx = nodet.x - nodef.x 
dy = nodet.y - nodef.y 
dz = nodet.z - nodef.z
r = math.sqrt(dx ** 2 + dy ** 2 + dz ** 2) 
xx = dx * (step/r) 
yy = dy * (step /r)
zz = dz * (step /r)
newnode = node(nodef.x + xx,nodef.y + yy,nodef.z + zz)

newnode – новая точка на заданом расстоянии

ответ дан 12 ноя 2019 в 16:31

qvuer7's user avatar

qvuer7qvuer7

113 бронзовых знака

Найти координаты точки на отрезке

Dmitry



Ученик

(135),
закрыт



9 лет назад

Leonid

Высший разум

(388685)


11 лет назад

Если некоторя точка делит отрезок в отношении А: В, то и отдельно коордиаты отрезка (х, у) делятся в этом же отношении. А координата отрезка – это разность координат его концов.
То есть, к примеру, конкретно для этого случая: х1 = 100, х2 = 0. То есть тупо отсчитывает от точки х1 расстояние, равное (100-0)*(23*141) = чему-то там. И вычитаем из х1. Аналогично для у.

Имеем отрезок AB с координатам x1,y1 и x2, y2:

Необходимо найти координаты новой точки С, которая находится на отрезке, на определенном расстоянии от точки A.

1

PHP-функция

$x1, $y1 – координаты точки A,
$x2, $y2 – координаты точки B,
$d – расстояние от точки A до точки C.

function pointToLine($x1, $y1, $x2, $y2, $d)
{
	$Rab = sqrt(pow($x2 - $x1, 2) + pow($y2 - $y1, 2));
	$k = $d / $Rab;
	$Xc = $x1 + ($x2 - $x1) * $k;
	$Yc = $y1 + ($y2 - $y1) * $k;
	return array('x' => $Xc, 'y' => $Yc);
}

PHP

2

JS-функция

function pointToLine(x1, y1, x2, y2, d)
{
	var Rab = Math.sqrt(Math.pow(x2 - x1, 2) + Math.pow(y2 - y1, 2));
	var k = d / Rab;
	var Xc = x1 + (x2 - x1) * k;
	var Yc = y1 + (y2 - y1) * k;
	return {x: Xc, y: Yc};
}

JS

3

Координата точки на отрезке онлайн

0 / 0 / 0

Регистрация: 22.12.2014

Сообщений: 21

1

Определить координаты точки на отрезке

15.01.2015, 23:06. Показов 2224. Ответов 4


Студворк — интернет-сервис помощи студентам

Определить координаты точки C на отрезке AB, если A (0; 1; 2), B(4; 5; – 6) и |AC|:|BC|=1: 3
Здравствуйте. Буду очень благодарен решению! Подобных примеров не нашел



0



Programming

Эксперт

94731 / 64177 / 26122

Регистрация: 12.04.2006

Сообщений: 116,782

15.01.2015, 23:06

Ответы с готовыми решениями:

Наути координаты точки на отрезке
Имеем 2 точки A(x1,y1,z1) и B(x2,y2,z2), исходя из этих точек строем пряму по формуле…

Найти координаты точки на отрезке
Доброго дня! Никак не получается решить задачу, был бы признателен, если кто поможет.

Имеется 2…

Найти координаты точки на отрезке
Помогите пожалуйста, объясните ход решения и может есть что-то похожее в общем виде?

Даны две…

Найти координаты точки на отрезке при известном расстоянии до неё
Есть отрезок с известными координатами начала и конца, допустим А(х1, у1) и B(x2, y2). Как найти…

4

Диссидент

Эксперт C

27462 / 17151 / 3780

Регистрация: 24.12.2010

Сообщений: 38,627

16.01.2015, 00:08

2

С = (1*A + 3*B)/4 Все буквы – векторы



1



0 / 0 / 0

Регистрация: 22.12.2014

Сообщений: 21

16.01.2015, 00:23

 [ТС]

