Биномиальный коэффициент — коэффициент перед членом разложения бинома Ньютона по степеням . Коэффициент при обозначается или и читается «биномиальный коэффициент из по » (или «число сочетаний из по »):
для натуральных степеней .
Биномиальные коэффициенты могут быть также определены для произвольных действительных показателей . В случае произвольного действительного числа биномиальные коэффициенты определяются как коэффициенты разложения выражения в бесконечный степенной ряд:
- ,
где в случае неотрицательных целых все коэффициенты при обращаются в нуль и поэтому данное разложение является конечной суммой.
В комбинаторике биномиальный коэффициент для неотрицательных целых чисел и интерпретируется как количество сочетаний из по , то есть как количество всех (нестрогих) подмножеств (выборок) размера в -элементном множестве.
Биномиальные коэффициенты часто возникают в задачах комбинаторики и теории вероятностей. Обобщением биномиальных коэффициентов являются мультиномиальные коэффициенты.
Явные формулы[править | править код]
Вычисляя коэффициенты в разложении в степенной ряд, можно получить явные формулы для биномиальных коэффициентов .
Для всех действительных чисел и целых чисел :
- ,
где обозначает факториал числа .
Для неотрицательных целых и также справедливы формулы:
- .
Для целых отрицательных показателей коэффициенты разложения бинома равны:
- .
Треугольник Паскаля[править | править код]
Визуализация биномиального коэффициента до 4 степени
Тождество:
позволяет расположить биномиальные коэффициенты для неотрицательных целых чисел , в виде треугольника Паскаля, в котором каждое число равно сумме двух вышестоящих:
- .
Треугольная таблица, предложенная Паскалем в «Трактате об арифметическом треугольнике» (1654), отличается от той, что выписана здесь, поворотом на 45°. Таблицы для изображения биномиальных коэффициентов были известны и ранее (Тарталье, Омару Хайяму).
Если в каждой строке треугольника Паскаля все числа разделить на (это сумма всех чисел в строке), то все строки при стремлении к бесконечности примут вид функции нормального распределения.
Свойства[править | править код]
Производящие функции[править | править код]
Для фиксированного значения производящей функцией последовательности биномиальных коэффициентов является:
- .
Для фиксированного значения производящая функция последовательности коэффициентов равна:
- .
Двумерной производящей функцией биномиальных коэффициентов для целых является:
- , или .
Делимость[править | править код]
Из теоремы Люка следует, что:
Основные тождества[править | править код]
- .
- .
- (правило симметрии).
- (вынесение за скобки).
- (замена индексов).
- .
Бином Ньютона и следствия[править | править код]
а более общем виде
- .
Свёртка Вандермонда и следствия[править | править код]
Свёртка Вандермонда:
- ,
где а . Это тождество получается вычислением коэффициента при в разложении с учётом тождества . Сумма берётся по всем целым , для которых . Для произвольных действительных , число ненулевых слагаемых в сумме будет конечно.
Следствие свёртки Вандермонда:
- .
Более общее тождество:
- , если .
Ещё одним следствием свёртки является следующее тождество:
.
Другие тождества[править | править код]
- .
Также имеют место равенства:
Откуда следует:
- ,
где — количество размещений из по .
Матричные соотношения[править | править код]
Если взять квадратную матрицу, отсчитав элементов по катетам треугольника Паскаля и повернув матрицу на любой из четырёх углов, то детерминант этих четырёх матриц равен ±1 при любом , причём детерминант матрицы с вершиной треугольника в верхнем левом углу равен 1.
В матрице числа на диагонали повторяют числа строк треугольника Паскаля (). Её можно разложить в произведение двух строго диагональных матриц: нижнетреугольной и получаемой из неё транспонированием:
- ,
где . Обратная матрица к имеет вид:
- .
Таким образом, можно разложить обратную матрицу к в произведение двух строго диагональных матриц: первая матрица — верхнетреугольная, а вторая получается из первой путём транспонирования, что позволяет дать явное выражение для обратных элементов:
- , где , , , .
Элементы обратной матрицы меняются при изменении её размера и, в отличие от матрицы , недостаточно приписать новую строку и столбец. Столбец матрицы есть многочлен степени по аргументу , следовательно, первые p столбцов образуют полный базис в пространстве векторов длины +1, чьи координаты могут быть интерполированы многочленом равной или меньшей степени . Нижняя строка матрицы ортогональна любому такому вектору.
- при , где многочлен степени .
Если произвольный вектор длины можно интерполировать многочленом степени , то скалярное произведение со строками (нумерация с 0) матрицы равно нулю.
Используя тождество выше и равенство единицы скалярного произведения нижней строки матрицы на последний столбец матрицы , получаем:
- .
Для показателя большего можно задать рекуррентную формулу:
- ,
где многочлен
- .
Для доказательства сперва устанавливается тождество:
- .
Если требуется найти формулу не для всех показателей степени, то:
- .
Старший коэффициент равен 1, потребуется a-1 значений, чтобы найти другие коэффициенты:
- для .
Асимптотика и оценки[править | править код]
Непосредственно из формулы Стирлинга следует, что для верно .
Целозначные полиномы[править | править код]
Биномиальные коэффициенты , … являются целозначными полиномами от , то есть принимают целые значения при целых значениях , — это нетрудно понять, например, по треугольнику Паскаля. Более того, они образуют базис целозначных полиномов, в котором все целозначные полиномы выражаются как линейные комбинации с целыми коэффициентами.[1]
В то же время стандартный базис , … не позволяет выразить все целочисленные полиномы, если использовать только целые коэффициенты, так как уже имеет дробные коэффициенты при степенях .
