Как найти дельту чего либо

Подскажите как найти дельту)



Ученик

(162),
закрыт



12 лет назад

Дополнен 12 лет назад

ммм. . спасибо большое) ) Помогла очень)

PaulW

Гуру

(3172)


12 лет назад

Дельта = (данное значение – среднее значение)
Удобнее делать в виде таблицы, но для начала посчитаем среднее = (0,2+1+1,5)/3 = 0,9
0,2 – 0,9 = -0,7
1 – 0,9 = 0,1
1,5 – 0,9 = 0,6

Саул

Профи

(640)


6 лет назад

Дельта = (данное значение – среднее значение)
Удобнее делать в виде таблицы, но для начала посчитаем среднее = (0,2+1+1,5)/3 = 0,9
0,2 – 0,9 = -0,7
1 – 0,9 = 0,1
1,5 – 0,9 = 0,6

Как рассчитать дельту

Четвертой буквой греческого алфавита, «дельтой», в науке принято называть изменение какой-либо величины, погрешность, приращение. Записывается этот знак различными способами: чаще всего в виде небольшого треугольника Δ перед буквенным обозначением величины. Но иногда можно встретить и такое написание δ, либо латинской строчной буквой d, реже латинской прописной – D.

Как рассчитать дельту

Инструкция

Для нахождения изменения какой-либо величины вычислите или измерьте ее начальное значение (x1).

Вычислите или измерьте конечное значение этой же величины (x2).

Найдите изменение данной величины по формуле: Δx=x2-x1. Например: начальное значение напряжения электрической сети U1=220В, конечное значение – U2=120В. Изменение напряжения (или дельта напряжения) будет равно ΔU=U2–U1=220В-120В=100В

Для нахождения абсолютной погрешности измерения определите точное или, как его иногда называют, истинное значение какой-либо величины (x0).

Возьмите приближенное (при измерении – измеренное) значение этой же величины (x).

Найдите абсолютную погрешность измерения по формуле: Δx=|x-x0|. Например: точное число жителей города – 8253 жителя (х0=8253), при округлении этого числа до 8300 (приближенное значение х=8300). Абсолютная погрешность (или дельта икс) будет равна Δx=|8300-8253|=47, а при округлении до 8200 (х=8200), абсолютная погрешность – Δx=|8200-8253|=53. Таким образом, округление до числа 8300 будет более точным.

Для сравнения значений функции F(х) в строго фиксированной точке х0 со значениями этой же функции в любой другой точке х, лежащей в окрестностях х0, используются понятия «приращение функции» (ΔF) и «приращение аргумента функции» (Δx). Иногда Δx называют «приращением независимой переменной». Найдите приращение аргумента по формуле Δx=x-x0.

Определите значения функции в точках х0 и х и обозначьте их соответственно F(х0) и F(х).

Вычислите приращение функции: ΔF= F(х)- F(х0). Например: необходимо найти приращение аргумента и приращение функции F(х)=х˄2+1 при изменении аргумента от 2 до 3. В этом случае х0 равно 2, а х=3.
Приращение аргумента (или дельта икс) будет Δx=3-2=1.
F(х0)= х0˄2+1= 2˄2+1=5.
F(х)= х˄2+1= 3˄2+1=10.
Приращение функции (или дельта эф) ΔF= F(х)- F(х0)=10-5=5

Обратите внимание

Вычитать нужно не из большего числа меньшее, а из конечного значения (не важно: больше оно или меньше) начальное!

Полезный совет

При нахождении Δ все значения используйте только в одинаковых единицах измерения.

Источники:

  • Справочник по математике для средних учебных заведений, А.Г. Цыпкин, 1983

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Mathematicians are fond of Greek letters, and they use the capital letter delta, which looks like a triangle (∆), to symbolize change. When it comes to a pair of numbers, delta signifies the difference between them. You arrive at this difference by using basic arithmetic and subtracting the smaller number from the larger one. In some cases, the numbers are in chronological order or some other ordered sequence, and you may have to subtract the larger one from the smaller one to preserve the order. This might result in a negative number.