3

Цитата
Сообщение от Байт
Посмотреть сообщение

С = (1*A + 3*B)/4 Все буквы – векторы

Формулу вижу, даже записал ее, а что именно подставлять в формуле под векторами А и В? Если Вам не сложно, напишите решение до конца, пожалуйста



0



Эксперт по математике/физике

6352 / 4061 / 1509

Регистрация: 09.10.2009

Сообщений: 7,550

Записей в блоге: 4

16.01.2015, 03:00

4

Лучший ответ Сообщение было отмечено bizabrazen как решение

Решение

Цитата
Сообщение от Байт
Посмотреть сообщение

С = (1*A + 3*B)/4 Все буквы – векторы

Как говорится, при всём уважении…, но при координатах точки нужно ставить противоположный коэффициент, а не прилежащий.
bizabrazen, можно это же записать полностью векторами: https://www.cyberforum.ru/cgi-bin/latex.cgi?bar{OC}=frac{3 cdot bar{OA}+1 cdot bar{OB}}{4}. Ответ https://www.cyberforum.ru/cgi-bin/latex.cgi?bar{OC}left(1;2;0 right) : Rightarrow Cleft(1;2;0 right)



2



0 / 0 / 0

Регистрация: 22.12.2014

Сообщений: 21

16.01.2015, 03:41

 [ТС]

5

Цитата
Сообщение от jogano
Посмотреть сообщение

bizabrazen, можно это же записать полностью векторами:

Премного благодарен!!!



0



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

16.01.2015, 03:41

Помогаю со студенческими работами здесь

Найти координаты точки на отрезке по координатам его концов и расстоянию до одного из них
Добрый день, помогите решить задачку, уже ничего не помню..

Известны координаты точек А и В, а…

Определить координаты точки, симметричной точке M относительно прямой
Определить координаты точки, симметричной точке M(2, −5) относительно прямой 2x + 8y − 15 = 0

Определить координаты третьей точки, лежащей на этой прямой
Здравствуйте, есть прямая заданная двумя точками. Как определить координаты третьей точки, лежащей…

Вычислить координаты точки, лежащей на отрезке
Вычислить координаты точки C(x,y), делящий отрезок с концами A(x1,y1), B(x2,y2) в отношении k.

Определить координаты точки в окне, зная ее координаты в пространстве
Вопрос если простая возможность определить координаты точки в рабочей области, зная ее координаты в…

Даны координаты точки (x,y). Определить принадлежность заданной точки заштрихованной области, включая ее границы
Ребята, помогите, пожалуйста, решить эти задачи. Желательно, ещё и объяснить,что именно найти….

Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:

5

Даны точки
Требуется найти координаты точкиK(x,y),
делящей
отрезокMN
в отношении
Рассмотрим векторыЭти векторы коллинеарныИз векторной алгебры известно, что если
векторы коллинеарны, то соответствующие
координаты пропорциональны. Имеем:

(по условию).

Из этих уравнений
легко найти x
и y

(2.1.1)

Если
то точкаK
является серединой отрезка MN.
Формулы (2.1) примут вид:

(2.1.2)

Это формулы
координат середины отрезка.

Пример 1.
Найти
координаты
точки K,
делящей отрезок MN,
где M(-1,4)
и N(2,1),
в отношении 2 : 1.

Решение.
По условию
Подставим координаты точкиM
и N
в формулы (2.1.1). Имеем:

Точка K
имеет координаты: x=1,
y=2.

Ответ: K(1,2).

Пример 2.
Отрезок АВ разделен на три равные части.
Определить координаты точек деления,
если А(3,-2), В(6,4).

Решение.
Обозначим точки деления С и D.
Точка D
делит отрезок АВ в отно-

шении АD:DB
= 2. Координаты точки D
найдем по формулам (2.1.1).

Итак, D(5,2).

Координаты точки
С можно найти аналогично, взяв

Существует другой
способ нахождения координат точки С.
Точка С является серединой отрезка АD.
По формулам (2.1.2) имеем

Ответ:
D(5,2)
; C(4,0).

Пример 3.
Найти точку пересечения медиан
треугольника АВС, где А(-1,3) ;

B(3,-2);
C(5,3).