Этот результат обобщается на полиномы многих переменных. А именно, если полином степени имеет вещественные коэффициенты и принимает целые значения при целых значениях переменных, то
- ,
где — полином с целыми коэффициентами.[2]
Алгоритмы вычисления[править | править код]
Биномиальные коэффициенты можно вычислить с помощью рекуррентной формулы , если на каждом шаге хранить значения при . Этот алгоритм особенно эффективен, если нужно получить все значения при фиксированном . Алгоритм требует памяти ( при вычислении всей таблицы биномиальных коэффициентов) и времени (в предположении, что каждое число занимает единицу памяти и операции с числами выполняются за единицу времени), где — «» большое.
При фиксированном значении биномиальные коэффициенты могут быть вычислены по рекуррентной формуле с начальным значением . Для вычисления значения этот метод требует памяти и времени.
Если требуется вычислить коэффициенты при фиксированном значении , можно воспользоваться формулой при начальном условии . При каждом шаге итерации числитель уменьшается на (начальное значение равно ), а знаменатель соответственно увеличивается на (начальное значение — ). Для вычисления значения этот метод требует памяти и времени.
Примечания[править | править код]
- ↑ Прасолов В. В. Глава 12. Целозначные многочлены // Многочлены. — М.: МЦНМО, 1999, 2001, 2003. Архивная копия от 21 января 2022 на Wayback Machine
- ↑ Ю. Матиясевич. Десятая проблема Гильберта. — Наука, 1993.
Литература[править | править код]
- Биномиальные коэффициенты // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Фукс Д., Фукс М. Арифметика биномиальных коэффициентов // Квант. — 1970. — № 6. — С. 17—25.
- Кузьмин О. В. Треугольник и пирамида Паскаля: свойства и обобщения // Соросовский Образовательный Журнал. — 2000. — Т. 6, № 5. — С. 101—109.
- Ландо С. К. Теневое исчисление // VIII летняя школа «Современная математика». — Дубна, 2008.
- Винберг Э. Б. Удивительные арифметические свойства биномиальных коэффициентов // Математическое просвещение. — 2008. — Вып. 12. — С. 33–42.
- Дональд Кнут, Роналд Грэхем, Орен Паташник. Конкретная математика. Математические основы информатики = Concrete Mathematics. A Foundation for Computer Science. — 2-е. — М.: Мир; Бином. Лаборатория знаний; «Вильямс», 1998—2009. — 703, 784 с. — ISBN 95-94774-560-7, 78-5-8459-1588-7.
Бином Ньютона – формула
С натуральным n формула Бинома Ньютона принимает вид a+bn=Cn0·an+Cn1·an-1·b+Cn2·an-2·b2+…+Cnn-1·a·bn-1+Cnn·bn, где имеем, что Cnk=(n)!(k)!·(n-k)!=n(n-1)·(n-2)·…·(n-(k-1))(k)!- биномиальные коэффициенты, где есть n по k, k=0,1,2,…,n, а “!” является знаком факториала.
В формуле сокращенного умножения a+b2=C20·a2+C21·a1·b+C22·b2=a2+2ab+b2
просматривается формула бинома Ньютона, так как при n=2 является его частным случаем.
Первая часть бинома называют разложением (a+b)n, а Сnk·an-k·bk – (k+1)-ым членом разложения, где k=0,1,2, …,n.
Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля
Представление биномиальных коэффициентов для различных n осуществляется при помощи таблицы, которая имеет название арифметического треугольника Паскаля. Общий вид таблицы:
Показатель степени | Биноминальные коэффициенты | ||||||||||
0 | C00 | ||||||||||
1 | C10 | C11 | |||||||||
2 | C20 | C21 | C22 | ||||||||
3 | C30 | C31 | C32 | C33 | |||||||
⋮ | … | … | … | … | … | … | … | … | … | ||
n | Cn0 | Cn1 | … | … | … | … | … | Cnn-1 | Cnn |
При натуральных n такой треугольник Паскаля состоит из значений коэффициентов бинома:
Показатель степени | Биноминальные коэффициенты | ||||||||||||||
0 | 1 | ||||||||||||||
1 | 1 | 1 | |||||||||||||
2 | 1 | 2 | 1 | ||||||||||||
3 | 1 | 3 | 3 | 1 | |||||||||||
4 | 1 | 4 | 6 | 4 | 1 | ||||||||||
5 | 1 | 5 | 10 | 10 | 5 | 1 | |||||||||
⋮ | … | … | … | … | … | … | … | … | … | … | … | … | … | ||
n | Cn0 | Cn1 | … | … | … | … | … | … | … | … | … | Cnn-1 | Cnn |
Боковые стороны треугольника имеют значение единиц. Внутри располагаются числа, которые получаются при сложении двух чисел соседних сторон. Значения, которые выделены красным, получают как сумму четверки, а синим – шестерки. Правило применимо для всех внутренних чисел, которые входят в состав треугольника. Свойства коэффициентов объясняются при помощи бинома Ньютона.
Доказательство формулы бинома Ньютона
Имеются равенства, которые справедливы для коэффициентов бинома Ньютона:
- коэффициента располагаются равноудалено от начала и конца, причем равны, что видно по формуле Cnp=Cnn-p, где р=0, 1, 2, …, n;
- Cnp=Cnp+1=Cn+1p+1;
- биномиальные коэффициенты в сумме дают 2 в степени показателя степени бинома, то есть Cn0+Cn1+Cn2+…+Cnn=2n;
- при четном расположении биноминальных коэффициентов их сумма равняется сумме биномиальных коэффициентов, расположенных в нечетных местах.
Равенство вида a+bn=Cn0·an+Cn1·an-1·b+Cn2·an-2·b2+…+Cnn-1·a·bn-1+Cnn·bn считается справедливым. Докажем его существование.
Для этого необходимо применить метод математической индукции.
Для доказательства необходимо выполнить несколько пунктов:
- Проверка справедливости разложения при n=3. Имеем, что
a+b3=a+ba+ba+b=a2+ab+ba+b2a+b==a2+2ab+b2a+b=a3+2a2b+ab2+a2b+2ab+b3==a3+3a2b+3ab2+b3=C30a3+C31a2b+C32ab2+C33b3 - Если неравенство верно при n-1, тогда выражение вида a+bn-1=Cn-10·an-1·Cn-11·an-2·b·Cn-12·an-3·b2+…+Cn-1n-2·a·bn-2+Cn-1n-1·bn-1
считается справедливым.