Absolute Delta

If you have a random pair of numbers and you want to know the delta – or difference – between them, just subtract the smaller one from the larger one. For example, the delta between 3 and 6 is (6 – 3) = 3.

If one of the numbers is negative, add the two numbers together. The operation looks like this: (6 – {-3}) = (6 + 3) = 9. It’s easy to understand why delta is bigger in this case if you visualize the two numbers on the x-axis of a graph. The number 6 is 6 units to the right of the axis, but negative 3 is 3 units to the left. In other words, it’s farther from the 6 than positive 3, which is to the right of the axis.

You need to remember some of your grade school arithmetic to find the delta between a pair of fractions. For example, to find the delta between 1/3 and 1/2, you must first find a common denominator. To do this, multiply the denominators together, then multiply the numerator in each fraction by the denominator of the other fraction. In this case, it looks like this: 1/3 x 2/2 = 2/6 and 1/2 x 3/3 = 3/6. Subtract 2/6 from 3/6 to arrive at the delta, which is 1/6.

Relative Delta

A relative delta compares the difference between two numbers, A and B, as a percentage of one of the numbers. The basic formula is A – B/A x100. For example, if you make $10,000 a year and donate $500 to charity, the relative delta in your salary is 10,000 – 500/10,000 x 100 = 95%. This means you donated 5 percent of your salary, and you still have 95 percent of it left. If you earn $100,000 a year and make the same donation, you’ve kept 99.5 percent of your salary and donated only 0.5 percent of it to charity, which doesn’t sound quite as impressive at tax time.

From Delta to Differential

You can represent any point on a two-dimensional graph by a pair of numbers that denote the distance of the point from the intersection of the axes in the x (horizontal) and y (vertical) directions. Suppose you have two points on the graph called point 1 and point 2, and that point 2 is farther from the intersection than point 1. The delta between the x values of these points – ∆ x – is given by (x2 – x1), and ∆ y for this pair of points is (y2 – y1). When you divide ∆y by ∆x, you get the slope of the graph between the points, which tells you how fast x and y are changing wth respect to each other.

The slope provides useful information. For example, if you plot time along the x-axis and measure the position of an object as it travels through space on the y-axis, the slope of the graph tells you the average speed of the object between those two measurements.

Speed may not be constant, though, and you may want to know the speed at a particular point in time. Differential calculus provides a conceptual trick that allows you to do this. The trick is to imagine two points on the x-axis and allow them to get infinitely close together. The ratio of ∆y to ∆x – ∆y/∆x – as ∆x approaches 0 is called the derivative. It’s usually expressed as dy/dx or as df/dx, where f is the algebraic function that describes the graph. On a graph on which time (t) is mapped on the horizontal axis, “dx” becomes “dt,” and the derivative, dy/dt (or df/dt), is a measure of instantaneous speed.

Математики любят греческие буквы и используют дельту заглавной буквы, которая выглядит как треугольник (∆), чтобы символизировать изменение. Когда дело доходит до пары чисел, дельта обозначает разницу между ними. Вы получаете эту разницу, используя основную арифметику и вычитая меньшее число из большего. В некоторых случаях числа располагаются в хронологическом порядке или в некоторой другой упорядоченной последовательности, и вам, возможно, придется вычесть большее из меньшего, чтобы сохранить порядок. Это может привести к отрицательному числу.

Абсолютная Дельта

Если у вас есть случайная пара чисел, и вы хотите узнать дельту – или разницу – между ними, просто вычтите меньшее из большего. Например, дельта между 3 и 6 составляет (6 – 3) = 3.