Решение:
Пусть точка О – точка пересечения медиан
AM
и BN
треугольника ABC.
Точка М является серединой отрезка ВС.
По формулам (2.1.2) получим координаты
точки М:

Из школьного курса
планиметрии известно, что точка О делит
медиану АМ в отношении АО:ОМ = 2:1.
По формулам (2.1.1) получим

Ответ:
Точка пересечения медиан

Замечание: Точка
пересечения медиан треугольника является
его центром тяжести.

3. Прямая на плоскости.

3.1. Простейшей из
линий является прямая. Всякую прямую,
не параллельную оси ординат, можно
представить уравнением вида

,
(3.1.1)

где к есть тангенс
угла
образованного прямой с положительным
направлением оси абсцисс (ox).

Величину к называют
угловым
коэффициентом.

Величину b
начальной
ординатой.

Если прямая
параллельна оси ox,
то
Уравнение прямой примет вид:y
= b
(3.1.2)

Если прямая
параллельна оси oy,
то
не существует. В этом случае уравнение
прямой будет иметь вид:x
= a
(3.1.3),
где а – абсцисса точки, через которую
проходит данная прямая ( точки пересечения
прямой с осью ox).

Пример 1.
Какую прямую представляет уравнение

Решение. Данное
уравнение задает прямую, у которой
Так какПоэтому данное уравнение представляет
прямую, проходящую через начало координат
(b
= 0) и образующую с осью ox
угол

Пример 2.
Написать
уравнение прямой, параллельной оси ox
и имеющей на-

чальную
ординату b
=
.

Решение: По
формуле (3.1.2) имеем y
=где

Итак, искомая
прямая задается уравнением

Ответ:

Пример 3.
Написать уравнение прямой, параллельной
оси oy
и проходящей

через точку
M(3,1).

Решение:
По формуле (3.1.3) уравнение прямой имеет
вид x
= a
, где а – абсцисса точки М. а = 3. Уравнение
прямой x
= 3.

Ответ:
x
= 3.

3.2. Уравнение
прямой по точке и угловому коэффициенту.

Пусть прямая
проходит через точку
и имеет угловой коэффициент к. Уравнение
такой прямой можно записать в виде
(3.1.1)гдеb
– неизвестная
величина. Так как прямая проходит через
точку,
то координаты точки удовлетворяют
уравнению (3.1.1). ИмеемОтсюда

Подставим значение
“b”
в уравнение (3.1.1), получим
или

(3.2.1)

Полученное уравнение
называется уравнением прямой по точке
и угловому коэффициенту.

Пример 1.
Составить уравнение прямой, проходящей
через точку

и образующей с
положительным направлением оси ox
угол

Решение:
Так как
тоПрименив формулу (3.2.1), получимy-(-2)=-1(x-1)
y+2
= -x+1

y=-x-1.

Ответ:
y=-x-1.

Пример 2.
Составить
уравнение прямой, проходящей через
точку А(-3,4) и имеющей угловой коэффициент
к = 2.

Решение:
Применяем
формулу (3.2.1) y
– 4 = 2 (x+3)
y
– 4 = 2x
+ 6

y
= 2x
+
10.

Ответ:
y
= 2x
+ 10.

Пример 3.
Составить
уравнение прямой, проходящей через
точку М(-1, 2) параллельно оси ox.

Решение:
Если прямая параллельна оси ox,
то угол между прямой и положительным
направлением оси ox
равен нулю. Следовательно,
По формуле (3.2.1) получимy
– 2 = 0 (x
+ 1)

y
– 2 = 0

Ответ:
y
= 2.

3.3.Уравнение
прямой по точке и нормальному вектору.

Пусть прямая
проходит через точку
Поднормальным
вектором
понимают вектор, который перпендикулярен
данной прямой. Обозначим его
Возьмем на прямой произвольную точкуM(x,y)
и рассмотрим вектор
Используя векторную алгебру, найдем
координаты вектораВекторперпендикулярен вектору.Из векторной
алгебры известно, что скалярное
произведение этих векторов равно нулю.
Следовательно,

(3.3.1)

Полученное уравнение
называется уравнением
прямой по точке и нормальному вектору.