- Доказательство равенства a+bn-1=Cn-10·an-1·Cn-11·an-2·b·Cn-12·an-3·b2+…+Cn-1n-2·a·bn-2+Cn-1n-1·bn-1, основываясь на 2 пункте.
Выражению
a+bn=a+ba+bn-1==(a+b)Cn-10·an-1·Cn-11·an-2·b·Cn-12·an-3·b2+…+Cn-1n-2·a·bn-2+Cn-1n-1·bn-1
Необходимо раскрыть скобки, тогда получимa+bn=Cn-10·an+Cn-11·an-1·b+Cn-12·an-2·b2+…+Cn-1n-2·a2·bn-2++Cn-1n-1·a·bn-1+Cn-10·an-1·b+Cn-11·an-2·b2+Cn-12·an-3·b3+…+Cn-1n-2·a·bn-1+Cn-1n-1·bn
Производим группировку слагаемых
a+bn==Cn-10·an+Cn-11+Cn-10·an-1·b+Cn-12+Cn-11·an-2·b2+…++Cn-1n-1+Cn-1n-2·a·bn-1+Cn-1n-1·bn
Имеем, что Cn-10=1 и Cn0=1, тогда Cn-10=Cn0. Если Cn-1n-1=1 и Cnn=1, тогда Cn-1n-1=Cnn. При применении свойства сочетаний Cnp+Cnp+1=Cn+1p+1, получаем выражение вида
Cn-11+Cn-10=Cn1Cn-12+Cn-11=Cn2⋮Cn-1n-1+Cn-1n-2=Cnn-1
Произведем подстановку в полученное равенство. Получим, что
a+bn==Cn-10·an+Cn-11+Cn-10·an-1·b+Cn-12+Cn-11·an-2·b2+…++Cn-1n-1+Cn-1n-2·a·bn-1=Cn-1n-1·bn
После чего можно переходить к биному Ньютона, тогда a+bn=Cn0·an+Cn1·an-1·b+Cn2·an-2·b2+…+Cnn-1·a·bn-1+Cnn·bn.
Формула бинома доказана.
Бином Ньютона – применение при решении примеров и задач
Для полного понятия использования формулы рассмотрим примеры.
Разложить выражение (a+b)5 , используя формулу бинома Ньютона.
Решение
По треугольнику Паскаля с пятой степенью видно, что биноминальные коэффициенты – это 1, 5, 10, 10, 5, 1. То есть, получаем, что a+b5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 является искомым разложением.
Ответ: a+b5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
Найти коэффициенты бинома Ньютона для шестого члена разложения выражения вида a+b10.
Решение
По условию имеем, что n=10, k=6-1=5. Тогда можно перейти к вычислению биномиального коэффициента:
Cnk=C105=(10)!(5)!·10-5!=(10)!(5)!·(5)!==10·9·8·7·6(5)!=10·9·8·7·61·2·3·4·5=252
Ответ: Cnk=C105=252
Ниже приведен пример, где используется бином для доказательства делимости выражения с заданным числом.
Доказать, что значение выражения 5n+28·n-1, при n, являющимся натуральным числом, делится на 16 без остатка.
Решение
Необходимо представить выражение в виде 5n=4+1n и воспользоваться биномом Ньютона. Тогда получим, что
5n+28·n-1=4+1n+28·n-1==Cn0·4n+Cn1·4n-1·1+…+Cnn-2·42·1n-2+Cnn-1·4·1n-1+Cnn·1n+28·n-1==4n+Cn1·4n-1+…+Cnn-2·42+n·4+1+28·n-1==4n+Cn1·4n-1+…+Cnn-2·42+32·n==16·(4n-2+Cn1·4n-3+…+Cnn-2+2·n)
Ответ: Исходя из полученного выражения, видно, что исходное выражение делится на 16.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Продолжаем рассказывать о разных формулах и подходах из математики, которые часто применяются в ИТ и в привычных алгоритмах. Сегодня будет про бином Ньютона — про него много кто слышал, но не все представляют, что это и зачем это нужно. Сейчас разложим по полочкам.
Чтобы понять бином Ньютона, нам понадобится треугольник Паскаля.
Что такое треугольник Паскаля
Треугольник Паскаля — это одно из названий треугольной таблицы чисел. Его назвали в честь математика Блеза Паскаля, но про такой треугольник математики знали тысячу лет назад.
Работает треугольник так: берём единицу (это будет вершина треугольника), а все остальные числа в каждом ряду получаем сложением левых и правых чисел, которые стоят выше. Если нарисовать, то получится так:
Такой треугольник можно продолжать бесконечно. В математике этот треугольник обладает разными полезными свойствами, но нам он нужен для биномиальных коэффициентов в биноме Ньютона. Вот теперь поговорим про бином.
Что такое бином Ньютона (просто)
Бином Ньютона — это формула, которая помогает посчитать сумму двух чисел, возведенную в какую-то степень.
Разбираем по полочкам:
- У нас есть некие числа a и b. Мы не знаем какие, потому что алгебра.
- Не зная, что это за числа, мы их складываем.
- Эту сумму почему-то очень хочется возвести в какую-то степень — в квадрат, в куб, в четвертую, хоть в девятьсот девяносто девятую — алгебре плевать на ваши чувства.
- Нам нужна формула, как это сделать. Вот эта формула и есть бином Ньютона.
Из школьной программы мы помним такую формулу: (a + b)2 = a2 + 2ab + b2 — это частный случай бинома Ньютона для квадрата суммы.
Может быть, вы помните сумму в кубе: (a + b)3 = a3 + 3a2b + 3ab2 + b3 — это тоже бином Ньютона.