Если одно из чисел отрицательно, сложите два числа вместе. Операция выглядит следующим образом: (6 – {-3}) = (6 + 3) = 9. Легко понять, почему в этом случае дельта больше, если вы визуализируете два числа на оси x графика. Число 6 равно 6 единицам справа от оси, но отрицательное значение 3 равно 3 единицам слева. Другими словами, он дальше от 6, чем от положительного 3, который находится справа от оси.

Вам нужно запомнить некоторую арифметику вашей начальной школы, чтобы найти дельту между парой дробей. Например, чтобы найти дельту между 1/3 и 1/2, вы должны сначала найти общий знаменатель. Для этого умножьте знаменатели вместе, а затем умножьте числитель в каждой дроби на знаменатель другой дроби. В этом случае это выглядит так: 1/3 x 2/2 = 2/6 и 1/2 x 3/3 = 3/6. Вычтите 2/6 из 3/6, чтобы получить дельту, которая составляет 1/6.

Относительная дельта

Относительная дельта сравнивает разницу между двумя числами, A и B, в процентах от одного из чисел. Базовая формула A – B / A x100. Например, если вы зарабатываете 10 000 долларов в год и жертвуете 500 долларов на благотворительность, относительная дельта вашей зарплаты составляет 10 000 – 500/10 000 x 100 = 95%. Это означает, что вы пожертвовали 5 процентов своей зарплаты, а у вас осталось 95 процентов. Если вы зарабатываете 100 000 долларов в год и делаете то же самое пожертвование, вы сохранили 99, 5% своей зарплаты и пожертвовали только 0, 5% на благотворительность, что не очень впечатляет в момент налогообложения.

От дельты к дифференциалу

Вы можете представить любую точку на двумерном графике парой чисел, которые обозначают расстояние от точки до пересечения осей в направлениях x (горизонтальное) и y (вертикальное). Предположим, у вас есть две точки на графике, называемые точкой 1 и точкой 2, и эта точка 2 находится дальше от пересечения, чем точка 1. Дельта между значениями x этих точек – ∆ x – определяется как (x 2 – x 1), и y для этой пары точек равно (y 2 – y 1). Когда вы делите ∆y на ∆x, вы получаете наклон графика между точками, который говорит вам, как быстро x и y изменяются относительно друг друга.

Склон предоставляет полезную информацию. Например, если вы наносите время вдоль оси x и измеряете положение объекта при его перемещении в пространстве по оси Y, наклон графика показывает среднюю скорость объекта между этими двумя измерениями.

Скорость может быть не постоянной, и вы можете узнать скорость в определенный момент времени. Дифференциальное исчисление обеспечивает концептуальный трюк, который позволяет вам сделать это. Хитрость заключается в том, чтобы представить две точки на оси х и позволить им бесконечно сближаться. Отношение ∆y к ∆x – ∆y / ∆x – при приближении ∆x к 0 называется производной. Обычно это выражается как dy / dx или как df / dx, где f – алгебраическая функция, которая описывает граф. На графике, на котором время (t) отображается на горизонтальной оси, «dx» становится «dt», а производная dy / dt (или df / dt) является мерой мгновенной скорости.

как найти дельту m если m = 280г.

—>

дельта m =m1-m2
должно быть еще одно значение

1)нужно найти цену деления весов
2)затем делишь цену деления на 2 и тем самым находишь погрешность т. е. дельту
3) в ответе пишешь : m= 280г +- погрешность
вот и все все просто

Дельта — буква, знак и его происхождение, применение в науке

В данной статье поговорим о знаке Дельта — что он из себя представляет, в каких сферах применяется и для чего вообще используется. Также вы узнаете, как выглядит знак и как его можно вставить в текст в такой программе, какой является Ворд из Майкрософт Оффис.

Знак Дельта применяется во многих сферах жизнедеятельности, к примеру, в физике, текстовых редакторах, формулах и других сферах. Чаще всего именно при печати учебной литературы, докладов и других видов документов применяют знак дельта, который имеется в разных версиях ВОРД от Виндовс и других приложениях для создания документов текстового формата на ПК.