Преобразуем полученное уравнение:

Ax + By –
A– B=
0.Пусть
C = -A-B,тогда
получим:

Ax
+ By + C = 0 (3.3.2)

Уравнение (3.3.2)
называется общим
уравнением прямой.

Напомним, что коэффициенты А и В в
уравнении определяют координаты
нормального вектора

Рассмотрим общее
уравнение прямой подробнее.

1). Если А = 0, то
уравнение примет вид

By
+ C
= 0 ; y
= –Прямая параллельна осиox.
(3.1.2)

2). Если В = 0, то
уравнение примет вид:

Ax
+ C
= 0, x
= –
Прямая параллельна оси oy.
(3.1.3.)

3). Если С = 0, то
уравнение примет вид: Ax
+ By
= 0. y
= –

Прямая проходит через начало координат
и имеет угловой коэффициент k
= –
См. пример 1 пункт 3.1.

Из общего
уравнения прямой, если
можно найти угловой коэффициент к. Для
этого выразимy
из этого уравнения : Ax
+ By
+ C
= 0.

By = – Ax –
C ; y = –Отсюда,

k
= –
(3.3.3)

Пример 1.
Прямая задана уравнением 3x
– 4y
+5 = 0. Найти координаты нормального
вектора.

Решение:
Координатами
нормального вектора
являются коэффициенты приx
и y
данного уравнения прямой. Имеем А = 3;
В = – 4.

Ответ:

Пример 2.
Составить уравнение прямой, проходящей
через точку М(2,-1) и имеющей нормальный
вектор

Решение:
Применяем
формулу (3.3.1). Имеем 0(x
– 2) + 2(y
+ 1) = 0

2y
+ 2 = 0

y
+ 1 = 0.

Ответ:
y
+ 1 = 0.

Пример 3.
Составить уравнение прямой, проходящей
через точку М(0; 1) перпендикулярно вектору

где А(-1; 2), В(1; -1).

Решение:
Найдем координаты вектора

(-1); -1-2);
(2;
-3).

Вектор является нормальным
векторомискомой
прямой. По формуле (3.3.1) имеем 2(x
– 0) -3(y
-1) = 0

2x
– 3y
+ 3 = 0.

Ответ:
2x
– 3y
+ 3 = 0.

3.4. Уравнение
прямой по точке и направляющему вектору.

Пусть прямая
проходит через точку
Направляющим векторомданной прямой называется вектор,
параллельный этой прямой. Пусть дан
векторВозьмем на прямой произвольную точкуM(x,y)
и рассмотрим вектор
Векторы
иколлинеарны,следовательно, их
соответствующие координаты пропорциональны.

(3.4.1)

Полученное уравнение
является уравнением прямой по
точке и направляющему вектору.

Пример 1.
Прямая задана
уравнением:

Написать координаты
направляющего вектора; найти координаты
точки, лежащей на прямой; составить
общее уравнение прямой.

Решение:
Направляющий
вектор
= (−1; 2). Точкумы получим, приравняв нулю числители
данного уравнения:x
+ 2 = 0

x
=−2; y
– 3 = 0

y
= 3.

Итак,
(−2; 3).

Общее уравнение
прямой получим по свойству пропорций:
(x+2)∙2
= (y−3)∙(−
1)

2x
+ 4 = −y
+ 3

2x
+ y
+ 1 = 0.

Ответ:
(−1;
2),
(−2;
3), 2x
+ y
+ 1 = 0.

Пример 2.
Составить
уравнение прямой по точке М(2,-5) и
направляющему вектору
(-2,4).

Решение:
Применяем
формулу
(3.4.1). Имеем:

4(x-2)
= -2(y+5)
4x
– 8 = – 2y
– 10

4x
+ 2y
+ 2 = 0

2x
+ y
+ 1 =0.

Ответ: 2x
+ y
+ 1 = 0.

Пример 3.
Через точку
С(- 2, 1) провести прямую, параллельную
вектору
где А(2,-1), В(3,4).