А что если нам нужно возвести сумму не в квадрат, не в куб, а в сто сорок шестую степень? Какая тогда будет формула? Вот для этого нам нужна более обобщенная формула, которая опишет вообще все варианты биномов для любой степени.
Вот как эта формула выглядит в общем виде:
Про знак Σ мы уже говорили — это обозначение суммы, а цифры в больших скобках — это биномиальные коэффициенты. В общем виде они считаются так:
Исходя из этой адской формулы для расчета бинома на компьютере нам нужно будет много раз посчитать факториал — это произведение всех целых чисел от единицы до заданного числа. Например, 5! = 1 × 2 × 3 × 4 × 5 = 120. А факториалы в силу своей цикличности жрут довольно много оперативной памяти. Может так получиться, что мы не сможем посчитать коэффициенты бинома, потому что закончилась оперативка.
Но, оказывается, необязательно считать факториалы — есть способ проще.
Биномиальные коэффициенты и треугольник Паскаля (простая теория в картинках)
Тут нам приходит на помощь треугольник Паскаля. Оказывается, числа в каждом ряду — это биномиальные коэффициенты для каждой степени n:
На практике это работает так: допустим, что по ходу работы алгоритма нам нужно раскрыть скобки и вычислить (x + y)⁴. Применим сюда бином Ньютона и треугольник Паскаля:
Получается, что с помощью этого треугольника можно не считать все эти формулы с факториалами, а быстро находить нужные коэффициенты, подставлять их в формулу бинома и сразу получать ответ. Так можно разложить любой бином и получить ответ гораздо быстрее, чем вычисляя все факториалы подряд.
Где используется бином Ньютона
Кроме математики, где бином нужен для комбинаторики и разных полезных формул, он часто применяется в программировании. Например, с его помощью можно обойти ограничение на размер оперативной памяти при возведении большого числа в степень: его можно разложить на сумму двух чисел поменьше и посчитать слагаемые через бином.
Также биномиальные коэффициенты часто применяются в матрицах и операциях с векторами — а именно на матрицах построены почти все нейросети. Поэтому если мы сможем быстро находить нужный коэффициент и применять его к матрице, то сможем быстрее создавать дипфейки и генерировать реалистичные пейзажи. Строго говоря, для этого сейчас нужно просто знать команду import, потому что готовых библиотек на эту тему — вагон, без всяких биномов.
А ещё на биномиальных коэффициентах работает отдельная непозиционная система счисления — её применяют в проектах, где надо быстро перебирать много различных вариантов и их возможных сочетаний.
Что дальше
Дальше мы попробуем применить эти знания и алгоритмы на практике: напишем код, который использует бином Ньютона для решения разных хитрых бытовых задач.
Вёрстка:
Кирилл Климентьев
Бином Ньютона и треугольник Паскаля
18 декабря 2021
Сегодня мы детально разберём Бином Ньютона. Это формула, по которой можно раскрыть скобки ${{left( a+b right)}^{n}}$ и получить готовый многочлен. Сама формула выглядит так:
[{{left( a+b right)}^{n}}=sumlimits_{k=0}^{n}{C_{n}^{k}cdot {{a}^{n-k}}{{b}^{k}}}]
где $C_{n}^{k}$ — биноминальные коэффициенты (они же — «число сочетаний из $n$ по $k$»), которые считаются по формуле
[C_{n}^{k}=frac{n!}{k!left( n-k right)!}]
Вот и всё. На этом можно было бы закончить, но есть одно но: большинство начинающих учеников не понимают эту формулу, не умеют пользоваться её, а уж чтобы доказать её — об этом даже речи не идёт.
Сегодня мы всё это исправим. Вы узнаете буквально всё, что нужно знать про Бином Ньютона:
- Постановка задачи — в чём вообще проблема?
- Формула бинома Ньютона — что значат все эти значки?
- Знак суммы — чрезвычайно полезный материал для всех, кто хочет понять математику.
- Биноминальные коэффициенты — минутка комбинаторики.
- Треугольник Паскаля — лайфхак для быстрых вычислений.
- Доказательство Бинома Ньютона — для тех, кто хочет познать Истину.:)
Материала много, но всё будет максимально понятно и — главное — чрезвычайно полезно. Погнали!
1. Постановка задачи
Итак, мы хотим быстро раскрывать скобки в конструкциях вида ${{left( a+b right)}^{n}}$. Начнём с того, что мы и так знаем. Например:
[{{left( a+b right)}^{1}}=a+b]
Спасибо, кэп. Теперь вспомним формулы сокращённого умножения. Квадрат суммы:
[{{left( a+b right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}]
И куб суммы:
[{{left( a+b right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}]
Видим, что с ростом степени растёт и количество слагаемых-одночленов: их всегда на одно больше, чем степень. Но это не проблема. Проблема в другом: у этих одночленов появляются некие коэффициенты, принцип вычисления которых не ясен. Пока не ясен…
Именно для нахождения этих коэффициентов придумали бином Ньютона.
2. Бином Ньютона
Пусть $nin mathbb{N}$. Тогда верно равенство
[{{left( a+b right)}^{n}}=sumlimits_{k=0}^{n}{C_{n}^{k}cdot {{a}^{n-k}}{{b}^{k}}}]
где $sum{left( … right)}$ — краткая запись суммы, $C_{n}^{k}$ — биноминальный коэффициент, который считается по формуле
[C_{n}^{k}=frac{n!}{k!left( n-k right)!}]
В этой формуле прекрасно всё. Одних пугает знак суммы. Другие не понимают, что за $C_{n}^{k}$ такое (ещё раз: это объект из мира комбинаторики, читается «число сочетаний из $n$ по $k$»). Третьи более-менее понимают, о чём речь, но применить эту формулу на практике не могут.
Сегодня мы решим все эти проблемы. Начнём со знака суммы.