Обозначение дельта знака

О происхождения знака

Появление символа связано с греческими языком, но сама буква появилась от стародревнего финийского языка, в котором именовалась – далет, что обозначало («вход в дверь»). Выглядела «далет» как перевернутый влево равнобедренный треугольник. В греческом алфавите, была такая буква. Позже эта буква дала начало всем известной буквы латинского набора – D , которая и поныне есть во многих алфавитных рядах разных государств мира, к примеру, английский алфавит ее содержит.

Буква, которая служит аналогом в русском алфавите – Д, а вот символ везде одинаков и изображается, как геометрическая фигура, а именно треугольник с равными сторонами (Δ). Эта версия является заглавной, прописная версия выглядит немного иначе, представляя собой кружок с хвостиком, похожий на обозначение в физике плотности (δ).

Значение буквы

Где применяется данный символ?

Кроме использования в правописании греков, символ начали активно применять в математике, геометрии, алгебре, физике, химии и географии.

Поговорим отдельно о применении дельта в каждых научных сферах:

  1. География. Дельта подразумевает в географическом смысле начальную часть реки, океана или моря, имеет смысловое, нежели символическое, буквенное понятие и восприятие. Почему именно область впадения реки принято так называть? Все просто, дело в форме данной области, если сделать снимок сверху, то отток реки будет иметь форму правильного треугольника, а символ дельта, как раз представляет собой такой геометрический объект. Ярчайшим представителем с выраженной дельтой является река Нил (Египет), которая впадает в Средиземное море, а также Амазонка с ее впадением в океан Атлантики.
  2. Применение в математике, алгебре, геометрии. Очень часто знак применяют в математической сфере для таких целей, как: 1) Приращение аргумента подразумевает под дельтой измененную переменную. К примеру, сложим 5 и 4 в итоге получим число 9. Дельтой будет являться увеличение 5 на 4. 2) Применение в теории вероятности по системе Лапласа. Такой метод преподают в ВУЗах, а не школах и в нем используют такой знак. 3) А также символ применяется при обозначении прямой и обратной матриц. 4) Дельта, буква, применяемая в написании формул (как письменным методом, так и через компьютер);
  3. Также в математике применяют прописную версию дельта. А именно, такой символ обозначает производную от числа. Обозначение выглядит следующим образом — δy/δx. 2) Используется для описания бесконечной функции-дельта. Бесконечная функция возможна, если все значения аргумента равны нулю. 3) При помощи δ еще обозначают символику Кронекера, символ равен всегда 1, при условии того, что все его индексы равны, либо нулевые при заданных условиях.
  4. Физика, астрономия, космогония. Граничащие меж собой научные дисциплины, все особо важные и по-своему интересные, в каждой из дисциплин можно встретить знак дельта. В физике связь всех производных осуществляется при помощи формул с интеграцией. К примеру, формула скорости, которая выглядит следующим образом — δS к δt , является отношением одной части к другой. В данном случае расстояние, которое преодолел объект, соотносится со временем, затраченном на преодоление. Вторая производная – это ускорение, где тоже важна взаимосвязь одной составляющей формулы к другой. В космологии и астрономии применяют формулы, расчеты с данным символом, только в прописном варианте.

Дельта знак

Как ввести в «Ворд»?

Для вставки символа заходим в верхние меню редактора и ищем колонку «Вставка», наводим на колонку курсором мыши без нажатия правой кнопки. Высвечивается несколько наименования разделов, необходимо нажать на «Символ» , где можно путем перелистывания за счет колеса мыши искать необходимый знак, либо в строке поиска выбрать категорию (статистические или математические) и найти знак. Прописной или заглавный символ высветится в рабочей области окна вставки , вам только стоит нажать правой кнопкой мыши «вставить» или «окей».