Решение:
Вектор можно взять за
направляющий вектор данной прямой. (3-2; 4-(-1)) = (1;
5). Применяем
формулу (3.4.1). Имеем:

5(x
+ 2) = y
– 1

5x
+ 10 = y
– 1

5x
– y
+ 11 = 0.

Ответ:
5x
– y
+11 = 0.

3.5. Уравнение
прямой, проходящей через две заданные
точки.

Известно, что
через две данные точки можно провести
единственную прямую. Пусть
прямая проходит через точкиЗа направляющий векторданной прямой можно взять вектор.

Составим уравнение
прямой по точке и направляющему
вектору

По формуле (3.4.1)
имеем:

(3.5.1)

Если
то прямая параллельна осиoy.
Ее уравнение имеет вид:

(3.5.2)

Если
то прямая параллельна осиox.
Ее уравнение :

y
=

(3.5.3)

Пример 1.
Составить уравнение прямой АВ, если
А(2,-1); В(1,3).

Решение:
Применяем
формулу (3.5.1):

4(x
– 2) = -(y
+ 1)
4x
+ y
– 7 = 0.

Ответ:
4x
+ y
– 7 = 0.

Пример 2.
Составить уравнение прямой, проходящей
через точки М(4,-2) и N(4,5).

Решение:
Так как

то по формуле (3.5.2) уравнение прямой
имеет вид:

x = 4.
Прямая
параллельна оси oy.

Пример 3. Дан
треугольник АВС, у которого А(1,2), В(4,3),
С(1,3). Составить уравнения его сторон.

Решение: 1)
Найдем уравнение стороны АВ. ПО формуле
(3.5.1) имеем:
x
– 1 = 3(y
– 2)
x
– 3y
+ 5 = 0.

2) Сторона ВС
находится по формуле (3.5.3), так как
y
= 3.

3) Уравнение стороны
АС выпишем по формуле (3.5.2), так как
x
= 1.

Ответ:
AB:
x
– 3y
+ 5 = 0; BC:
y
= 3; AC:
x
= 1.

Пример 4.
Даны вершины треугольника АВС А(- 1, 3),
В(3,-2), С(5,3). Составить уравнение медианы,
проведенной из вершины В.

Решение: Пусть
ВМ – медиана, тогда точка М является
серединой отрезка АС. По формулам (2.1.2)
имеем:

M(2,3).

Уравнение медианы
ВМ получим по формуле (3.5.1):

5(x-
3) = -(y
+2)

5x
+ y
– 13 = 0.

Ответ:
BM:
5x
+ y
– 13 = 0.

3.6. Уравнение
прямой в отрезках.

Если прямая отсекает
на осях отрезки а и b,
не равные нулю, то ее уравнение можно
записать в виде:
.
(3.6.1)

Такое уравнение
называется уравнением
в отрезках.

Рассмотрим это уравнение. Пусть x
= 0, тогда

Пусть y
= 0, тогда

Прямая проходит
через точки А(а,0) и B(0,b).

Пример.
Записать
уравнение прямой в отрезках. Построить
эту прямую.

3x
– 2y + 12 = 0.

Решение:
3x
– 2y
= – 12. Разделим обе части этого уравнения
на – 12. Получим:

a = – 4, b = 6.

Построим полученную
прямую. Для этого отложим на оси ox
a
= – 4, на оси oy

b
= 6 и соединим полученные точки.

3.7. Расстояние
от точки до прямой.

Пусть прямая
задана уравнением Ax
+ By
+ C
= 0. Найдем расстояние от точки
до этой прямой. Подрасстоянием
от точки до прямой понимают длину отрезкагде М – основание перпендикуляра,
опущенного из точкина данную прямую. Расстояниенаходим по формуле:

(3.7.1)

Пример. Найти
расстояние от точки
до прямой 3x
+ 4y
– 22 =0.

Решение: По
формуле (3.7.1) получим:

Ответ:
d
= 4.

Соседние файлы в предмете Математика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    03.03.20154.96 Кб8Содержание OneNote.onetoc2

  • #

Добавить комментарий