3. Знак суммы
Знак суммы — это краткая запись суммы нескольких однотипных слагаемых:
[sumlimits_{k=a}^{k=b}{fleft( k right)}]
Формула $fleft( k right)$ задаёт общий вид однотипных слагаемых, а нижний и верхний индексы $k=a$ и $k=b$ (сверху вместо $k=b$ обычно пишут просто $b$) определяют диапазон значений, которые «пробегает» $k$ и которые нужно подставить в $fleft( k right)$. Например:
[sumlimits_{k=3}^{5}{2k}=2cdot 3+2cdot 4+2cdot 5]
Более привычный формат:
[sumlimits_{k=1}^{n}{fleft( k right)=fleft( 1 right)+fleft( 2 right)+…+fleft( n right)}]
То же самое с индексами:
[sumlimits_{k=1}^{n}{{{a}_{k}}={{a}_{1}}+{{a}_{2}}+…+{{a}_{n}}}]
Обратите внимание: если $k$ пробегает значения от $k=a$ до $k=b$, то всего таких слагаемых будет ровно $b-a+1$:
[sumlimits_{k=a}^{b}{fleft( k right)=underbrace{fleft( a right)+fleft( a+1 right)+ldots +fleft( b right)}_{b-a+1text{ слагаемых!}}}]
Кроме того, полезно потренироваться и с обратным переходом — от полной записи к краткой:
[frac{1}{1}+frac{1}{3}+frac{1}{5}+frac{1}{7}+frac{1}{9}=sumlimits_{n=1}^{5}{frac{1}{2n-1}}]
[frac{2}{3}+frac{4}{9}+frac{6}{27}+frac{8}{81}=sumlimits_{n=1}^{4}{frac{2n}{{{3}^{n}}}}]
В приложении к уроку — куча задач для самостоятельной тренировки.
Но вернёмся к биному Ньютона. Распишем его без знака суммы:
[begin{align} {{left( a+b right)}^{n}} & =C_{n}^{0}cdot {{a}^{n}}{{b}^{0}}+C_{n}^{1}cdot {{a}^{n-1}}{{b}^{1}}+ \ & +ldots +C_{n}^{k}cdot {{a}^{n-k}}{{b}^{k}}+ldots + \ & +C_{n}^{n-1}cdot {{a}^{1}}{{b}^{n-1}}+C_{n}^{n}cdot {{a}^{0}}{{b}^{n}} end{align}]
В целом, всё понятно: степени буквы $a$ уменьшаются с ${{a}^{n}}$ до ${{a}^{0}}$; одновременно степени буквы $b$ растут с ${{b}^{0}}$ до ${{b}^{n}}$. Сумма степеней этих букв в каждом одночлене равна $n$. Но что такое $C_{n}^{k}$?
4. Биноминальные коэффициенты
Немного комбинаторики.
Определение. Число сочетаний из $n$ по $k$ — это число способов, которыми можно выбрать $k$ элементов среди $n$ элементов, если порядок выбора не имеет значения. Обозначается $C_{n}^{k}$ и считается по формуле
[C_{n}^{k}=frac{n!}{k!left( n-k right)!}]
Обратите внимание: в числителе и знаменателе стоят факториалы. Стандартное определение: $n!$ — это произведение всех чисел от единицы до $n$:
[n!=1cdot 2cdot 3cdot …cdot n]
У факториалов много интересных свойств. Чуть позже мы рассмотрим их и даже введём более корректное определение самого факториала. А пока просто потренируемся считать биноминальные коэффициенты.
Пример. На пруду плавают 5 уток. Сколькими способами можно выбрать 2 из них, чтобы покормить?
Очевидно, порядок кормления уток неважен. Покормить сначала утку №1, а затем №2 — это то же самое, что покормить сначала утку №2, затем №1. Результат один и тот же: накормлены лишь эти две утки, а остальные три — нет. Поэтому считаем $C_{5}^{2}$:
[begin{align} C_{5}^{2} & =frac{5!}{2!cdot 3!} \ & =frac{5cdot 4cdot 3cdot 2cdot 1}{2cdot 1cdot 3cdot 2cdot 1}= \ & =10 end{align}]
Вот и всё. Однако при больших $n$ и $k$ посчитать число сочетаний напрямую становится затруднительно. Тут на помощь приходит сокращение дробей.
Пример. На пруду 150 уток. Сколькими способами можно выбрать 2 из них, чтобы покормить?
Порядок вновь неважен, просто уток стало больше. Поэтому считаем $C_{150}^{2}$:
[begin{align} C_{150}^{2} & =frac{150!}{2!cdot 148!}= \ & =frac{150cdot 149cdot 148cdot …cdot 1}{2cdot 1cdot 148cdot …cdot 1}= \ & =frac{150cdot 149}{2cdot 1}= \ & =11175 end{align}]
Видим, что факториалы образуют «длинные хвосты» в числителе и знаменателе, которые легко сокращаются. Однако для корректной работы с биномом Ньютона нам потребуется расширить определение факториала.
4.1. Новое определение факториала
Стандартное определение мы уже привели выше:
[n!=1cdot 2cdot 3cdot …cdot n,quad nin mathbb{N}]
Но как посчитать, например, факториал нуля? И как сокращать «длинные хвосты», не расписывая факториалы? Здесь нам поможет более грамотное определение.
Определение. Пусть $nin mathbb{N}bigcup left{ 0 right}$ — целое неотрицательное число. Тогда факториал считается по формуле:
[n!=left{ begin{align} & 1,quad n=0 \ & ncdot left( n-1 right)!,quad n gt 0 \ end{align} right.]
В частности, $0!=1$ по определению.