  • slide3

§2. Законы Ньютона. Импульс или количество движения материальной точки

В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.

Система отсчёта, в которой любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.

инерциальные системы отсчёта (ИСО) существуют

в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:

`Delta vec p = vec F * Delta t` (1)

Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в данной системе отсчёта:

`vec p = m * vec v`.

`vec F` — сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) — vec p (t)` называют приращением импульса материальной точки за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:

в ИСО приращение импульса материальной точки равно импульсу силы.

Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:

в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:

`vec a = vec F/m` (2)

Если масса тела остаётся неизменной, то `Delta vec p = Delta (m vec v) = m Delta vec v`, и соотношение (1) принимает вид `m Delta vec v = vec F Delta t`. С учётом `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности соотношений (1) и (2) в рассматриваемом случае.

В настоящем Задании представлены задачи, для решения которых привлекается второй закон Ньютона (см.(1)), устанавливающий равенство приращений импульса материальной точки и импульса силы.

при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:

1) силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,

2) эти силы равны по величине,

3) они действуют вдоль одной прямой в противоположных направлениях.

Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.

Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:

Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.

Напомним, что для решения задач динамики материальной точки следует:

привести «моментальную фотографию» движущегося тела, указать приложенные к нему силы;

выбрать инерциальную систему отсчёта;

составить уравнение (3);

перейти к проекциям приращения импульса и сил на те или иные направления;

решить полученную систему.

Рассмотрим характерные примеры.

На рис. 1 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона

`(Delta vec p)/(Delta t) = M vec g + vec N + vecF_(«тр») + vec F`.

Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона

и в процессе торможения `(F = 0)`

Просуммируем все приращения импульса тела от старта до остановки:

`sum Delta p_x = sum_(0 <= t <= t_1) (F — F_sf»тр») Delta t + sum_(t_1 <= t <= t_1 + t_2) (-F_sf»тр» ) Delta t`.

Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда

Далее рассмотрим пример, в котором одна из сил зависит от времени.

На какое максимальное расстояние `L_max` улетит мяч, если в процессе удара футболист действует на мяч постоянной по направлению силой, величина которой изменяется по закону, представленному на рис. 2. Длительность удара τ = 8 · 10 — 3 c tau=8cdot10^;mathrm c , максимальная сила F max = 3,5 · 10 3 H F_max=3,5cdot10^3;mathrm H , масса мяча m = 0,5 кг m=0,5;mathrm . Здесь и далее ускорение свободного падения g = 10 м / с 2 g=10;mathrm м/mathrm с^2 . Сопротивление воздуха не учитывайте.

Так как `mg < < F_max`, силой тяжести пренебрежём. Из кинематики известно, что максимальная дальность полёта наблюдается при старте под углом `alpha = pi/4`. Процесс удара показан на рис. 3.

По второму закону Ньютона приращение импульса равно импульсу силы `Delta vec p = vec F * Delta t`. Переходя к проекциям приращения импульса и силы на ось `Ox`, получаем

`Delta p_x = F Delta t`.

Просуммируем элементарные приращения импульса мяча за время удара

`sum Delta p_x = mv — 0 = sum_(0 <= t <= tau) F Delta t`.

Импульс силы `sum_(0 <= t <= tau) F(t) Delta t` за время удара численно равен площади под графиком зависимости этой силы от времени (каждое слагаемое `F(t) Delta t` в импульсе силы можно интерпретировать как площадь элементарного прямоугольника со сторонами `F(t)` и `Delta t` на графике зависимости `F(t)`). Тогда импульс силы `F` за время удара равен

`sum_(0 <= t <= tau) F Delta t = (F_max tau)/2`

и в рассматриваемом случае не зависит от того, в какой именно момент времени сила достигает максимального значения (площадь треугольника равна половине произведения основания на высоту!). Далее находим импульс мяча в момент окончания действия силы

`mv = 1/2 F_max * tau`.