Простейшие коэффициенты:
[begin{align} C_{n}^{0} & =frac{n!}{0!left( n-0 right)!}=frac{n!}{1cdot n!}=1; \ C_{n}^{1} & =frac{n!}{1!left( n-1 right)!}=frac{ncdot left( n-1 right)!}{1cdot left( n-1 right)!}=n; \ end{align}]
А вот ещё парочка весёлых примеров:
[begin{align} C_{7}^{3} & =frac{7cdot 6cdot 5cdot 4cdot ldots cdot 1}{3cdot 2cdot 1cdot 4cdot ldots cdot 1}=35 \ C_{8}^{2} & =frac{8cdot 7cdot 6cdot ldots cdot 1}{2cdot 1cdot 6cdot ldots cdot 1}=28 \ C_{64}^{3} & =frac{64cdot 63cdot 62cdot 61cdot ldots cdot 1}{3cdot 2cdot 1cdot 61cdot ldots cdot 1}= \ & =41664 end{align}]
5. Треугольник Паскаля
Посчитаем бином Ньютона для $n=0$, $n=1$, $n=2$, $n=3$:
[begin{align} & {{left( a+b right)}^{0}}=1 \ & {{left( a+b right)}^{1}}=1cdot a+1cdot b \ & {{left( a+b right)}^{2}}=1cdot {{a}^{2}}+2cdot ab+1cdot {{b}^{2}} \ & {{left( a+b right)}^{3}}=1cdot {{a}^{3}}+3cdot {{a}^{2}}b+3cdot a{{b}^{2}}+1cdot {{b}^{3}} \ end{align}]
Составим таблицу:
[begin{matrix} 1 \ 1quad 1 \ 1quad 2quad 1 \ 1quad 3quad 3quad 1 \ 1quad 4quad 6quad 4quad 1 \ end{matrix}]
Получили треугольник, который в народе называют «Треугольник Паскаля»: по бокам единицы, а внутри каждое число равно сумме двух ближайших, стоящих этажом выше:
[begin{align} & 3=1+2 \ & 4=1+3 \ & 6=3+3 \ end{align}]
И это не случайность. Перед нами важнейшее свойство биноминальных коэффициентов, которое мы оформим в виде теоремы и докажем.
Теорема. Биноминальные коэффициенты вычисляются по формуле
[C_{n}^{k}+C_{n}^{k+1}=C_{n+1}^{k+1}]
Доказывается напролом.
Распишем доказательство детально:
[C_{n}^{k}+C_{n}^{k+1}=frac{n!}{k!left( n-k right)!}+frac{n!}{left( k+1 right)!left( n-k-1 right)!}]
[begin{align} & C_{n}^{k}+C_{n}^{k+1}= \ = & frac{n!}{k!left( n-k right)!}+frac{n!}{left( k+1 right)!left( n-k-1 right)!} \ end{align}]
Заметим, что по определению факториала
[begin{align} & left( k+1 right)!=left( k+1 right)cdot k! \ & left( n-k right)!=left( n-k right)cdot left( n-k-1 right)! end{align}]
Поэтому знаменатели биноминальных коэффициентов можно переписать:
[C_{n}^{k}+C_{n}^{k+1}=frac{n!}{k!left( n-k right)left( n-k-1 right)!}+frac{n!}{left( k+1 right)k!left( n-k-1 right)!}]
[begin{align} C_{n}^{k}+C_{n}^{k+1} & =frac{n!}{k!left( n-k right)left( n-k-1 right)!}+ \ & +frac{n!}{left( k+1 right)k!left( n-k-1 right)!} end{align}]
Приведём к общему знаменателю:
[begin{align} C_{n}^{k}+C_{n}^{k+1} & =frac{left( k+1 right)cdot n!}{left( k+1 right)!left( n-k right)!}+frac{left( n-k right)cdot n!}{left( k+1 right)!left( n-k right)!}= \ & =frac{left( k+1+n-k right)cdot n!}{left( k+1 right)!left( n-k right)!}= \ & =frac{left( n+1 right)cdot n!}{left( k+1 right)!left( n-k right)!} end{align}]
[begin{align} & C_{n}^{k}+C_{n}^{k+1}= \ = & frac{left( k+1 right)cdot n!}{left( k+1 right)!left( n-k right)!}+frac{left( n-k right)cdot n!}{left( k+1 right)!left( n-k right)!}= \ = & frac{left( k+1+n-k right)cdot n!}{left( k+1 right)!left( n-k right)!}=frac{left( n+1 right)cdot n!}{left( k+1 right)!left( n-k right)!} \ end{align}]
Окончательно получим:
[begin{align} C_{n}^{k}+C_{n}^{k+1} & =frac{left( n+1 right)!}{left( k+1 right)!left( n-k right)!}= \ & =frac{left( n+1 right)!}{left( k+1 right)!left( n+1-left( k+1 right) right)!}= \ & = C_{n+1}^{k+1} end{align}]
Теорема доказана. Теперь мы знаем, как формируется треугольник Паскаля. Осталось доказать сам Бином Ньютона.
6. Доказательство Бинома Ньютона
Итак, нужно доказать, что
[{{left( a+b right)}^{n}}=sumlimits_{k=0}^{n}{C_{n}^{k}cdot {{a}^{n-k}}{{b}^{k}}}]
где $C_{n}^{k}$ — биноминальные коэффициенты с теми чудесными свойствами, которые мы рассмотрели и доказали выше.
Будем доказывать по индукции.
6.1. База индукции
Рассмотрим $n=1$. Формула Бинома Ньютона для него:
[begin{align} {{left( a+b right)}^{1}} & =sumlimits_{k=0}^{1}{C_{1}^{k}{{a}^{1-k}}{{b}^{k}}}= \ & =C_{1}^{0}{{a}^{1}}{{b}^{0}}+C_{1}^{1}{{a}^{0}}{{b}^{1}}= \ & =a+bend{align}]
Очевидно, для $n=1$ формула верна. Переходим к индуктивному предположению.
6.2. Индуктивное предположение
Пусть Бином Ньютона верен для некоторого $n=t$:
[{{left( a+b right)}^{t}}=sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k}}}]
Используя этот факт, докажем верность и для $n=t+1$, т.е. выполним индуктивный переход.
6.3. Индуктивный переход
Докажем, что бином Ньютона верен для $n=t+1$:
[{{left( a+b right)}^{t+1}}=sumlimits_{k=0}^{t+1}{C_{t+1}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}]
Для этого сначала заметим, что
[{{left( a+b right)}^{t+1}}={{left( a+b right)}^{t}}cdot left( a+b right)]
Однако согласно индуктивному предположению, ${{left( a+b right)}^{t}}$ допускает разложение по Биному Ньютона, поэтому
[begin{align} left( a+b right)cdot {{left( a+b right)}^{t}} & =left( a+b right)cdot sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k}}}= \ & =acdot sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k}}}+bcdot sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k}}}= \ & =sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}+sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}} end{align}]
[begin{align} & left( a+b right)cdot {{left( a+b right)}^{t}}= \ = & left( a+b right)cdot sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k}}}= \ = & acdot sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k}}}+bcdot sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k}}}= \ = & sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}+sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}} \ end{align}]
Запишем отдельно первое слагаемое первой суммы и учтём, что $C_{t}^{0}=C_{t+1}^{0}=1$:
[begin{align} sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}} & = C_{t}^{0}cdot {{a}^{t+1}}+sumlimits_{k=1}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}} \ & = C_{t+1}^{0}cdot {{a}^{t+1}}+sumlimits_{k=1}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}} end{align}]
[begin{align} & sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}= \ = & C_{t}^{0}cdot {{a}^{t+1}}+sumlimits_{k=1}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}} \ = & C_{t+1}^{0}cdot {{a}^{t+1}}+sumlimits_{k=1}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}} \ end{align}]
И последнее слагаемое последней второй суммы и учтём, что $C_{t}^{t}=C_{t+1}^{t+1}=1$:
[begin{align} sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}} & =sumlimits_{k=0}^{t-1}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}+C_{t}^{t}cdot {{b}^{t+1}} \ & =sumlimits_{k=0}^{t-1}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}} end{align}]
[begin{align} & sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}= \ = & sumlimits_{k=0}^{t-1}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}+C_{t}^{t}cdot {{b}^{t+1}} \ = & sumlimits_{k=0}^{t-1}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}} \ end{align}]
Сейчас будет самая нетривиальная операция. Меняем индекс суммирования в последней сумме: выполняем подстановку $k=m-1$. При этом меняются и пределы суммирования:
[left[ begin{align} k & =m-1 \ k & =0Rightarrow m=1 \ k & =t-1Rightarrow m=t \ k+1 & =m \ t-k & =t+1-m \ end{align} right]]
В итоге последняя сумма перепишется так:
[sumlimits_{k=0}^{t-1}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}}=sumlimits_{m=1}^{t}{C_{t}^{m-1}cdot {{a}^{t+1-m}}{{b}^{m}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}}]
[begin{align} & sumlimits_{k=0}^{t-1}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}}= \ = & sumlimits_{m=1}^{t}{C_{t}^{m-1}cdot {{a}^{t+1-m}}{{b}^{m}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}} \ end{align}]
Объединяем суммы вместе:
[begin{align} & sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}+sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}= \ = & C_{t+1}^{0}cdot {{a}^{t+1}}+sumlimits_{k=1}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}+sumlimits_{m=1}^{t}{C_{t}^{m-1}cdot {{a}^{t+1-m}}{{b}^{m}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}} \ end{align}]
[begin{align} & sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}+sumlimits_{k=0}^{t}{C_{t}^{k}cdot {{a}^{t-k}}{{b}^{k+1}}}= \ = & C_{t+1}^{0}cdot {{a}^{t+1}}+sumlimits_{k=1}^{t}{C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}+ \ + & sumlimits_{m=1}^{t}{C_{t}^{m-1}cdot {{a}^{t+1-m}}{{b}^{m}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}} \ end{align}]
Заметим, что два знака суммы различаются лишь названием индекса и биноминальными коэффициентами. Всё остальное — диапазоны суммирования, степени буквы $a$ и буквы $b$ — всё идеально совпадает и никак не меняется, если написать вместо $k$ индекс $m$ или наоборот.
Такие суммы можно записать под единым знаком:
[C_{t+1}^{0}cdot {{a}^{t+1}}+sumlimits_{k=1}^{t}{left( C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}+C_{t}^{k-1}cdot {{a}^{t+1-k}}{{b}^{k}} right)}+C_{t+1}^{t+1}cdot {{b}^{t+1}}]
[begin{align} & C_{t+1}^{0}cdot {{a}^{t+1}}+ \ + & sumlimits_{k=1}^{t}{left( C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}+C_{t}^{k-1}cdot {{a}^{t+1-k}}{{b}^{k}} right)}+ \ + & C_{t+1}^{t+1}cdot {{b}^{t+1}} \ end{align}]
Выражение под знаком суммы легко раскладывается на множители:
[begin{align} C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}+C_{t}^{k-1}cdot {{a}^{t+1-k}}{{b}^{k}} & =left( C_{t}^{k}+C_{t}^{k-1} right)cdot {{a}^{t+1-k}}{{b}^{k}}= \ & =C_{t+1}^{k}cdot {{a}^{t+1-k}}{{b}^{k}} end{align}]
[begin{align} & C_{t}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}+C_{t}^{k-1}cdot {{a}^{t+1-k}}{{b}^{k}}= \ = & left( C_{t}^{k}+C_{t}^{k-1} right)cdot {{a}^{t+1-k}}{{b}^{k}}= \ = & C_{t+1}^{k}cdot {{a}^{t+1-k}}{{b}^{k}} \ end{align}]
Здесь в последнем шаге мы использовали свойство биноминальных коэффициентов, доказанное выше:
[C_{n}^{k}+C_{n}^{k+1}=C_{n+1}^{k+1}]
Или, что то же самое
[C_{n}^{k-1}+C_{n}^{k}=C_{n+1}^{k}]
Таким образом, всю сумму можно переписать более компактно, а затем внести под знак суммы первое и последнее слагаемое:
[ C_{t+1}^{0}cdot {{a}^{t+1}}+sumlimits_{k=1}^{t}{C_{t+1}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}}=sumlimits_{k=0}^{t+1}{C_{t+1}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}]
[begin{align} C_{t+1}^{0}cdot {{a}^{t+1}} & +sumlimits_{k=1}^{t}{C_{t+1}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}+C_{t+1}^{t+1}cdot {{b}^{t+1}}= \ & =sumlimits_{k=0}^{t+1}{C_{t+1}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}} \ end{align}]
Сопоставляя исходное выражение и конечное, получим
[{{left( a+b right)}^{t+1}}=sumlimits_{k=0}^{t+1}{C_{t+1}^{k}cdot {{a}^{t+1-k}}{{b}^{k}}}]
Именно это и требовалось доказать. Следовательно, исходная формула Бинома Ньютона верна.