Отсюда находим начальную скорость полёта мяча

`v = (F_max * tau)/(2m) = (3,5 * 10^3 * 8 * 10^-3)/(2 * 0,5) = 28 sf»м/с»`

и максимальную дальность (старт под углом `alpha = pi/4`) полёта

`L_max = (v^2)/g = (28^2)/(10)

В рассматриваемом модельном примере получен несколько завышенный по сравнению с наблюдениями результат.

На вступительных испытаниях и олимпиадах в вузах России регу­лярно предлагаются задачи динамики, в которых наряду с «традицион­ными» силами: силой тяжести, силой Архимеда и т. д., на тело дейст­вует сила лобового сопротивления. Такая сила возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.

Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v = 10 sf»м/с»`, упал на землю, имея вертикальную составляющую скорости по абсолютной величине на `delta = 30 %` меньшую, чем при бросании. Найдите время по­лёта мяча. Считать, что сила сопротивления движению мяча пропорциональна его скорости.

Согласно второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы:

`m * Delta vec v = (m vec g — k vec v) * Delta t`.

Переходя к проекциям сил и приращения скорости на вертикальную ось, получаем

`m * Delta v_y = — mg * Delta t — k * v_y * Delta t`.

Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`, и перепишем последнее соотношение в виде:

`m * Delta v_y = — mg * Delta t — k * Delta y`.

Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`:

`m * (sum Delta v_y) = — mg * (sum Delta t) — k* (sum Delta y)`.

Переходя к конечным приращениям, получаем

`m (v_y (T) — v_y (0)) = — mg (T — 0) — k (y (T) — y (0))`.

Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое

Тогда `- (1 — delta) mv_0 sin alpha — mv_0 sin alpha = — mgT`. Отсюда находим продолжительность полёта мяча:

`T = (v_0 sin alpha)/(g) (2 — delta) = (10 * sin 60^@)/(10) (2,0 — 0,3)

В следующем примере рассматривается удар, в ходе которого две очень большие силы, «согласованно» действуют во взаимно перпендикулярных направлениях.

Кубик, движущийся поступа­тельно со скоростью `v` (рис. 4) по гладкой горизонтальной поверхности, испытывает соударение с шероховатой вертикальной стенкой.

Коэффициент трения `mu` скольжения кубика по стенке и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика в результате соударения не изменяется по величине.

Силы, действующие на кубик в процессе соударения, показаны на рис. 5.

По второму закону Ньютона

`Delta vec p = (m vec g + vecN_(«г») + vecF_(«тр») + vecN_(«в») ) * Delta t`.

Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем

`Delta p_x = — F_sf»тр» Delta t`, `Delta p_y = N_sf»в» Delta t`.

Просуммируем приращения `Delta p_y = N_sf»в» Delta t` по всему времени `tau` соуда­рения, получим:

`sum Delta p_y = p_y (tau) — p_y (0) = mv sin alpha — (- mv sin alpha) = sum_(0 <= t <= tau) N_sf»в» Delta t`.

В процессе удара в любой момент времени `F_sf»тр» = mu N_sf»в»`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения

`sum_(0 <= t <= tau) F_sf»тр» Delta t = mu sum_(0 <= t <= tau) N_sf»в» Delta t = mu 2 mv sin alpha`.

Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для этого просуммируем приращения

`Delta p_x = — F_sf»тр» Delta t = — mu N_sf»в» Delta t`

по всему времени `tau` соударения, получим:

`sum Delta p_x = p_x (tau) — p_x (0) = mv_x (tau) — mv cos alpha = — sum _(0 <= t<= tau) F_sf»тр» Delta t =- mu 2 mv sin alpha`.

Отсюда `v_x (tau) = v (cos alpha — 2 mu sin alpha)`. Далее, считая `v_x (tau) > 0`, получаем

`bbb»tg» beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha — 2 mu sin alpha)`.

Добавить комментарий