Смотрите также:
- Схема Горнера
- Теорема Безу и корни многочленов
- Знаки тригонометрических функций
- Уравнение касательной к графику функции
- Как представить обычную дробь в виде десятичной
- Сложные задачи B2 на проценты: вычисление полной стоимости
Биномиальные коэффициенты
- Биномиальные коэффициенты
-
Биномиальные коэффициенты — коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона):
Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов.
Значение биномиального коэффициента определено для всех целых чисел n и k. Явные формулы для вычисления биномиальных коэффициентов:
- для ;
- для k < 0 или ;
- для ,
где n! и k! — факториалы чисел n и k.
Биномиальный коэффициент является обобщением числа сочетаний , которое определено только для неотрицательных целых чисел n, k.
Биномиальные коэффициенты часто возникают в комбинаторных задачах и теории вероятностей.
Обобщением биномиальных коэффициентов являются мультиномиальные коэффициенты.
Содержание
- 1 Треугольник Паскаля
- 2 Свойства
- 3 Тождества
- 4 Асимптотика и оценки
- 5 Алгоритмы вычисления биномиальных коэффициентов
- 6 См. также
- 7 Ссылки
Треугольник Паскаля
Тождество
позволяет расположить биномиальные коэффициенты для неотрицательных n, k в виде треугольника Паскаля, в котором каждое число равно сумме двух вышестоящих:
Треугольная таблица, предложенная Паскалем в «Трактате об арифметическом треугольнике» (1654), отличается от выписанной здесь поворотом на 45°. Таблицы для изображения биномиальных коэффициентов были известны и ранее (Тарталье, О. Хайяму и др.).
Свойства
Интересно, что если рассмотреть ряды в треугольнике Паскаля, состоящие из биномиальных коэффициентов, то в пределе получим функцию нормального распределения — распределение Гаусса.
Из теоремы Люка следует, что:
Тождества
Асимптотика и оценки
Алгоритмы вычисления биномиальных коэффициентов
Биномиальные коэффициенты могут быть вычислены с помощью формулы , если на каждом шаге хранить значения при . Этот алгоритм особенно эффективен, если нужно получить все значения при фиксированном n. Алгоритм требует O(n) памяти (O(n2) при вычислении всей таблицы биномиальных коэффициентов) и O(n2) времени (в предположении, что каждое число занимает единицу памяти и операции с числами выполняются за единицу времени).
Второй способ основан на тождестве . Он позволяет вычислить значения при фиксированном k. Алгоритм требует O(1) памяти (O(l) если нужно посчитать l последовательных коэффициентов с фиксированным k) и O(k) времени.
См. также
- Биномиальное распределение
- Треугольное число
- Треугольник Паскаля
- Пирамида Паскаля
- Композиция (теория чисел)
- Разбиение числа
Ссылки
- О. В. Кузьмин Треугольник и пирамида Паскаля: свойства и обобщения // Соросовский Образовательный Журнал. — 2000. — Т. 6. — № 5. — С. 101—109.
- С. К. Абачиев Радужная фрактальность треугольника Паскаля
Wikimedia Foundation.
2010.
Полезное
Смотреть что такое “Биномиальные коэффициенты” в других словарях:
-
Биномиальные коэффициенты — коэффициенты в формуле разложения Ньютона бинома … Большая советская энциклопедия
-
БИНОМИАЛЬНЫЕ КОЭФФИЦИЕНТЫ — коэффициенты при степенях z в разложений Ньютона бинома . Б. к. обозначается или и равен Обозначение восходит к Л. Эйлеру (L. Euler); второе обозначение появилось в 19 в. и связано, по видимому, с интерпретацией Б. к. как числа различимых… … Математическая энциклопедия
-
Биномиальные коэффициенты — так называются количества: l, n/1, n(n 1)/(1.2), n(n 1)(n 2)/(1.2.3)…, n(n 1)(n 2)…(n m + 1)/(1.2.3…m), составляющие коэффициенты последовательных членов бинома Ньютона (см. Бином). Их обозначают в настоящее время часто знаком . Общий вид Б … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
-
Паскаля треугольник — Биномиальные коэффициенты коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых… … Википедия
-
Биномиальный коэффициент — В математике биномиальные коэффициенты это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается или и читается «биномиальный коэффициент из n по k» (или «це из n по k»): В … Википедия
-
Ньютона бином — название формулы, выражающей любую целую положительную степень суммы двух слагаемых (бинома, двучлена) через степени этих слагаемых, а именно: (1) (1) где n целое положительное число, а и b какие угодно числа.… … Большая советская энциклопедия
-
Бином Ньютона — Бином Ньютона формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид , где биномиальные коэффициенты, неотрицательное целое число. В таком виде эта формула была известна… … Википедия
-
биномиальное распределение — (распределение Бернулли), распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна р (0≤р≤1). Именно, число μ появлений этого события… … Энциклопедический словарь
-
Последовательность Падована — Последовательность Падована это целочисленная последовательность P(n) с начальными значениями и линейным рекуррентным соотношением Первые значения P(n) таковы 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265 … Википедия
-
Бином ньютона — Бином Ньютона это формула , где биномиальные коэффициенты, n неотрицательное целое число. Содержание 1 Доказательство … Википедия